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Abstract. The performance benchmarks of Natural Language Processing (NLP)
tasks have been overwhelmed by Large Language Models (LLMs), with their
capabilities outshining many previous approaches to language modeling. But,
despite the success in these tasks and the more ample and pervasive use of these
models in many daily and specialized fields of application, little is known of how
or why they reach the outputs they do. This study reviews the development of
Language Models (LMs), the advances in their explainability approaches, and
focuses on assessing methods to interpret and explain the neural network por-
tion of LMs (specially of Transformer models) as means of better understanding
them.

1. Introduction

The field of Natural Language Processing (NLP), an area of research intended of enabling
computers to process large natural language datasets, has been revolutionized since the
introduction of deep learning (DL) models. Now, Large Language Models (LLMs) have
demonstrated stellar performance on hard NLP tasks, such as text summarization, ma-
chine translation, question answering and dialog. Companies have launched many prod-
ucts and integrations based on new text generation models, such as OpenAI’s ChatGPT
or Googles’s Gemini, from note-taking apps with broader self-completing capabilities, to
more interactive customer service applications and integration with search engines that
summarize the results of a search for the user.

However, our understanding of the inner workings of Language Models (LMs)
based on neural network (NN) approaches lags behind the advancements in their size,
complexity, architecture and broader use by society. To know how such models
are designed and how they operate is different from understanding how its resulting
properties, such as connections and weights, lead the system to a given prediction
[Lillicrap and Kording 2019]. This lack of interpretability and explainability erodes trust
and disavows the application of these models in contexts where the reasoning behind a
decision is critical to its implementation, like those of the medical field. Meaningful ex-
planations can also benefit the development of deep learning systems by aiding to verify
if a system works as intended, can help improve the system by better understanding its



flaws, may lead to insights to specialists in its field of application and guarantee that the
system complies to legislation, as argued by [Samek et al. 2017].

As such, the main goal of this study is to assess the state of explainability tools
for Large Language Models (LLMs), with a specific focus on tools targeted to neuron
activation explainability. In Section 2 we contextualize what language models are and
the history of their development, as well as existing explainability tools and frameworks.
Then in Section 3 we take a deeper look at recent papers of neuron activation explainabil-
ity, which are further discussed in Section 4 where we summarize our findings, and in 5
we conclude our study.

2. Foundations
To contextualize this study and to set common ground on therms and meanings, in this
section we define what are Language Models, briefly recall the development of Neural
Network approaches in the field, from simple networks to Transformers, and present the
development of explainability tools in the broader context of Natural Language Process-
ing (NLP).

2.1. Language Models
The term Language Model (LM) refers to any system trained for the single task of pre-
dicting a series of tokens, whether letters, words or sentences, sequentially or not, given
a previous or adjacent context [Bender and Koller 2020].

The first approaches for LMs were based on statistical patterns extracted
from large corpora. These approaches used n-grams as the unit for probability
estimation, with large n (i.e. large sequence of words) yielding better models
[Manning and Schutze 1999]. However, these models could only capture dependencies
in the n-word window, with poor coherence for larger or followings sequences.

2.1.1. Neural Networks in NLP

With the introduction of NN models in the computing field, there was a surge of ini-
tial NN approaches for language modeling, but, due to its similar implementation to
those of statistical approaches, it were equally limited in the scope of sequence length.
This changed with the introduction of the Long Short-term Memory (LSTM) Model
[Hochreiter and Schmidhuber 1997], which was a version of the Recurrent Neural Net-
works (RNN) that addressed its issues and made viable its use in real world applications.
It allowed for the NN to have greater persistence of information over sequence data such
as time series or, in the case of NLP, text. That is accomplished through the implementa-
tion of a feedback loop, in which the output of the activation function is refeed to the cell
trough summation, allowing both the current and previous values to influence its com-
putation. This, along with LSTM new features, allowed longer sequences to be fed into
the network and for the model to take a broader context into consideration, favoring its
application in the context of NLP.

Despite its advances, neural networks were still hindered in the context of NLP
thanks to the serial nature of its training, where one input had to be processed before the
next one could be computed, that made for its training to be costly and time-consuming.



2.1.2. Transformers

Transformers discard recurrence in favor of relaying solely on the attention mechanism,
which functions as a mean of assigning how an input token relates to the tokens in its
surrounding context. This allows the model to take the entire context of a token in account
when computing it independently, and, so, has no need for the recurrence mechanism to
remember previous context and is no longer limited to a sequential training.

The model was present by [Vaswani et al. 2023] for sequence to sequence ma-
chine translation. It’s architected in an encoder and decoder structure, where the encoder
takes the input sequence in the original language and processes it, then the decoder takes
any previous translations to the target language that occurred before, or just a begging of
sentence token, computes it, joins both of these processed inputs (the current sequence
to translate with the previous translated portion) and outputs the predicted final sequence
to the target language. The encoder and the decoder are composed of: input word em-
beddings, that convert the tokens to word vectors; positional encodings, that encode the
relative position of the word in the phrase; multi-head self-attention layers, that relate the
token to its context; and feed-foward neural network (FFN) layers, that compute over all
the previous information together. The difference between the encoder and the decoder,
is that the decoder is composed by an initial encoder portion and additional encoder-
decoder attention layers that combine the processed input text by the separate encoder
with the processed output translated text by its own initial encoder portion. The result of
this computation is then run through a final feed-foward, linear and softmax layers.

In this process, every input token is computed separately, while still considering
its whole context, which enables the parallelization and distributed training of the model.
With this, the Transformer model circumvents the limitations of sequential training of
previous implementations, making possible greater models trained with greater datasets.
Another aspect of the Transformer, that goes hand in hand with its larger training capa-
bilities, is its capability of being able to be fine-tuned for a specific context of application
after its main batch of training. This allows a base model to be extensively trained on a
large corpus and then easily fine-tuned to specific applications. Finally, its structure can
be modified to achieve more specific goals, either by changing the number of attention
and FFN layers or by ditching the encoder or the decoder entirely. For example, BERT is
composed of stacked encoders, while GPT is composed of stacked decoders.

2.1.3. Large Language Models

The innovations brought by the Transformer model, alongside its performance on various
NLP tasks, led to the trend of larger and larger models such as OpenAI’s GPT-3, that
reaches 175 billion parameters and 570GB of training data, which is orders of magnitude
above previous models developed for NLP. This earned the coinage of the term Large
Language Models (LLMs) and the emergence of an area of research dedicated to them.

One of the latest developments in the LLMs field is the InstructGPT model
[Ouyang et al. 2022], pioneered by OpenAI, that serves as the base for the new assistant
models. Its Reinforcement Learning from Human Feedback (RLHF) utilizes a surrogate
model, trained on preferred sentences ranked by human subjects, to generate sentences



that are used to refine a conventional base model to fallow instructions in more human
aligned ways and to generate a more human aligned text.

With this, research of LLMs has been categorized into two training paradigms:
traditional fine-tuning and prompting [Zhao et al. 2024]. Explainability works focused on
the first paradigm mainly deal with question such as how the model acquires foundational
understating of language from its base training and how the fine-tuning process influences
its ability to solve domain specific tasks. Whereas, explainability works dealing with the
second paradigm aim to understand how base models (not further trained to align with
human preferences) leverage its pre-trained knowledge to respond to prompts and how
assistant models (that were trained to better align with human preferences) come to be
able to interact with users in open-ended conversations. The differences between the two
paradigms makes so that the methods through which they can be understood are different.
Beyond their size and dimension, there is the added layer of difficulty of new types of
training that brings back questions about what patterns and information do exactly these
models capture from a general training of token prediction and what is learned from an
approach targeted to a specific task and to generate human oriented text.

2.2. Explainability and LLMs

One of the first works that specifically surveyed for tools of explainability of deep learning
models in NLP and that categorized them according to a framework of thought was that of
[Zini and Awad 2022], who proposed its framework based on three fundamental questions
of model explanation: how they are explained, what is explained and which models are
explained.

The authors justify the necessity of explainability tools specific to models that op-
erate on language processing tasks by contrasting the particular set of challenges posed
by digitally processing human language to those posed by other applications, like signal,
image or data processing. Many tools have been developed for neural models of image
processing, for example, but these fail to provide meaningful explanations for the predic-
tions of language models, mostly due to the inherent differences of processing images to
processing language. A letter or word has a different relationship to a sentence than a
pixel has to an image, while both are the object in training and operation of models.

2.2.1. Explainability in NLP

Tackling the framework proposed by the authors, the question of “how” dictates if the
explanation is post-hoc, after the processing of a prediction, or if the model itself is in-
terpretable by design. This is well exemplified by decision tress, where each branching
path clearly defines a rule for decision-making so that its resulting outputs are inherently
explainable. A neural model, however, is much less interpretable (black-box) due to its
complexity and non-linear relation of the inputs to its outputs, although even neural mod-
els can be reconfigured and retrained to be more interpretable.

The question of “what” covers what element of the model is being explained
branched in three categories: input level, like the analysis of neural model embeddings
and how they represent words; processing level, that focuses on the inner representations
of neural models be it attention, specific weights and connections and how information is



stored and used inside the NN; and output level, which aims to explain individual model
outputs in respect to input features or the models inner workings.

Lastly, “which” model is explained refers to the explanation tool being model ag-
nostic or model specific, since some tools are tailored to a model’s specific architecture
and where others are independent of any models’ configuration. This is better represented
by output explainability, where performance tests on established datasets enable compar-
ison between different model architectures and training forms.

2.2.2. Explainability of LLMs Inputs

The first step of a LLMs processing is constituted by word embedding, a process by which
a token of a word is represented as dense vector so that it can be computed numerically.
Although they can effectively and efficiently encode semantic and syntactic information,
these high dimension embeddings are hard to interpret, which is not only essential for
the making the whole of the model interpretable, but it is also desirable to ensure that the
model is fair and efficient in its vocabulary representation.

The approaches developed for explainability of embedding revolve around: spar-
sification of embedding spaces that aim to remove redundancies or unnecessary dimen-
sions, rotation of embedding spaces to understand concept dimensions, integrating exter-
nal lexicon and ontological knowledge to align the embeddings to human representations
and, finally, evaluating embedding interpretability in standardized tests. As a example,
[Raganato and Tiedemann 2018] present a general evaluation of BERT, mainly focusing
on the role of its attention mechanism in word representation, loosely fitting this category
for Transformer input explainability.

2.2.3. Explainability of LLMs Inner Representations

The main approaches to explain and interpret the inner representations of LMs are divided
in visualization and analysis approaches, the first pertaining to any method trough which
one can visualize how the model has computed any given input or how its insides are
configured, and the second refers to mathematical or statistical ways to understand the
inner workings of the models.

Transformer inner representations explainability has, since its beginning, been
extensively based on visualizing its attention mechanisms [Zini and Awad 2022], due
to this mechanism more interpretable nature than that of the neurons of the FFN lay-
ers. The approaches vary in scale, from visualizing how individual attention heads
evaluate tokens [Vaswani et al. 2023], to visualize how attention interacts across differ-
ent attentions heads [Strobelt et al. 2019], how attention values flow across the model
[DeRose et al. 2020] and how individual attention heads relate to concepts given by the
user [Hoover et al. 2019].

Now, turning to the network portion of Transformer models, there are probing and
neuron activation explainability approaches. Probing is a technique based in the idea of
training a shallow classifier over a model’s parameters to understand what they captured,
in a sense an indirect approach to understand the model’s NN. Whereas, neuron activation



is a direct approach that intends on understanding and explaining the neurons themselves,
individually and collectively, and how they can be modified and deconstructed to alter
their behavior. This last approach is the focus of this study.

2.2.4. Explainability of LLMs Outputs

The works in this category of explainability aim on providing evidence to support a
model’s decision. They are divided into post-hoc interpretation, where a models inputs
and features are perturbed to observe changes into its output, and inherently interpretable
models, which provide confidence intervals to its predication or a reasoning for its con-
clusion, be it by the model on prediction or a reference to an external ground truth system
like Knowledge Graphs (KG). Works of inherently interpretable models are scarce, with
[Zini and Awad 2022] reasoning that this is due to the large computational costs involved
in retraining LLMs to make them interpretable.

3. Understanding and Manipulating Activation Patterns in LLMs
The Transformer model, currently used in the most successful LLMs, use several mech-
anisms to capture linguistic and task-specific patterns. The focus of this survey is the
activation of the hidden layers of the deep neural network inside any transformer model.
The activation patterns can be used both to understand and to manipulate the models.

3.1. Neuron Relevance Ranking

A straight forward line of work aims to identify important neurons and relate individual
neurons to linguistic properties. Such is the work of [Bau et al. 2018], that, following the
intuition that different Neural Machine Translation (NMT) models developed to act on
the same languages will share similar properties, developed an unsupervised method to
discover the neurons that relate to these shared properties. With this, the authors were
able to modify the activations of individual neurons to control the model resulting outputs
in predicable ways.

Another approach in this line of work is to use supervised methods to find impor-
tant neurons in relation to specific language properties. Proposing a supervised method of
neuron ranking, [Dalvi et al. 2019] aims to evaluate what is the impact of specific neurons
in various language tests and how distributed or focused information is in NMT models.
Its supervised approach of Linguistic Correlation Analysis classifies neurons in regard to
their relevance to an expected linguistic property in the model input. To evaluate if their
ranking was meaningful, the authors used ablation to compare how a model configured
only with top neurons compared in performance to a model configure only with the bot-
tom neurons. Although the architectures of the aforementioned methods were not that of
the Transformer, the authors claim that their findings can be extended to it and to different
components of NMT, such as the encoder and decoder.

The encoding of linguistic information often goes beyond a single neuron, encom-
passing a subset of the available dimensions. [Hennigen et al. 2020] propose a method
based on Gaussian probes that identifies the subset of neurons associated with several
linguistic properties. The authors focus on encodings generated by BERT and fastText,
therefore limiting the analysis to the last hidden states of the networks.



3.2. Neuron Information Retrieval

Alternatively, another line of work is based on a mechanistic interpretability of neural
language models, investigating neurons and their connections in similar terms as those of
circuits. This interpretation was initially proposed to explain vision models, which can
be intuitively understood as being a system composed of simpler building blocks. This
approach was extended to explain neural networks hidden representations, such as it can
be fruitfully applied to the LM context.

In [Geva et al. 2021], it is demonstrated that the FFN layers of a Transformer
model acts like key value pairs that store memories related to patterns in its training data
that amass the probability in favor of a specific output vocabulary. These patterns have
been found not only to be human interpretable, but shown that shallow layers capture shal-
low patters of text, while the upper layers capture more syntactic patterns. The authors
analyzed how cells are related to specific memories, and how the aggregated memories of
multiple cells combine to produce a distribution different from what each cell individu-
ally could provide. Following this work, [Geva et al. 2022] explored how the FFN layers
update the representation of the output vocabulary space in distilled human interpreted
concepts. By decomposing the updates of the FFN layers to the vocabulary space in value
vectors and analyzing how these vectors relate to concept annotated vectors, they discov-
ered that each update can be decomposed in human interpretable concepts and that they
can be altered and interfered to achieve more desirable outcomes, like less toxic models.

Understanding the patterns of activation was a foundation step for
[Meng et al. 2022], which were able to identify the main layers associated with
factual recalling in the LLMs tested. The authors identified the importance of the
activation in middle layers during the processing of subject tokens (in a sort of priming
for subsequent fact retrieval). After identifying the key activation regions, the authors
introduce changes in the model to make it generate different facts. This type of
post-training intervention was shown to be effective and can represent a complementary
approach for LLM tuning.

4. Discussion
In revising previous surveys, the focus of the development of explainability methods ap-
pears to have shifted. In their assessment, previous to the prompting boom of late 2022,
[Zini and Awad 2022] noted that its referenced works pointed to explainability develop-
ment being more dedicated towards understanding the inner workings of LMs than to
explaining particular outputs. Subsequently, however, the survey of [Zhao et al. 2024]
shows that explainability research following the surge of new prompting models has
moved to more heavily develop works concerned with output analysis, including ap-
proaches that utilized LMs to help evaluate and explain other LMs properties and outputs.

The attention mechanism is the focus of most of previous and current research
towards better understanding Transformer’s inner representations, either due to its more
inherently more interpretable and visualizable behavior, or to its spotlight in the Trans-
former model development. In the latter years, new work has been developed to under-
stand and explain the role of neural processing in the Transformer, from approaches that
aim to find neurons responsible for the models’ language capabilities, to works searching
for where specific information and factual knowledge is encoded.



This last line of work seems to be the most promising in making the models more
interpretable, their decisions more explicable, and their use more safe. The direct anal-
ysis of a model’s inner representations allows the study of what information influenced
its output, how it did, and enables for the alteration of this information towards more de-
sirable outcomes, like more accurate and less toxic models. In contrast, output analysis
approaches seem limited with its incapacity to remedy the model’s failings, only being
able to identify it.

5. Conclusion
This study presents a comprehensive background of LM explainability, firstly contextual-
izing the development of LMs, then presenting an explainability framework of thought for
tools of explainability geared towards these models, and concluding with a focused review
of works concerned with LMs hidden representation explainability and interpretability.
The methods reviewed in this study present a promising line of work for making black-
box LM more transparent, interpretable, explainable and safe.
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