Uma Proposta de Sistema de Irrigação Sustentável e Inteligente para Jardins Verticais

Kin T. P. Mello, Tarcio R. Bezerra, Eduardo C. Moraes

Coordenação de Informática (CINFO) Instituto Federal de Alagoas (IFAL) – Maceió, AL – Brazil

kin.mello@gmail.com, tarcio@ifal.edu.br, eduardo.moraes@ifal.edu.br

Abstract. We live on a planet with constant climatic changes that affect us directly. Every day, it is necessary to raise awareness of people and the search for new alternatives of conscious use to achieve a healthy relationship between human being, his needs and sustainability. As water is a limited and increasingly scarce resource, this article proposes the development of a sustainable automation system with the use of Internet of Things (IoT) for the management of vertical gardens. The goal is to reduce water consumption and provide real-time data collected from the garden.

Resumo. Vivemos em um planeta com constantes mudanças climáticas que nos afetam diretamente. Cada dia mais, faz-se necessária a conscientização das pessoas e a busca de novas alternativas do uso consciente para obtenção de uma saudável relação entre o homem, suas necessidades e a sustentabilidade. Sendo a água um bem limitado e cada dia mais escasso, este artigo busca propor o desenvolvimento um sistema de automação sustentável com o uso de Internet of Things (IoT) para o gerenciamento de jardins verticais. O objetivo é reduzir o consumo de água e disponibilizar em tempo real os dados coletados do jardim.

1. Introdução

Automação é a denominação dada para sistemas automáticos de controle, pelos quais os mecanismos verificam seu próprio funcionamento, efetuando medições e introduzindo correções sem a necessidade da interferência humana. Atualmente, a automação está presente em diferentes níveis de atividades do homem, desde as residências até processos industriais. Estes avanços tecnológicos, aliados à busca por conforto, acessibilidade e segurança, vêm fazendo com que as residências possuam cada vez mais sistemas automatizadores.

São várias as aplicações possíveis da automação residencial, desde luzes ativadas por sensores de presença - para economizar energia - até controles de acesso para maior segurança residencial. Estas soluções automatizadas buscam consolidar interfaces de fácil uso para a finalidade desejada, seja ela de aprimoramento da segurança, entretenimento ou controle de equipamentos eletrodomésticos.

Tais aspectos de automação se tornam ainda mais relevantes quando o aplicamos à economia e melhor uso de recursos, como água ou energia elétrica, ou a proporcionar

mais independência aos moradores com dificuldades de locomoção dentro de casa.

Os jardins verticais são uma solução paisagística comumente associada a ambientes com limitações de espaço. Nos últimos anos, entretanto, eles vêm se tornando cada vez mais presentes nas grandes cidades na tentativa de se criar um ambiente que melhore a qualidade do ar nestes grandes centros. A utilização de coberturas vegetais nas paredes das edificações tornou-se uma das principais alternativas para trazer beleza e frescor naturais.

Dentre uma enorme gama de benefícios que a utilização de jardins verticais podem trazer, podemos citar: melhora da qualidade e umidade do ar; contribui para o aumento da durabilidade de edificações (pois diminuem a amplitude térmica); melhora o isolamento acústico e térmico (podendo diminuir em até três graus centígrados)(SILVA, 2019) e com isso contribuindo para uma economia de energia devido a redução no uso de aparelhos de resfriamento como por exemplo o ar-condicionado. Além disso a implementação de paredes cobertas com vegetação contribui significativamente para as pontuações das certificações ambientais, tais como a *Leadership in Energy and Environmental Design* (LEED).

Muitos desses sistemas de irrigação para jardins verticalizados desperdiçam um grande volume de água, pois eles funcionam em modelo cascata, onde a água é inserida no sistema através dos vasos localizados mais acima, até que o excedente caia nos vasos do andar logo abaixo, e isso se repete até que o andar mais abaixo também receba água.

Outro problema no modelo atual é a escolha do melhor momento de irrigar. Esta etapa é normalmente controlada através de um contador, onde devem ser pré-definidos os momentos de acionamento do sistema ao longo dos dias. Essa forma de irrigar não leva em consideração as reais necessidades das plantas, tais como a umidade ideal do solo, visto que mesmo em um dia chuvoso o sistema será acionado.

2. Objetivo

O objetivo desta pesquisa é o desenvolvimento de um sistema inteligente para irrigação de jardins verticais, que permita coletar e apresentar um conjunto de dados e informações relevantes que proporcione suporte a uma gestão automatizada das plantas.

Um importante resultado pretendido com o funcionamento do sistema proposto é a redução significativa do volume de água utilizada dentro do processo de irrigação, visto que as plantas deverão receber apenas a quantidade de água necessária. O mecanismo pode ser estendido para monitorar e atuar sobre diversos outros parâmetros das plantas.

3. Metodologia

O projeto seguiu as seguintes etapas:

- 1. Pesquisa bibliográfica de projetos e soluções disponíveis no mercado. Neste momento também foram consultados especialistas da área para adquirir conhecimento prático sobre o assunto;
- Levantamento de requisitos do projeto: hardware, software, definição da arquitetura e de materiais necessários para a construção de um primeiro protótipo;

- 3. Implementação de protótipos: montagem dos componentes eletrônicos e da aplicação *mobile*;
- 4. Implementação e testes de interface: um aplicativo foi gerado e compartilhado entre pessoas selecionadas para dar *feedback* sobre a primeira versão.

4. Resultados parciais

Ao seguir a trilha metodológica traçada na seção anterior, os seguintes resultados foram obtidos. Enfatizamos que se trata de um trabalho em desenvolvimento, portanto, os resultados descritos são parciais.

4.1. Pesquisa de soluções existentes

Foram encontrados vários tipos de sistemas para irrigação de jardins verticais que em geral desperdiçam um grande volume de água, controlados através de contadores que acionam o sistema de forma pré definida sem considerar as especificidades do jardim. A umidade atual da terra não era levada em consideração. Não possuíam maneira de acessar remotamente os dados coletados, e os parâmetros de acionamento da irrigação por sua vez, deveriam ser determinados antes da compilação do código fonte. Apresentavam também, em sua maioria, um circuito eletrônico de grandes dimensões.

4.2. Levantamento de requisitos

Até o presente momento o protótipo desenvolvido utiliza 1(um) NodeMCU, 1(um) Raspberry Pi 3 Model B+, 4(quatro) sensores de umidade resistivos, 1(um) multiplexador analógico de 8 canais HCF4051BE, 4(quatro) resistores de 220 Ohms, 4(quatro) leds vermelhos (para simular acionamento das solenoides), 1(uma) *protoboard*, e cabos *jumpers*. O ambiente de desenvolvimento (IDE) escolhido foi a plataforma Arduino e a arquitetura utilizada é a cliente-servidor provido pela plataforma Blynk.

4.3. Implementação de protótipos

A versão atual (Figura 1) permite que o sistema funcione em dois modos: manual e automático.

Figura 1. Protótipo

No modo "Manual" o sistema de irrigação será ativado apenas quando o botão "Irrigar" for acionado através da interface do aplicativo mobile. Já no modo "Automático", para que o sistema funcione corretamente, o usuário deverá informar a umidade mínima do solo recomendada para aquele jardim e por quanto tempo (em segundos) a irrigação deverá permanecer ativa (Figuras 2 e 3).

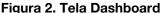


Figura 3. Tela Configurações

4.4. Implementação e testes de interface

Durante a implementação do projeto mostrou-se necessário realizar a substituição de todos os sensores de umidade do solo resistivos por modelos capacitivos, pois os primeiros apresentaram um rápido processo de corrosão. Do ponto de vista de *software*, foi gerado e compartilhado um aplicativo mobile entre pessoas selecionadas para dar *feedback* sobre a primeira versão. Até o presente momento não foram notados problemas significativos durante a utilização destes pelos usuários.

5. Conclusões e trabalhos futuros

Espera-se que, com utilização do instrumento proposto neste artigo, seja possível reduzir consideravelmente o consumo de água em jardins, preservando um bem tão precioso quanto este que a cada dia têm se tornado mais escasso para a população;

Nas próximas versões do projeto serão adicionados outros sensores, como sensor de luminosidade, sensor de temperatura e umidade do ar, com o objetivo de montar um

dataset coletado do jardim para futuro treinamento de algoritmos com *Machine Learning*. É pretendido também iniciar o desenvolvimento de uma PCB própria para facilitar ainda mais a conexão dos fios dos sensores e fonte de alimentação.

Um segundo protótipo, aplicado desta vez a um jardim vertical de dimensões reduzidas, já está em fase de desenvolvimento e com os primeiros testes sendo realizados (Figuras 4 e 5).

Figura 4. Jardim Vertical

Figura 5. Sistema de irrigação

Referências

Ecotelhado - Official site. Disponível em: https://ecotelhado.com/sistema/ecoparede-jardim-vertical/. Último acesso em março de 2019.

Godin, P. Arduino Automatic Garden Watering System. Disponível em: https://www.youtube.com/watch?v=XltxIG_FiaM. Último acesso em março de 2019.

Silva, G. Tecnologias modulares viabilizam a execução de jardins verticais. Disponível em:

https://www.aecweb.com.br/cont/m/rev/tecnologias-modulares-viabilizam-a-execuca o-de-jardins-verticais_8942_0_1. Último acesso em março de 2019.

Rain Bird - Official site. Disponível em:

https://www.rainbird.com.br/upload/artigos-gerais/Irrigacao-para-Paredes-Verdes_J GN.pdf. Último acesso em abril de 2019.

Rodrigues, L. et al. Técnicas e tecnologias para implementar paredes verdes externas em edifícios residenciais e comerciais na cidade de São Paulo. Disponível em:

https://au.pini.com.br/2018/03/tecnicas-e-tecnologias-para-implementar-paredes-verd es-externas-em-edificios-residenciais-e-comerciais-na-cidade-de-sao-paulo/. Último acesso em abril de 2019.