
JAEB: Avaliando um editor Java acessı́vel para estudantes
com deficiência visual em uma disciplina de programação

orientada a objetos
Luis Gustavo Araujo1, Edinaelson Silva Dos Santos1, Rulian de Jesus Cruz1,

Ideilton Alves Freire Leal1, Andressa Mota da Silva Santos1

1Instituto Federal de Educação, Ciência e Tecnologia da Bahia -
Campus Jacobina (IFBA)

{rulian.cruz, luis araujo, ideiltonleal}@ifba.edu.br,
{edinaelsonsilvadossantos, dhee.andressa}@gmail.com

Abstract. Learning to program can be a challenging task due to the need for
abstraction, logic, and knowledge of the programming language. Historically,
programming courses have had high dropout and failure rates. This difficulty
can be exacerbated to visually impaired students, given the challenges of using
development environments and the limitations of screen readers. This paper
presents an accessible development environment for programming in Java,
designed based on the needs of blind students at an educational institution.
The results indicate the student’s familiarity and motivation in using the tool,
a positive evaluation of the developed features, and suggestions that emerged
during the testing session.

Resumo. Aprender a programar pode ser uma tarefa difı́cil, em virtude
da necessidade de abstração, lógica e conhecimento sobre a linguagem de
programação. Historicamente, essas disciplinas apresentam altas taxas de
evasão e reprovação. Essa dificuldade pode ser potencializada para estudantes
com deficiência visual, tendo em vista os desafios no uso de ambientes de
desenvolvimento e as limitações dos leitores de tela nesse contexto. Diante
disso, este artigo apresenta um ambiente de desenvolvimento acessı́vel para
programação na linguagem Java, idealizado a partir das necessidades de
estudantes com deficiencia visual de uma instituição de ensino. Os resultados
indicam a familiaridade e a motivação do estudante no uso da ferramenta, a
avaliação positiva das funcionalidades desenvolvidas e as sugestões surgidas
após a sessão de testes.

1. Introdução
Aprender a programar pode ser uma tarefa difı́cil para estudantes de Computação.
Historicamente, essas disciplinas apresentam altas taxas de reprovação e abandono. Essas
dificuldades podem ser potencializadas para estudantes com deficiência visual, tendo
em vista o número reduzido de ferramentas acessı́veis e as limitações dos leitores de
tela (e.g., NVDA, DOSVOX), como, por exemplo, a não leitura de mensagens de erro
e a não identificação das linhas e locais de modificação, sendo necessário, em muitos
casos, um “olho amigo” para indicar os erros e as correções. Essa limitação torna o
estudante com deficiência visual dependente de outras pessoas para auxiliá-lo no processo
de aprendizagem em programação [dos Santos et al. 2025].



Durante o curso da disciplina de Linguagem de Programação II, do Blind Review,
que possui um estudante com deficiência visual matriculado no semestre de 2025.1, foram
percebidas as limitações dos leitores de tela na utilização de IDEs em Java (e.g., Visual
Studio Code, NetBeans e Eclipse). A partir dos relatos do estudante e das observações
dos professores, foram realizadas buscas por ferramentas acessı́veis que atendessem às
necessidades mapeadas. Embora existam trabalhos visam avaliar o uso de leitores de tela
[Gonçalves et al. 2020], o uso de IA como assistente [dos Santos et al. 2025] ou elencar
listas de diretrizes [Albusays et al. 2017], percebeu-se que a quantidade de ferramentas
acessı́veis para programação ainda é limitada.

Esses trabalhos relatam problemas com o leitor de tela quanto a avisos de
compilação ou erro, navegação pelo número de linhas ou identificação do local onde deve
ser realizada uma modificação no código, identificação de nı́veis dentro de estruturas
aninhadas, leitura de caracteres especiais, suporte à função de autocompletar, busca de
entidades especı́ficas no código, entre outros.

Apesar de trabalhos anteriores abordarem este problema, ainda há inúmeros
desafios práticos relacionados à acessibilidade de softwares e à adaptação de
materiais didáticos acessı́veis para pessoas com deficiência visual em ambientes de
desenvolvimento integrado (IDEs) [Zen and Tavares 2023]. Assim, o objetivo deste
trabalho é apresentar a ferramenta Java Accessible Editor for Blind (JAEB), desenvolvida
a partir das observações de professores em uma turma de programação, dos relatos de um
estudante com deficiência visual e de achados na literatura. Objetiva-se, ainda, iniciar
o processo de avaliação e discussão dos resultados encontrados. O JAEB surge como
uma iniciativa relevante, alinhada à ação pedagógica inclusiva, ao propor um ambiente
acessı́vel que busca romper barreiras enfrentadas por estudantes com deficiência visual
no processo de aprendizagem da programação orientada a objetos.

Essa proposta dialoga com os princı́pios da Lei de Diretrizes e Bases da
Educação Nacional (Lei nº 9.394/1996), que prevê, em seu artigo 59, a necessidade
de adaptações curriculares e pedagógicas para atender às especificidades dos estudantes
público da educação especial, assegurando-lhes condições de aprendizagem equitativas
[BRASIL 1996]. O presente trabalho está organizado em sete seções: a segunda apresenta
a fundamentação teórica sobre acessibilidade, lei de inclusão e assuntos correlatos; a
terceira apresenta os trabalhos relacionados; a metodologia é descrita na quarta seção;
a quinta seção apresenta a ferramenta JAEB, sua arquitetura e funcionalidades; os
resultados são apresentados na seção seis e, por fim, as considerações finais são discutidas
na seção sete.

2. Fundamentação Teórica

A acessibilidade no contexto educacional tem sido cada vez mais debatida no campo da
inclusão, especialmente no que se refere ao acesso de estudantes com deficiência visual às
interfaces computacionais, aos recursos de Tecnologia Assistiva e às tecnologias digitais
da informação e comunicação [Bruno and Nascimento 2019]. Partindo desse pressuposto,
a Lei nº 13.146/2015, conhecida como a Lei Brasileira de Inclusão (LBI), assegura que
a acessibilidade é um direito constitucional, sendo parte integrante de um conjunto de
ações essenciais para o exercı́cio pleno da cidadania por pessoas com deficiência. O
conceito de acessibilidade envolve a possibilidade e condição de alcance para utilização



com autonomia de informação e comunicação, inclusive seus sistemas e tecnologias por
pessoa com deficiência ou com mobilidade reduzida [BRASIL 2015].

Sendo assim, assegurar acessibilidade implica remover barreiras fı́sicas,
comunicacionais, tecnológicas e atitudinais que limitam a participação plena de pessoas
com deficiência nos diversos espaços sociais, incluindo os ambientes educacionais
mediados por tecnologias digitais [Sassaki 2019]. No campo do ensino de computação
para pessoas com deficiência visual, isso significa garantir o acesso e a interação
com diferentes tipos de linguagens de programação, bem como o desenvolvimento de
tecnologias assistivas que colaborem para o acesso ao conhecimento da área.

Sobre essa questão, a LBI, em seu Art. 78, enfatiza a necessidade de se
estimular o desenvolvimento, a pesquisa, a inovação, assim como a difusão de tecnologias
voltadas para ampliar o acesso da pessoa com deficiência às tecnologias da informação
e comunicação. Com base nesse princı́pio legal, compreende-se que o presente estudo
busca contribuir, ainda que de forma inicial, com a área da educação – em especial no
ensino de computação – ao apresentar alternativas que favoreçam a acessibilidade de
estudantes com deficiência visual no aprendizado da programação orientada a objetos.

3. Trabalhos Relacionados
O trabalho de Luque e colaboradores destaca que a maioria das ferramentas de
modelagem de software não é acessı́vel, dificultando o aprendizado de estudantes com
deficiência visual e também sua inserção na indústria. A partir de uma revisão sistemática
e de uma experiência prática no ensino de UML – uma linguagem de modelagem visual –
para alunos com deficiência visual, foram definidos 14 requisitos funcionais com base nas
atividades comuns no ensino de UML e nas necessidades de inclusão desses estudantes em
ambientes virtuais de aprendizagem [Luque et al. 2014]. A análise revelou que nenhuma
das soluções existentes atende a todos os requisitos identificados. Soluções como AWMo
e CCml demonstraram-se promissoras por combinarem interfaces gráficas e textuais, mas
ainda são insuficientes para uma inclusão plena e abrangente. Dessa forma, os autores
concluem que há uma lacuna no desenvolvimento de ferramentas acessı́veis e inclusivas
para estudantes com deficiência visual.

Já o trabalho de Albusays e colaboradores relata que Ambientes de
Desenvolvimento Integrado (IDEs) têm um papel importante no trabalho de muitos
desenvolvedores de software, mas, infelizmente, utilizam muitas informações visuais
que são difı́ceis de serem transmitidas pelos leitores de tela atuais, o que se torna
uma barreira para programadores com deficiência visual. Os autores conduziram um
estudo exploratório sobre a navegação em código por desenvolvedores com deficiência
visual, observando 28 programadores utilizando suas ferramentas de codificação
[Albusays et al. 2017]. Neste estudo, os participantes enfrentaram muitas dificuldades
de navegação ao usar softwares de codificação com tecnologias assistivas, demonstrando
insatisfação com o uso intenso de abstrações visuais, o que compromete a acessibilidade.
Esses relatos apontam uma oportunidade para melhorar a acessibilidade de IDEs para
desenvolvedores com deficiência visual, especialmente no que tange à navegação em
código.

Outro trabalho investigou desafios semelhantes, explorando o uso de ferramentas
baseadas em Inteligência Artificial (IA), como o ChatGPT e o GitHub Copilot. A



pesquisa investigou os impactos dessas tecnologias na acessibilidade, produtividade e
autonomia de programadores com deficiência visual, com base em uma metodologia
prática que comparou o desempenho dos participantes em atividades com e sem o suporte
da IA. Os resultados mostraram que, embora as ferramentas de IA tenham potencial para
corrigir erros rapidamente e aumentar a confiança dos estudantes, ainda existem barreiras
significativas na integração com leitores de tela, dificultando a plena acessibilidade das
sugestões geradas automaticamente. Uma melhoria na integração entre leitores de tela e
ferramentas de IA pode aumentar o potencial dessa proposta [dos Santos et al. 2025].

Seo e Rogge abordam a lacuna da falta de acessibilidade de ambientes de
desenvolvimento integrado (IDEs) para pessoas cegas, na qual um desenvolvedor cego
e uma engenheira da equipe do Visual Studio Code (VSCode) trabalharam juntos para
melhorar a usabilidade do editor para usuários de leitores de tela. Embora o VSCode
já contasse com caracterı́sticas que o tornavam mais acessı́vel do que outros IDEs,
os autores demonstram que acessibilidade técnica não equivale à usabilidade prática
para programadores com deficiência visual. A partir dessa constatação, os autores
propõem uma abordagem em que o usuário cego atua não apenas como testador,
mas como especialista ativo no processo de desenvolvimento e melhoria do produto
[Seo and Rogge 2023].

4. Metodologia
Esta pesquisa parte das limitações encontradas no uso de leitores de tela e editores
apropriados para pessoas com deficiência visual em uma disciplina de programação
em Java. Sendo assim, configura-se como uma pesquisa-ação, considerando que esse
tipo de abordagem envolve projetos nos quais a prática busca transformar as próprias
práticas [Tripp 2005]. Diante disso, buscou-se compreender as limitações no processo
de ensino-aprendizagem de programação quanto à acessibilidade. A investigação teve
como ponto de partida as observações dos professores e os relatos do estudante com
deficiência visual na turma de programação II do Blind Review. Em seguida, foi realizada
uma pesquisa bibliográfica para identificar as ferramentas já existentes e suas limitações.

4.1. Participantes

O estudo contou com a participação de um estudante com deficiência visual, matriculado
no curso técnico em Informática do Blind Review, na modalidade subsequente.
Atualmente, o estudante está cursando a disciplina Lógica de Programação II.

4.2. Pesquisa bibliográfica

Para a pesquisa bibliográfica utilizou-se a seguinte string: “ensino de programação” AND
“IDE” AND “java” AND (“cegos” OR “deficiência visual”), no motor de busca Google
Scholar. Foram encontrados 23 trabalhos publicados entre os anos de 2021 a 2025, sendo
que apenas cinco trabalhos foram artigos publicados em revistas ou congressos, destes
apenas um focava no estudo do uso de IDEs por pessoas cegas. Diante do número
baixo de artigos, utilizou-se a técnica de Backward Snowballing, que consiste na busca
recursiva de referências presentes nos artigos previamente identificados segundo critérios
prévios [Wohlin 2014]. Para seleção, utilizou-se como critério tratar sobre avaliação, uso
ou desenvolvimento de ferramentas acessı́veis para programação, além de sistematizar
funcionalidades necessárias para garantir a acessibilidade.



4.3. Mapeamento das limitações
A etapa seguinte constituiu-se em mapear as limitações relatadas nos artigos revisados. As
limitações foram organizadas em uma tabela e agrupadas conforme a similaridade. Estas
limitações foram cruzadas com as observações dos professores e relatos dos estudantes
por meio de entrevista semi-estruturada, gerando uma lista de requisitos funcionais.
Durante a entrevista, foram feitas as seguintes perguntas: i) Quais suas principais
dificuldades no editor Java? ii) Quais suas principais dificuldades do uso do editor com o
leitor de tela? iii) Sobre mensagem de erro, como isso funciona na tarefa de programar?
iv) Sobre a sua navegação no código, como você avalia a ajuda do leitor de tela? v)
Você tem alguma recomendação sobre criação de novas funcionalidades para uma IDE
acessı́vel?

4.4. Desenvolvimento e Avaliação do MVP
Diante da lista de requisitos, desenvolveu-se um MVP (Minimum Viable Product)
utilizando tecnologia web, para garantir a interoperabilidade da ferramenta. O MVP
foi utilizado por um estudante cego da instituição de ensino em sessões de teste
com observação [Creswell and Creswell 2021]. Durante as sessões a ferramenta foi
disponibilizada e foi solicitado que o estudante participante desenvolvesse atividades
que visavam criar classes, atributos e métodos. Foram avaliados quatro aspectos: i)
navegação; ii) comandos/atalhos; iii) narração; iv) mensagem de erro e dicas. Durante os
testes, foi solicitado ainda que o estudante utilizasse as funcionalidades disponı́veis, como
pesquisar e autocompletar. Durante as sessões foram coletados os dados para analise e
melhoria da ferramenta.

4.5. Coleta e Análise de Dados
Os dados foram coletados por meio de entrevistas gravadas e transcritas, bem como por
observações feitas pelos professores. Inicialmente usou-se uma abordagem exploratória,
visando compreender as limitações das ferramentas. Após essa etapa e com base nos
achados da literatura, a análise passou a focar nos tópicos mencionados na Subseção
4.4. Os dados foram analisados qualitativamente, com o objetivo de identificar aspectos
positivos e negativos que necessitavam de adaptações. Utilizou-se a codificação aberta
para a geração livre de códigos e, posteriormente, a codificação axial, baseada nos
tópicos elencados. Por fim, foram gerados memorandos com o intuito de aprofundar e
sistematizar a análise [Creswell and Creswell 2021]. Os dados permitiram compreender
os impactos do uso da ferramenta e as funcionalidades requeridas.

5. JAEB – Java Accessible Editor for Blind
O Java Accessible Editor for Blind (JAEB) é um editor Java baseado em tecnologia web,
desenvolvido a partir das limitações observadas na prática docente nas disciplinas de
programação, bem como daquelas relatadas na literatura. A escolha por um ambiente web
deve-se à sua interoperabilidade, considerando que o Blind Review possui laboratórios
com diferentes sistemas operacionais (Windows, Ubuntu e Zorin). A Figura 1 apresenta
uma visão geral da arquitetura do JAEB (blindreview.com).

No frontend, o JAEB utiliza o framework ace.js1, que viabiliza a implementação
do editor. O ace.js, por padrão, não possui funcionalidades de acessibilidade, como

1Editor ace.js – https://ace.c9.io



Figura 1. Arquitetura do JAEB

leitura de código e opções de navegação. Considerando que as limitações identificadas
estavam relacionadas a dificuldades com softwares leitores de tela, foi implementado um
sistema de narração, utilizando o framework Responsive Voice2, que se baseia na API
Web Speech. A narração realiza a leitura dos atalhos e ações, do texto do código e da
navegação. Considerando uma limitação especı́fica, foi implementado um parser que
permite a leitura correta de caracteres especiais: ele converte sı́mbolos em seus nomes
por extenso, tornando-os legı́veis. O parser também converte letras maiúsculas para que
possam ser corretamente identificadas durante a leitura.

O JAEB compila e executa o código por meio de chamadas de linha de
comando, realizadas no backend desenvolvido em PHP, inspirado na ferramenta PEEF
[Araujo et al. 2021]. Em relação à navegação, foram implementadas funcionalidades
como leitura de código, leitura de linha, indicação de erro, execução, marcação de inı́cio
e fim de linha, leitura de caracteres na posição atual do cursor, sinalização de nova linha
e de caracteres apagados.

Um problema identificado durante as observações e revisão de literatura foi a
dificuldade de compreensão das mensagens de erro. Assim, seguindo a abordagem da
versão mais recente do PEEF, utilizamos a API da OpenAI, modelo gpt-4o turbo, para
gerar mensagens de erro melhoradas para o usuário. Essas mensagens são lidas pelo
sistema de narração. Para construção do prompt, foi utilizada a técnica de few-shot,
incorporando o código do estudante, a mensagem de erro, o comando e exemplos. O
objetivo foi produzir mensagens diretas, simples e com indicação do trecho de código e
da linha correspondente.

Além da mensagem aprimorada, foi implementado um sistema de dicas de
próximo passo, inspirado em trabalho sobre geração de dicas por meio de Large Language
Model (LLM) [Araujo et al. 2025]. Para esse recurso, o professor deve cadastrar o
enunciado da questão e os passos necessários para sua resolução. O prompt que solicita
a dica inclui o código atual, a descrição da atividade e os passos definidos, solicitando
ao LLM a sugestão do próximo passo a ser executado pelo estudante. A tabela do site de
apoio3 apresenta a lista de limitações mapeadas por meio de observações, relatos e revisão

2Responsive Voice – https://responsivevoice.org
3JAEB - https://sites.google.com/view/jaeb-editor/artigoerbase



Figura 2. Registro da sessão de teste do JAEB. Do lado esquerdo, a interface
com código em Java. Do lado direito, um registro do usuário utilizando o JAEB.

da literatura, conforme identificado nos seguintes trabalhos: [Albusays et al. 2017,
Gonçalves et al. 2020, dos Santos et al. 2025]. Na tabela, é possı́vel visualizar em qual
estudo cada limitação foi relatada, se foi implementada.

A versão atual do JAEB já contempla 14 funcionalidades mapeadas e
desenvolvidas, uma em desenvolvimento (ID = 17), uma fora do escopo da linguagem
Java (ID = 15) e quatro listadas como trabalhos futuros (IDs = 7, 14,18 e 19). A avaliação
foi realizada neste estágio, uma vez que a versão atual pode ser considerada um MVP. A
limitação 1 foi resolvida com o uso de um parser em JavaScript, que converte os sinais
em texto escrito por extenso e adiciona a palavra “maiúscula” após letras maiúsculas,
forçando sua leitura pelos leitores de tela. A limitação de ID = 3 foi atendida com
a funcionalidade de leitura da linha atual (onde o cursor está posicionado) de forma
completa.

Foi implementado um atalho para execução do código que, quando acionado,
emite um aviso sonoro indicando o inı́cio da execução. As mensagens de erro (IDs =
6, 8 e 10) foram tratadas por meio da alteração da saı́da padrão, permitindo o envio das
informações ao front-end e posterior narração. Toda mensagem de erro ou saı́da gerada
pelo código é lida pelo sistema. As mensagens de erro são aprimoradas com o uso da
API da OpenAI, utilizando o mesmo modelo das dicas. Por meio da técnica de few-shot
learning, que pode ser entendido como a capacidade de generalização de um modelo por
meio de uma amostra de exemplos [Parnami and Lee 2022]. Assim, garante-se que o
retorno indique de forma clara a linha de modificação necessária, atendendo à limitação
de ID 13.

6. Resultados e Discussões
Esta seção relata os resultados quanto à recepção, aspectos positivos e pontos de melhoria.

6.1. Recepção inicial e familiarização

Logo no inı́cio da navegação com o JAEB, o estudante manifestou entusiasmo ao
reconhecer a voz do sistema de narração, afirmando com alegria que se tratava da
voz do Google, fato que indica familiaridade. Apesar de inicialmente estranhar
a nova ferramenta, devido à necessidade de aprender novos comandos, o estudante
afirmou posteriormente que ele poderia aprender as novas funcionalidades com o tempo.



Porém, percebe-se que os atalhos similares aos de outras ferramentas potencializam a
aprendizagem da ferramenta e a sua adoção. No inı́cio, o professor precisou relembrar
os comandos; no entanto, com o uso das funcionalidades, o participante assimilou os
comandos.

6.2. Funcionalidades bem avaliadas

Diversas funcionalidades foram destacadas positivamente. A leitura de sı́mbolos
especiais, como chaves, parênteses e ponto e vı́rgula, foi considerada satisfatória. O
estudante também elogiou a capacidade da ferramenta ao tratar sı́mbolos e espaços,
mencionando que o NVDA não realiza tais leituras de forma clara. Ao receber uma
mensagem de erro melhorada, gerada pelo LLM, indicando a ausência de ponto e
vı́rgula ao final da linha, o estudante expressou entusiasmo: “Gostei porque ele disse o
que faz, e disse a linha também. Ele disse: faltou o ponto e vı́rgula. . . ” (Participante). O
estudante estava acostumado a mensagens de erro padrão, que são, por vezes, enigmáticas.
Nesta ocasião, a ferramenta emitiu a seguinte mensagem: Mensagem de erro: Esperado
um ponto e vı́rgula (’;’) na linha 3. Por favor, verifique a sintaxe.

O auxı́lio à navegação, com a indicação de inı́cio da linha e final da linha, também
foi pontuado pelo estudante como uma boa funcionalidade. Outro aspecto mencionado
positivamente é a indicação da letra maiúscula, em especial para a linguagem Java, que
é case-sensitive.

6.3. Sugestões de melhoria adotadas

O participante propôs melhorias relevantes para a navegação e acessibilidade que foram
adotadas e analisadas em sessões posteriores. A leitura do caractere apagado, além da
mensagem que sinaliza que algo foi apagado, foi adicionada. O participante relatou:
“Mencionar apagado é bom, porque no NVDA não sei o que está apagando, por isso tenho
que ter uma pessoa do lado.”. Embora a ferramenta tenha a distinção do minúsculo e
maiúsculo, uma funcionalidade sugerida e adotada foi o alerta ao pressionar Caps lock
para indicar seu estado (Ativado/Desativado). O sistema de navegação foi melhorado com
a inclusão da narração para as teclas Home (inı́cio da linha), End (fim da linha) e Ctrl
+ Home (inı́cio da primeira linha do programa).

A sessão demonstrou que, embora algumas funcionalidades tenham sido
desenvolvidas. Um exemplo foi observado com o atalho Ctrl + F, em que o sistema
deve indicar por voz: “Procurando”. Outro comando que necessitou de narração foi a
indicação de “nova linha” e o número da linha ao pressionar Enter. Ambas sugestões
foram adicionadas.

As funcionalidades foram pensadas com o uso do Alt + número, tal como indicou
o participante no levantamento dos requisitos. No entanto, após testes, foi solicitada a
inclusão de comandos de teclado para facilitar a navegação. Após pressionar Alt + 1,
o JAEB narra o menu, possibilitando o uso de setas para navegar entre opções. Nota-se
que essa forma minimiza a sobrecarga cognitiva para memorizar as opções. Ao mesmo
tempo, percebe-se que é uma herança do modo como os leitores de tela leem os menus
visuais. Por fim, outra sugestão de melhoria foi na funcionalidade do auto-completar. O
estudante solicita que seja lida uma opção por vez e, caso ele pare de digitar, a palavra
seja completada. Apenas esta sugestão não foi desenvolvida e testada.



6.4. Impacto da ferramenta e perspectivas futuras
Percebeu-se que a interação com o JAEB provocou no estudante reflexões sobre sua
própria trajetória na programação e sobre o potencial da ferramenta para seu futuro. Ele
destacou que, com a acessibilidade garantida, se sente mais autônomo e capaz de criar
seus próprios projetos: “Do jeito que está acessı́vel, eu posso até fazer uma coisa legal,
que é criar um menu em Java. Talvez eu possa usar para criar Add-Ons.” (Participante).

Ainda, demonstrou preocupação com o acesso contı́nuo à ferramenta fora do
ambiente institucional: “Talvez com essa ferramenta eu saiba onde eu esteja. Então,
só se você liberar essa ferramenta para o resto da vida.” (Participante). Foi possı́vel
perceber que a ferramenta despertou no estudante motivação, tendo em vista que ele
mencionou que iria solicitar o uso do notebook para atividades domiciliares. Até então,
embora o notebook estivesse disponı́vel, o estudante não tinha despertado o interesse.
Após a sessão, foi relatado pelo coordenador do CAPNE (Coordenação de Atendimento
à Pessoa com Necessidades Especı́ficas) que o estudante entrou em contato para relatar a
sua experiência com o uso do JAEB, sinalizando o empenho do professor na criação de
uma ferramenta acessı́vel, além de demonstrar motivação para continuar o curso.

7. Conclusão
Este trabalho investigou as limitações enfrentadas por estudantes com deficiência visual
no uso de editores de programação, a partir de uma análise da literatura e de relatos
de estudantes e docentes. A partir das demandas identificadas, foram desenvolvidas e
integradas funcionalidades ao editor JAEB, cuja avaliação foi conduzida por meio de
sessões de teste com usuários com deficiência visual. Os resultados indicam que a
familiaridade com ferramentas previamente utilizadas representa um fator relevante para a
adoção de novas soluções tecnológicas. Além disso, observou-se que as funcionalidades
de navegação implementadas contribuı́ram para ampliar a autonomia do estudante nas
tarefas de codificação e depuração. Recursos como a leitura de caracteres especiais,
espaços e letras maiúsculas mostraram-se fundamentais para a acessibilidade do editor.

Destaca-se ainda a importância das mensagens de erro aprimoradas, que se
apresentam como uma funcionalidade promissora no processo de ensino-aprendizagem de
programação, embora seu impacto efetivo mereça investigação mais aprofundada. Como
trabalhos futuros, propõe-se o desenvolvimento de novas funcionalidades para atender
às limitações adicionais identificadas, bem como a realização de testes com um número
ampliado de participantes, a fim de validar e refinar as soluções propostas.

Referências
Albusays, K., Ludi, S., and Huenerfauth, M. (2017). Interviews and observation of

blind software developers at work to understand code navigation challenges. In
Proceedings of the 19th International ACM SIGACCESS Conference on Computers
and Accessibility, pages 91–100.

Araujo, L. G., Araujo, K., Reis, E., da Silva, M. O., and Pinheiro, A. (2025). Geração de
dicas de próximo passo utilizando large language models (llms). In Simpósio Brasileiro
de Educação em Computação (EDUCOMP), pages 42–43. SBC.

Araujo, L. G. J., Bittencourt, R. A., and Chavez, C. v. F. G. (2021). Python enhanced
error feedback: Uma ide online de apoio ao processo de ensino-aprendizagem em



programação. In Simpósio Brasileiro de Educação em Computação (EDUCOMP),
pages 326–333. SBC.

BRASIL (1996). Lei nº 9.394, de 20 de dezembro de 1996. estabelece as diretrizes e
bases da educação nacional. https://www.planalto.gov.br/ccivil_03/
leis/l9394.htm. Accessado 09 Jun 2025.

BRASIL (2015). Institui a lei brasileira de inclusão da pessoa com deficiência (estatuto
da pessoa com deficiência). http://www.planalto.gov.br/ccivil_03/
_ato2015-2018/2015/lei/l13146.htm. Accessado 09 Jun 2025.

Bruno, M. M. G. and Nascimento, R. A. L. d. (2019). Polı́tica de acessibilidade: o que
dizem as pessoas com deficiência visual. Educação e Realidade, 44(1):e84848.

Creswell, J. W. and Creswell, J. D. (2021). Projeto de pesquisa-: Métodos qualitativo,
quantitativo e misto. Penso Editora.

dos Santos, N. S., de Oliveira Santana, D., and Pereira, C. P. (2025). Inteligência
artificial e acessibilidade: Uma experiência de inclusão para programadores cegos em
ambientes de desenvolvimento. In Simpósio Brasileiro de Educação em Computação
(EDUCOMP), pages 502–515. SBC.

Gonçalves, R. S., Santana, R. S., Neto, F. A., Benevides, S. C., and dos Santos, N. S.
(2020). Análise dos desafios para programar sem enxergar: estudo de caso na disciplina
linguagem de programação 1. In Simpósio Brasileiro de Sistemas de Informação
(SBSI), pages 17–20. SBC.

Luque, L., Brandão, L. O., Tori, R., and Brandão, A. A. (2014). Are you seeing this? what
is available and how can we include blind students in virtual uml learning activities. In
Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática
na Educação-SBIE), volume 25, page 204.

Parnami, A. and Lee, M. (2022). Learning from few examples: A summary of approaches
to few-shot learning. arXiv preprint arXiv:2203.04291.

Sassaki, R. K. (2019). As sete dimensões da acessibilidade. São Paulo: Lavratus Prodeo.

Seo, J. and Rogge, M. (2023). Coding non-visually in visual studio code:
collaboration towards accessible development environment for blind programmers. In
Proceedings of the 25th International ACM SIGACCESS Conference on Computers
and Accessibility, pages 1–9.

Tripp, D. (2005). Pesquisa-ação: uma introdução metodológica. Educação e pesquisa,
31:443–466.

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In Proceedings of the 18th international
conference on evaluation and assessment in software engineering, pages 1–10.

Zen, E. and Tavares, T. A. (2023). Estratégias de acessibilidade em ides para estudantes
com deficiência visual. In Congresso Brasileiro de Informática na Educação (CBIE),
pages 223–228. SBC.


