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Abstract. Different approaches have been investigated to implement effective
Brain-Computer Interfaces (BCI), translating brain activation patterns into
commands to external devices. BCI exploring Steady-State Visually Evoked Po-
tentials usually achieve relatively high accuracy, when considering 2-3 second
sample windows, but the performance degrades for smaller windows. So, we
investigate the use of an ensemble method, the Adaboost algorithm, combining
two different structures, the Logistic Regressor and the Multilayer Perceptron,
whose diversity shall bring relevant information for more accurate classifica-
tion. Simulation results indicate that the proposed method can improve per-
formance for smaller windows, being a promising alternative to reduce model
variance.

1. Introduction
A Brain-Computer Interface (BCI) system is an apparatus capable of translating brain ac-
tivation patterns into commands to external device, which varies from assistive technolo-
gies to entertainment [Nam et al. 2018]. Generally, brain activity is measured by means
of electroencephalography (EEG) recorded, which is a non-invasive and relatively low
cost technique. However, EEG signals present low spatial resolution, noise, and artifacts.
Besides, brain activation patterns tends to change significantly along time for a single
subject (BCI user), making EEG signals processing and classification a very challenging
problem [Nam et al. 2018].

After a pre-processing step, the EEG signal is usually classified by a Machine
Learning (ML) technique, in which we highlight the Artificial Neural Networks (ANNs),
such as the Multilayer Perceptron (MLP) [Bishop 2006]. Indeed, in the context of Steady
State Visually Evoked Potential (SSVEP), the achieved performance in terms of accu-
racy is relatively high, about 90% for sample windows (with period) of 3 and 2 sec-
onds [Nam et al. 2018]. However, for smaller sample windows, such as 1 or even 0.5
seconds, the achieved performance still requires improvement and is a crucial issue in
BCI applications that demand high accuracies in the smallest response time.
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In that sense, in this work, we investigate the use of an ensemble method, the Ad-
aboost algorithm [Bishop 2006], as an attempt for dealing with high variability in smaller
sample windows. The proposed ensemble will combine two different structures, the lo-
gistic regressor and the MLP, whose diversity shall bring relevant information for more
accurate classification.

2. Brain-Computer Interfaces and Ensemble Learning
Among many approaches, BCI approaches make use of signals encoded in EEG activ-
ity [Nam et al. 2018]. Once collected, signal processing techniques attempt to extract rel-
evant information from EEG data that will be used by machine learning algorithms to map
the original intent to a specific command. Researchers have exploited a broad set of brain
response types for building BCIs. One particular case and main focus of this work are
BCIs systems based on SSVEP, which is the response provoked in neurons of the visual
cortex when the subject is fixating on a visual stimulus. Visual stimuli are associated with
different commands and oscilate in different frequencies presented to the user by a vi-
sual device. Spectral-based SSVEP decoders usually evaluate peak intensity on the visual
stimuli (and their harmonics) aiming to define the features for a classification structure.
However, the smaller the fraction of window length used as an input, the harder it is to
classify it [Nam et al. 2018]. In light of this tradeoff, more robust models seem to be a
feasible solution to handle complex scenarios, and ensemble learning can provide a path
to explore hard classification tasks involving BCI applications.

Ensemble learning is a technique that combines several base learners to gener-
ate an improved predictive model. We can highlight the Boosting approach, where base
learners are sequentially trained in a way that the samples presented to the current base
learner depend on the incorrect outputs of its predecessor. One of the most popular strate-
gies of boosting is the Adaboost algorithm [Freund et al. 1999], which aims to perform
a weighted voting among all base learners to generate the ensemble output. Originally
proposed for binary classification tasks, Adaboost was improved to properly handle mul-
ticlass datasets through SAMME (Stagewise Additive Modeling using a Multi-class Ex-
ponential loss function) [Hastie et al. 2009]. SAMME applies subtle differences over the
original structure to handle a multiclass scenario in a scenario where the importance (al-
pha) factor of each base learner is always positive and better than random guessing. In
order to investigate the data space from different perspectives, we combined two different
models into an ensemble: linear (Logistic Regression - LR) [Bishop 2006] and nonlinear
(ANN) [Bishop 2006] models.

3. Methodology and Results
The dataset used in this work for running experiments is a contribution of previous re-
searches authored by the Laboratory of Computing Methods for Bioengineering (Federal
University of ABC) [da Silva Jr. 2017]. Data was collected1 using a 16-channel EEG cap,
with electrodes positioned according to the 10-20 system. 15 healthy subjects participated
in 12 6-second sessions for each of the 4 frequencies of interest (10, 11, 12 and 13Hz –
frequency spectrum examples are illustrated in Figure 1) – adding up to 48 sessions per
subject. The sample rate used for data collection was 256Hz.

1Approved by the Ethics Committee of the Federal University of ABC (CAAE:51005615.2.0000.5594)



Figure 1. Example of power spectral density analysis of samples of each class.

3.1. Dataset description

Data acquisition sessions were perfomed using a monitor presenting different light
sources in a checkered pattern, which oscillated at different frequencies (each of which is
associated with a particular class). To carry out the experiments, EEG datasets were parti-
tioned into time windows of 2 and 1 seconds with a 0.5-second overlap (or 128 points) and
a 0.5-second time window without overlap; totalizing respectively: 240, 288 and 576 sam-
ples per individual. It is worth mentioning that the use of windows or acquisition periods
equal to 3 and 2 seconds have been previously used in the literature [da Silva Jr. 2017].
However, cases with 1 and 0.5 s windows, as it has lower spectral resolution and is con-
sequently more challenging, still need more attention.

The SSVEP-BCI system is composed of (i) Common Average Reference (CAR)
filter as a preprocessing step; (ii) Fast Fourier Transform algorithm, in which the used
features were the first 3 harmonics of the target frequencies (a normalization step was
previously added to standardize data with mean 0 and unit variance to keep all features
at an equivalent scale); and (iii) a classifier, which in this case were a linear (Logistic
Regression), a nonlinear (Multilayer Perceptron - MLP [Bishop 2006]) or an ensemble
mixing up both types of classifiers (Adaboost - ADA). Then, we can compare the robust-
ness of the classifiers in different scenarios while searching for a BCI system with smaller
window lengths.

For all experiments, MLP networks were implemented to have 1 hidden layer
with 15 neurons, using a sigmoidal activation function and a maximum number of 2000
epochs. The LR classifier was configured with a maximum number of 2000 iterations as
well. Finally, Adaboost was implemented with 15 base learners, being 7 LR classifiers
and 8 MLPs. Regarding experiment settings, data was split into 50% for training and 50%
for testing adopting accuracy as an evaluation metric.

3.2. Results and discussion

Firstly, we investigated a reasonable scenario using a 2-second window and then stressing
out models in more challenging scenarios with a sample size of 1 and 0.5 seconds. All
results are described in Table 1.



Table 1. Experiment results for 2, 1 and 0.5 s time window samples.

SUBJECT 2 Second 1 Second 0.5 Second
LR MLP ADA LR MLP ADA LR MLP ADA

1 93.33% 95.83% 94.16% 87.50% 88.19% 88.88% 70.13% 71.87% 72.22%
2 89.16% 89.16% 89.16% 65.27% 65.27% 65.27% 52.43% 52.08% 52.43%
3 99.16% 99.16% 99.16% 87.50% 90.27% 88.19% 71.52% 73.95% 74.65%
4 100.00% 100.00% 100.00% 90.97% 89.58% 90.27% 69.44% 71.52% 71.52%
5 97.50% 95.83% 98.33% 81.25% 84.02% 86.80% 52.43% 54.51% 55.55%
6 100.00% 97.50% 98.33% 83.33% 81.94% 83.33% 70.08% 72.22% 72.91%
7 69.16% 60.83% 64.16% 49.30% 45.13% 45.83% 35.76% 40.27% 39.93%
8 100.00% 97.50% 98.33% 92.36% 94.44% 93.75% 73.95% 72.56% 72.56%
9 82.50% 85.00% 85.83% 51.38% 59.02% 58.33% 39.93% 40.27% 43.75%

10 91.66% 95.00% 96.66% 76.38% 74.30% 74.30% 48.61% 53.12% 53.81%
11 96.66% 99.16% 99.16% 84.72% 87.50% 86.80% 59.72% 60.06% 61.11%
12 98.33% 99.16% 97.50% 86.11% 85.41% 87.50% 52.08% 57.29% 56.94%
13 94.16% 94.16% 95.00% 72.22% 74.30% 75.00% 51.73% 50.34% 50.34%
14 100.00% 100.00% 100.00% 99.30% 100.00% 99.30% 95.48% 95.13% 94.44%
15 98.33% 98.33% 97.50% 90.97% 92.36% 91.66% 58.68% 62.50% 62.15%

MEAN 93.99% 93.77% 94.22% 79.90% 80.78% 81.01% 60.13% 61.85% 62.29%

The ensemble model presents higher mean accuracy in all cases, although the
difference is higher for shorter window lengths – a gain of 0.45% for windows of 0.5
second. Although it is not an expressive improvement, results indicates that the ensem-
ble is a promising approach and performs better in more complex scenarios, where the
underlying information about input data is scarce. The diversity of base learners also has
its contribution, since they explore the data space in different ways. This is confirmed by
the results obtained on subjects 9 and 10 in the hardest case, where the difference among
Adaboost and the other classifiers reaches 3.82% and 5.20%.

4. Conclusions
Designing a robust BCI system is a challenging task, in which providing correct output
in the smallest response time is mandatory. Specifically, it is desired to correctly classify
the user’s intent using the shorter time window length as possible. In this work, we
started performing a classification task in a comfortable scenario and kept investigating
how the sample size could be associated with the complexity of models. We conclude
that the ensemble outperforms simpler ones as the sample period gets smaller. Also, it is
important to highlight the diversity of base learners, which contributed to the ensemble
in most cases. For further works, more sophisticated ensemble approaches represent a
promising alternative to reduce model variance, such as the Mixture of Experts approach.
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