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São Cristóvão – SE – Brasil
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Abstract. The prediction of sonic logs is essential in the oil industry, as it al-
lows the estimation of geological properties without direct measurements, which
are often costly or unfeasible. This work applies linear regression to generate
synthetic sonic logs based on other geophysical logs from the ANP database
for the Sergipe Onshore Basin. The methodology uses Pearson correlation to
select relevant variables for the prediction. The model achieved an r2 of 0.77,
indicating its viability to reduce costs by replacing direct measurements with
statistical predictions.

Resumo. A predição de perfis sônicos é essencial na indústria petrolı́fera, pois
permite estimar propriedades geológicas sem medições diretas, muitas vezes ca-
ras ou inviáveis. Este trabalho aplica regressão linear para gerar perfis sônicos
sintéticos com base em outros perfis geofı́sicos da base de dados da ANP na
Bacia Sergipe Terrestre. A metodologia utiliza correlação de Pearson para se-
lecionar variáveis relevantes à predição. O modelo obteve r2 de 0,77, indicando
sua viabilidade para reduzir custos ao substituir medições diretas por predições
estatı́sticas.

1. Introdução

O petróleo vem sendo, ao longo dos séculos, a mais significativa fonte de energia
global [Alhelfia et al. 2021], e é uma das principais matérias-primas para uma ampla
gama de produtos industriais no mundo contemporâneo. No entanto, sua exploração
é um processo complexo, pois seus reservatórios estão localizados no subsolo, tor-
nando impossı́vel a observação direta [Cao et al. 2017]. Para compreender a composição
e as propriedades desses reservatórios, é essencial realizar uma caracterização deta-
lhada das formações geológicas por meio da análise de perfis geofı́sicos, que fornecem
informações sobre as propriedades petrofı́sicas das rochas ao longo do poço perfurado
[Archie 1950, Augusto and Martins 2009]. Entre os perfis mais comuns estão os de raios
gama, potencial espontâneo, resistividade e sônico [Cranganu and Breaban 2013].



O perfil sônico é fundamental na caracterização dos reservatórios, pois permite
a determinação de propriedades essenciais, como porosidade, litologia e propriedades
elásticas [Nero et al. 2023]. Por outro lado, esse perfil nem sempre está disponı́vel, seja
por falhas instrumentais, más condições do poço, perda de dados durante o armazena-
mento, erros de calibração ou por uma decisão operacional de não adquiri-lo em poços
considerados menos relevantes, especialmente quando o perfil de densidade já está pro-
gramado, visto que o custo de obtenção, embora não muito elevado, ainda pode ser um
fator limitante [Nero et al. 2023, Ogbamikhumi et al. 2020, Pratikna et al. 2022].

A predição de perfis sônicos por inteligência artificial tem se consolidado na
indústria petrolı́fera como solução eficiente para substituir medições ausentes, utilizando
perfis acessı́veis já disponı́veis na documentação dos poços. Alinhada à digitalização do
setor e ao quarto paradigma da ciência de dados [Alhelfia et al. 2021, Gressling 2020],
essa abordagem reduz custos e tempo, otimiza a caracterização de formações rochosas,
melhora a interpretação sı́smica e contribui para a redução de impactos ambientais decor-
rentes de operações adicionais, maximizando o aproveitamento dos dados já coletados.

Segundo [Ellis and Singer 2007] e comprovado neste trabalho, algumas curvas de
perfis comumente referenciados em documentação de poços indicam relações lineares
com o perfil sônico. Ainda mais, fortes correlações entre esses perfis e o tempo de trânsito
podem ser presenciadas, tornando a predição do perfil sônico viável a partir de modelos
lineares. Embora o uso de aprendizado de máquina para a geração de perfis sônicos tenha
crescido nos últimos anos, há uma escassez de estudos que empregam a regressão linear,
especialmente em bacias sedimentares brasileiras. Um exemplo relevante aplicado fora do
paı́s é o estudo de [Akinyemi et al. 2023], que avaliou diversos algoritmos de aprendizado
de máquina na previsão do perfil sônico na Bacia do Delta do Nı́ger, demonstrando a
eficácia de diferentes abordagens mas, por outro lado, a regressão linear foi o pior método.

Diante desse contexto, este trabalho tem como objetivo gerar perfis sônicos
sintéticos utilizando o algoritmo de regressão linear, a partir de dados de perfis geofı́sicos
mais acessı́veis da Bacia de Sergipe. A proposta parte do indı́cio de que a relação entre
os perfis geofı́sicos relevantes e o tempo de trânsito sônico é linear. Por fim, este trabalho
busca contribuir para o avanço das técnicas de predição de perfis sônicos e na identificação
geofı́sica de rochas no cenário brasileiro.

Os resultados obtidos indicaram fortes indı́cios de linearidade entre curvas de per-
fis tradicionais, como o NPHI, RHOB e GR, e o sinal sônico, que resultaram em desempe-
nho satisfatório de R2 médio em 0,77, com baios ı́ndices de erros e cujo melhor resultado
foi de R2 = 0,88, superior a resultados de trabalhos prévios. Isso evidencia o potencial
da abordagem proposta em contextos onde o perfil sônico não está disponı́vel.

O restante deste artigo está organizado da seguinte forma: a Seção 2 apresenta a
fundamentação teórica necessária para o desenvolvimento do trabalho. A Seção 3 des-
creve a metodologia adotada, incluindo o tratamento dos dados e os procedimentos de
modelagem. A Seção 4 apresenta e discute os principais resultados obtidos e a discussão
sobre eles. Por fim, a Seção 5 reúne a conclusão parcial do estudo e propõe direções para
trabalhos futuros.



2. Fundamentação Teórica
Esta sessão é destinada à explicação de termos pontuais abordados neste trabalho, cujo
objetivo principal é gerar perfis sônicos sintéticos utilizando o algoritmo de regressão
linear, a partir de dados de perfis geofı́sicos mais acessı́veis na Bacia de Sergipe.

2.1. Perfis Geofı́sicos e o Perfil Sônico
As rochas-reservatório são essenciais na exploração de petróleo por apresentarem poro-
sidade e permeabilidade, caracterı́sticas que permitem o armazenamento e o fluxo de hi-
drocarbonetos [Selley 1998, Tissot and Welte 2013]. A identificação dessas rochas é feita
por meio de perfis geofı́sicos, que fornecem informações detalhadas sobre as proprieda-
des das formações em profundidade. Por exemplo, os raios gama fornecem informações
sobre a composição mineral das rochas; a densidade estima a porosidade e a composição
litológica das rochas que, juntamente com a porosidade de nêutrons, ajudam também na
detecção de gás em reservatórios.

O perfil sônico (DT) registra o tempo de trânsito das ondas compressionais no
meio rochoso (ondas P), refletindo propriedades elásticas e densidade da formação, além
de estimar a porosidade [Ahammod et al. 2014, Ellis and Singer 2007]. Por todos os fato-
res que dificultam a aquisição de seus dados, outros perfis comumente utilizados durante
a perfuração de um poço, como, por exemplo, os raios gama, a densidade, a porosidade
de nêutrons, o cáliper, a indução e a própria profundidade, podem servir como descritores
de um perfil sônico sintético.

2.2. Regressão Linear
Segundo [Montgomery et al. 2021], a regressão linear é uma técnica estatı́stica ampla-
mente utilizada para problemas de predição numérica, especialmente nas áreas de inte-
ligência artificial e aprendizado de máquina. O objetivo principal dessa abordagem é
modelar a relação entre uma variável dependente (ou resposta) e uma ou mais variáveis
independentes (ou preditoras), assumindo que essa relação seja linear. Ou seja, espera-se
que as variações na variável dependente possam ser explicadas como combinações linea-
res proporcionais das variações das variáveis preditoras.

Matematicamente, o modelo de regressão linear é representado pela Equação 1,
onde y é o valor previsto da variável dependente, ω0 é o intercepto, ω1, ω2, . . . , ωn são
os coeficientes que indicam a influência de cada variável preditora x1, x2, . . . , xn, e ϵ é o
termo de erro que captura a variação não explicada pelo modelo:

y = ω0 + ω1x1 + ω2x2 + · · ·+ ωnxn + ϵ (1)

3. Metodologia
Nesta seção, apresenta-se a metodologia adotada neste trabalho, estruturada nas subseções
a seguir: aquisição e pré-processamento dos dados de poços da Bacia de Sergipe; treina-
mento, validação e testes do modelo linear.

3.1. Aquisição dos Dados
Para a realização deste trabalho, foi utilizado o banco de dados da Agência Nacional
do Petróleo, Gás Natural e Biocombustı́veis (ANP), disponı́vel em https://reate.



cprm.gov.br/anp/TERRESTRE. A partir desse banco, foram selecionados os arqui-
vos AGP e DLIS de 8 poços da Bacia de Sergipe.

As profundidades máximas variam entre os diferentes poços, com valores entre
654,9 metros e 765,5 metros, refletindo a extensão das medições realizadas em cada local.
Por causa da grande quantidade de informação nos arquivos dos poços, a dimensão final
das bases será tratada na seção a seguir.

3.2. Pré-processamento dos Dados

O pré-processamento dos dados, assim como a escolha dos poços, foi baseado no trabalho
de [SOUSA 2024]. Nele, juntamente com a consultoria de especialistas na área da Geolo-
gia e Engenharia de Petróleo e Gás, foi realizada a extração dos dados de perfis geofı́sicos,
e etapas como remoção de amostras completas contendo valores nulos ou inválidos (como
NaN) foram realizadas para assegurar maior qualidade e confiabilidade nos dados.

Dos dados gerados por [SOUSA 2024], este trabalho manteve apenas as
informações sobre curvas de perfis e profundidades. Desta forma, o conjunto de ca-
racterı́sticas analisado foi composto por: Profundidade, DCAL, GR, Log10 RESD, DT,
RHOB, DRHO, NPHI e PE.

Após o pré-processamento e a exclusão de registros inválidos, a soma de amostras
válidas em todos os poços foi de 28.507 amostras contendo as curvas selecionadas e seus
respectivos valores de profundidade.

3.2.1. Correlação dos Perfis

Tabela 1. Correlações de Pearson e Spearman

Método Prof. DCAL GR Log10 RESD PE RHOB DRHO NPHI
Pearson -0.28 0.05 0.60 -0.58 -0.34 -0.78 0.19 0.88

Spearman -0.24 0.14 0.61 -0.56 -0.26 -0.72 0.20 0.88

Para a análise do banco de dados, foi realizada inicialmente uma avaliação da
correlação entre os perfis geofı́sicos disponı́veis. Esse processo permite identificar quais
perfis apresentam maior proximidade com o perfil sônico (DT), com a intenção inicial de
manter apenas os dados mais relevantes e excluir perfis que pudessem introduzir vieses
nas amostras, comprometendo a qualidade dos resultados. Foram aplicados dois métodos
estatı́sticos de correlação (Tabela 1): o coeficiente de correlação de Pearson, que mede
relações lineares, e a correlação de Spearman, que captura associações não necessaria-
mente lineares. O uso combinado dessas abordagens permite uma avaliação mais abran-
gente, fornecendo uma compreensão mais precisa das interdependências entre os perfis e
suas relações com o DT.

Ao analisar a Tabela 1 é possı́vel observar a proximidade entre os valores dos co-
eficientes com relação ao perfil DT, indiciando que a relação dos perfis e da profundidade
com o DT seja próxima de tipos lineares. As únicas curvas que obtiveram correlações
discrepantes com o perfil sônico foram relacionadas com o DCAL e o PE, demonstrando
relações não lineares com o DT.



(a) NPHI x DT (b) RHOB x DT

(c) GR x DT

Figura 1. Relação linear entre perfis ao DT

Ainda na Tabela 1, observa-se que os perfis NPHI, RHOB, GR e Log10 RESD
apresentam as maiores correlações com o perfil DT e estão na lista de perfis com relação
linear. Essa informação é fundamental para orientar o treinamento do modelo, pois indica
que esses perfis são os mais relevantes e têm maior potencial para contribuir para um
resultado mais preciso no modelo final.

Como forma de confirmação dessas informações, a Figura 1a mostra a distribuição
das três maiores correlações com o DT (PHI na Figura 1a, o RHOB na Figura 1b e o GR
na Figura 1c). Apesar de não serem linhas retas perfeitas, talvez pela presença de ruı́dos
durante a obtenção dos perfis, ele se aproxima de um formato de reta.

3.3. Geração de Perfil Sônico Sintético

Os experimentos aqui executados foram baseados na documentação oficial da biblio-
teca Scikit-learn para Python, que apresenta uma descrição detalhada sobre a partição
das bases de dados entre treino, validação e teste, e sobre as métricas estatı́sticas, in-
cluindo suas definições matemáticas e aplicações. A documentação completa pode
ser acessada em: https://scikit-learn.org/stable/modules/model_
evaluation.html.

Para garantir uma avaliação mais robusta e generalizável do modelo, foi adotada
a técnica de Leave-One-Out Cross-Validation (LOOCV). Nesse método, dos 8 poços dis-
ponı́veis, em cada uma das 8 iterações, um poço é reservado exclusivamente para teste,



enquanto os 7 restantes são utilizados para treinamento. Ao final, os resultados obtidos
em cada iteração são agregados por meio da média das métricas de desempenho. Essa
abordagem permite que todos os poços participem tanto da fase de treinamento quanto da
de teste, promovendo uma avaliação mais imparcial e abrangente da capacidade preditiva
do modelo.

Em cada iteração foi aplicada a inclusão progressiva de preditores. A sequência
de prioridades dos preditores foi baseada na correlação de Pearson calculada no pré-
processamento dos dados (Tabela 1). A sequência foi composta, da maior correlação
à menor, por: NPHI, RHOB, GR, Log10 RESD, PE, Profundidade, DRHO e DCAL.
Essa priorização considera a proximidade da relação, independentemente de ser direta ou
inversamente proporcional.

3.3.1. Métricas Estatı́sticas

As métricas MAE (Equação 2), MSE (Equação 3), RMSE (Equação 4) e R2 (Equação 5)
são amplamente utilizadas para avaliar o desempenho de modelos de regressão. O Erro
Absoluto Médio (MAE) calcula a média dos desvios absolutos entre valores preditos e
reais, sendo de fácil interpretação por estar na mesma unidade da variável de saı́da. O Erro
Quadrático Médio (MSE) utiliza os desvios ao quadrado, penalizando mais fortemente
erros maiores e capturando melhor a variabilidade. A Raiz do Erro Quadrático Médio
(RMSE) é a raiz do MSE, combinando a sensibilidade a grandes erros com a interpretação
facilitada por manter a unidade original. Por fim, o coeficiente de determinação (R2)
quantifica a proporção da variância explicada pelo modelo, indicando o quão bem os
dados se ajustam à regressão. Quanto menores os valores de MAE, MSE e RMSE, e mais
próximo de 1 for o R2, melhor o desempenho do modelo.

MAE(y, ŷ) =
1

n

n−1∑
i=0

|yi − ŷi| (2)

MSE(y, ŷ) =
1

n

n−1∑
i=0

(yi − ŷi)
2 (3)

RMSE(y, ŷ) =

√√√√ 1

n

n−1∑
i=0

(yi − ŷi)2 (4)

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(5)

4. Resultados e Discussões
Os resultados obtidos após as 8 iterações do LOOCV, apresentados na Tabela 2, demons-
tram que a inclusão progressiva dos preditores selecionados — sejam curvas de perfil ou
informações de profundidade — melhorou continuamente o desempenho do modelo na
geração do perfil sônico sintético. Isso se refletiu em ganhos nas métricas estatı́sticas,
indicando maior precisão e qualidade na predição.



Tabela 2. Resultados dos Testes

Perfis Utilizados R² RMSE MSE MAE
NPHI 0.69 9.24 89.55 7.29
NPHI + RHOB 0.72 8.72 78.74 6.87
NPHI + RHOB + GR 0.74 8.83 82.70 6.98
NPHI + RHOB + GR + Log10 RESD 0.73 8.93 84.96 7.03
NPHI + RHOB + GR + Log10 RESD + PE 0.73 8.96 85.39 7.07
NPHI + RHOB + GR + Log10 RESD + PE
+ Profundidade 0.76 8.13 68.71 6.40

NPHI + RHOB + GR + Log10 RESD + PE
+ Profundidade + DRHO 0.77 8.07 67.42 6.33

NPHI + RHOB + GR + Log10 RESD + PE
+ Profundidade + DRHO + DCAL 0.77 8.01 67.22 6.29

Tabela 3. Resultados Individuais dos Poços

Poço R² RMSE MSE MAE
1-BRSA-551-SE 0.76 7.73 59.82 5.94
1-BRSA-574-SE 0.63 11.27 126.91 8.99
1-BRSA-595-SE 0.84 5.70 32.54 4.34
1-BRSA-605-SE 0.78 6.57 43.14 5.40
1-BRSA-659-SE 0.88 7.79 60.71 6.35
1-BRSA-689-SE 0.82 10.23 104.62 8.47
1-BRSA-696-SE 0.76 7.73 59.82 5.94
1-BRSA-698-SE 0.68 7.09 50.24 4.90

Com apenas um preditor, o coeficiente de determinação (R2) médio inicial foi
de 0,69, aumentando gradualmente até atingir 0,77 com a utilização de todos os per-
fis disponı́veis. Esses valores já são maiores que de trabalhos prévios, como o de
[Akinyemi et al. 2023], em que os valores da regressão linear ficaram próximos a 0,65.
Outras observações relacionadas ao R2 são: (a) o grande ganho quando incluı́dos o RHOB
e o GR, mostrando a relação linear entre eles e o DT; (b) a estagnação quando colocados
a resistividade e o PE, o que pode mostrar redundância entre eles; (c) o grande ganho
ao incluir a profundidade, mostrando que pode ser um dado dependente de outra curva
anteriormente analisada; (d) o pequeno ganho das últimas iterações mostram uma relação
menos linear, mas que pode agregar qualidade se forem tratadas de forma adequada.

Tabela 3, os resultados obtidos ao longo das oito iterações mostram que o poço 1-
BRSA-659-SE obteve R2 médio de 0,88, muito próximo do melhor resultado obtido por
[Akinyemi et al. 2023] com o CatBoost. Em geral, foi obtido desempenho satisfatório,
com R2 médio de 0,77, além de valores médios de MAE = 6,29, MSE = 67,22 e RMSE
= 8,01. A performance variou entre os poços, com desvios mais expressivos concentra-
dos em faixas especı́ficas de profundidade, como nas seções iniciais ou finais, conforme
o poço analisado. Nos gráficos de dispersão (Figura 2c), a proximidade dos pontos em
relação à linha de referência indica boa correspondência entre os valores reais e os pre-
ditos. Já nos gráficos de linha (Figura 3a), a linha cinza representa o perfil real e a linha



(a) 1-BRSA-659-SE (b) 1-BRSA-595-SE

(c) 1-BRSA-698-SE (d) 1-BRSA-574-SE

Figura 2. Previsão dos Poços

preta pontilhada indica o valor predito — quanto maior a sobreposição entre elas, maior
a acurácia da predição.

Ainda na Tabela 2, observa-se que a inclusão dos perfis Log10 RESD e PE resul-
tou em uma leve queda nas métricas médias de desempenho. No entanto, essa redução foi
majoritariamente causada pelo poço 1-BRSA-574-SE, que apresentou uma deterioração
significativa nas métricas. Enquanto os demais poços mantiveram desempenho estável, o
R2 desse poço caiu de 0,68, no conjunto anterior (NPHI, RHOB e GR), para 0,59 com
os novos perfis. Esse comportamento sugere que o poço 1-BRSA-574-SE pode ser um
outlier em relação aos demais, afetando negativamente a média geral das métricas. Essa
discrepância é evidenciada na Tabela 2, onde os resultados desse poço destoam do padrão
observado nos demais.

5. Conclusão Parcial e Trabalhos Futuros
Este estudo avaliou o uso da regressão linear na predição do perfil sônico (DT) em poços
da Bacia de Sergipe, obtendo desempenho médio satisfatório (R2 = 0,77) e com R2

obtido pelo poço 1-BRSA-659-SE de 0,88. Os bons resultados mostram a relação linear
entre alguns perfis e o DT, especialmente os NPHI, RHOB e GR. Como visto na Figura 1a,
as distribuições aparentam ser prejudicadas por ruı́dos que merecem ser melhor pesqui-
sado, buscando se aproximar ainda mais da distribuı́ção em forma de linha reta. Outra



(a) 1-BRSA-659-SE (b) 1-BRSA-C595-SE

Figura 3. Curva Real x Prevista

observação que vale a pena ser investigada futuramente é a relação entre a profundidade e
a curva DT, assim como relações multivariadas entre os preditores, a fim de garantir mo-
delos mais estáveis e interpretáveis. Embora o modelo apresente boa interpretabilidade,
sua capacidade preditiva é limitada diante de relações não lineares, o que sugere que ou-
tras abordagens não lineares, como as redes neurais, possam tratar as curvas de perfis não
lineares, e poder oferecer ganhos expressivos na geração das curvas sônicas.

Por fim, verificou-se também que o desempenho do modelo está mais associado à
escolha adequada dos perfis preditores do que à sua quantidade, ressaltando a importância
de uma seleção criteriosa das variáveis de entrada e do auxı́lio de especialistas da área da
Geologia e Engenharia de Petróleo e Gás, que podem selecionar os melhores poços para
análises e esclarecer a ocorrência de eventos peculiares. Além disso, recomenda-se o uso
de dados brutos, possibilitando maior controle sobre o tratamento das variáveis e inclusão
de atributos categóricos (como litologia), que podem contribuir para reduzir erros em
faixas crı́ticas de profundidade.
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