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Abstract. Distributed systems are fundamental to the landscape of modern com-
puting, serving as foundation of applications from large-scale cloud infrastruc-
tures to distributed databases. These systems face intricate challenges in main-
taining data integrity and managing concurrent processes across decentralized
environments. Among the mechanisms devised to navigate these complexities,
distributed locking stands out as a pivotal strategy for orchestrating resource
access among multiple nodes, ensuring operational coherence and data consis-
tency. This paper addresses the mechanisms of distributed locking within the
context of key-value storage systems, which are celebrated for their straight-
forwardness and high scalability. Our investigation encompasses an analysis of
both blocking and non-blocking strategies for resource acquisition, enlightening
the balance between securing exclusive access to resources and minimizing la-
tency to enhance user experience and system efficiency. Additionally, we survey
the scalability challenges that emerge as the system expands, evaluating how
these mechanisms scale across an increasing number of nodes and operations.
The study probes into performance bottlenecks that often manifest in distributed
environments, identifying strategies to mitigate these constraints while maintai-
ning high throughput and responsive systems. Moreover, we focus on the criti-
cal aspects of consistency and latency, exploring architectural and algorithmic
solutions designed to harmonize the two, thereby facilitating a seamless and
efficient distributed operation. Benchmarking evaluations are presented, incor-
porating metrics such as throughput, latency, and scalability, providing insight-
ful findings that contribute to the broader understanding of distributed systems
coordination, offering valuable guidance for system designers and developers.

1. Introduction
Distributed systems are common in contemporary computing setups, spanning from large-
scale cloud infrastructures to distributed database architectures. Ensuring data integrity
and mitigating race conditions within concurrent systems are crucial in such environments
[van Steen and Tanenbaum 2016]. Distributed locking mechanisms serve as fundamental
tools to address these challenges by orchestrating resource access across multiple nodes.

Moreover, in a society that is progressively interconnected, where software ap-
plications range from vehicular monitoring [Echavarrı́a et al. 2020] to large-scale vi-



deo analysis [D’amato et al. 2021], the economic impact of system downtime is beco-
ming more pronounced.e, with even brief periods of disconnection resulting in subs-
tantial financial losses for companies. To preempt and alleviate such repercussi-
ons, high availability configurations are implemented to enhance the fault tolerance of
systems[Yeo et al. 2006].

This paper undertakes an investigation into the realm of distributed locking within
the context of high available key-value storage systems. Key-value storage solutions re-
present foundational components within distributed applications due to their simplicity
and scalability[Xu 2018]. The strategies here analyzed, allow developers to seamlessly
integrate locking mechanisms into their current codebases, capitalizing on pre-existing
components for enhanced efficiency. However, coordinating access to these stores within
distributed settings introduces complexities associated with concurrency management and
synchronization, specially when high availability is required.

The investigation navigates through the intricacies of distributed locking mecha-
nisms, exploring both blocking and non-blocking strategies for lock acquisition. On the
paper by Piotr Grzesik [Grzesik and Mrozek 2019], wide-spread key-value stores were
evaluated, comparing performance based on time taken to acquire locks, each store with
its own locking algorithm. This paper aims to extend Grzesik findings with new metrics
and algoriths while shedding some light on correctness and violations.

Redis, etcd and ZooKeeper were store chosen to be analyzed based their
usage on the industry and their underlying replication strategies and consensus algo-
rithms, respectively, Sentinel [Redis 2024], Raft [Ongaro and Ousterhout 2014] and ZAB
[Kamil et al. 2021].

2. Related Work

As aforementioned, Piotr Grzesik [Grzesik and Mrozek 2019] evaluated performance for
multiple high available key-value stores, concluding that while Redis is fast on non-
competing environments, its performances degrades on competing environments with
high concurrency. It’s also noted that etcd, ZooKeeper and Consul shared similar per-
formance. Grzesik didn’t explore violations and detection times.

The Jesper Team has also conducted several analysis on both performance and
correctness on multiple key-value stores, finding inconsistencies in most of them. For
etcd[Kingsbury 2020a], it was found major flaws on locking mechanisms and docu-
mentation, even after fixes it’s not recommended to use etcd locks without fencing to-
kens. ZookKeeper was found to be more reliable, albeit some false negatives were
found during partitions, where one write was not acknowledged but it was indeed
committed[Kingsbury 2013b]. Redis was found to provide guarantees up to causal con-
sistency, making it unsafe for locking purposes[Kingsbury 2013a].

While some research studies have delved into aspects such as the performance
and correctness of individual non-blocking solutions, there is a gap in the literature regar-
ding a comprehensive comparison of these solutions within the broader context of their
correctness.



3. Locks and Leases
The foundational concept behind the lease mechanism involves a server issuing a token,
referred to as a lease, to a requesting client. Upon granting a lease, both the client and
server use their wall-clock time to determine the lease’s expiration, based upon a predefi-
ned time-to-live (TTL). The introduction of expiration is crucial in preventing deadlocks
in the event of client crashes while holding a lease. Despite its efficacy in addressing
the issue of mutual resource access by restricting access to clients lacking an active le-
ase, the reliance on well-behaved clocks[Gray and Cheriton 1989] make leases somewhat
insecure and vulnerable to exploitation.

In the context of local locks, POSIX [Atlidakis et al. 2016] faced an analogous
challenge with shared process locks. Should a process crash while holding the lock, it
fails to release it, consequently culminating in deadlocks. This dilemma is addressed by
robust locks, which ensure the release of locks upon the crash of the owning process.
However, the usage of this solution is not possible in the realm of distributed systems;
in this context, the assumption that a node has been disconnected may not hold true,
presenting a characteristic known as Byzantine Fault[Driscoll et al. 2003], reinforcing the
need for an lease timeout.

With this said, is safe to infer that the concept of distributed locking does not hold
the same guarantees as local locks. From now on, the term lock is used in the paper
interchangeably with lease, not implying same guarantees as operational system locks.

3.1. Fencing tokens
Martin Kleppmann introduced the concept of fencing tokens as a method to mitigate po-
tential lease violations [Kleppmann 2017]. This approach is illustrated through a theo-
retical scenario in which two clients endeavor to obtain a lease and commit a state to a
storage server, ensuring mutual exclusion. If a client that holds the lease experiences a
”stop the world”interruption, the lease might expire without the client’s knowledge. This
can lead to a flawed state where the resource mistakenly becomes available to another
client, while the original leaseholder continues operations under the false assumption that
it still maintains control over the lock.

Fencing tokens are unique increasing tokens that are shared with the client that ac-
quired the lease and must be passed to the resource, that should now check if the provided
token it not bigger than the last processed token, denying the operation if the constraint is
broken.

Notice that the resource must now implement that check, introducing a new point
of failure and possible races on the application side if the resource is not able to do the
checking atomically or in a atomic transaction.

With the limitations presented on section 3.1, let’s now understand the inner wor-
kings of the chosen stores and some possible implications on acquisition and performance.

4. Stores
4.1. Etcd
Etcd uses raft[Ongaro and Ousterhout 2014] as it’s consensus algorithm and at the writing
of this paper its official documentation claims strict serializability [etcd 2024], which



indicates serializability and linearizability, imparting the perception that each operation
executed by concurrent processes seemingly occurs instantaneously within the interval
spanning from its initiation to its completion[Herlihy and Wing 1990]. Etcd does not
ensure linearizability for watch operations.

4.2. Redis

At the time of writing of this paper when ran in a Sentinel [Redis 2024] setup, Redis
uses asynchronous replication, this means that at any given time data changes may be
be lost if a partition happens on a master node that has not yet synchronized with the
other nodes[Kingsbury 2013a]. An algorithm called Redlock has been proposed to allow
redis to have a highly available setup when working with multiple master nodes, note
that this seutp is not comparable in this paper since a multiple master setup does not
have complete replication on the protocol; Still, the RedLock algorithm does not include
the generation of fencing tokens, not allowing the mitigation strategy to be employed,
furthermore the safety and correctness of it has been challenged by Martin Kleppmann
[Kleppmann 2017];

4.3. ZooKeeper

Zookeper uses an consensus protocol focused on ordering of messages while being fault-
tolerant and highly-available[Kamil et al. 2021]. It is based on ZAB, ZooKeeper’s ato-
mic broadcast protocol. Those are key feature while working with distributed systems
coordination, guaranteeing order avoids deadlocks and makes blocking locks easier to
implement.

5. Strategies for Distributed Locking and Issues
Blocking strategies, characterized by a client’s waiting for access to a particular resource
until it becomes available, effectively increases the changes of acquiring leases. Howe-
ver, this approach can engender bottlenecks and scalability challenges due to the potential
for multiple clients contending for the same resource simultaneously. In contrast, non-
blocking strategies prioritize reducing latency by allowing clients to proceed with other
tasks while awaiting resource availability. This optimization comes at the cost of strin-
gent execution guarantees, necessitating modifications to the codebase to handle potential
errors and implement retry mechanisms in the event of resource unavailability. Thus,
the choice between blocking and non-blocking strategies involves a trade-off between
resource exclusivity and system responsiveness, with implications for both performance
and code complexity.

In the realm of concurrency coordination, etcd natively supports a non-blocking
mutual execution framework based on leases[etcd 2024]. This mechanism operates th-
rough the atomic comparison of revisions – monotonically incrementing version numbers
assigned to keys – swapping them in case of success. The revision number may be used
as a fencing token. The official Go [Authors 2024] library, also provides a native blocking
method that uses watches to check for deletes on lock owners.

Parallel to etcd, Redis, within its Sentinel configuration, advocates for the em-
ployment of a straightforward compare-and-swap (CAS) strategy accompanied by expi-
ration parameters. This approach involves the generation of incremental fencing tokens



within the CAS transaction to facilitate non-blocking lease procurement. It is impera-
tive to acknowledge, however, that this methodology exhibits limitations in partitioned
environments due to the replication characteristics of Redis Sentinel, where even the ge-
neration of fencing tokens may become obsolete.

Redis team has been working on a new replication algorithm based on raft, Redis-
Raft, the a work-in-progress version of the implementation has been tested by Jepsen and
found to be promising [Kingsbury 2020b]. Redis-raft, once published, could fix issues
that lead to the creation of Redlock, and support highly-available leases.

ZooKeeper documentation suggests one recipe for locks using watches – asynch-
ronous notifications of node modifications. This recipe entails an initial attempt to secure
the lock, succeeded by the observation of the locked key and, potentially, the subsequent
key in the queue . With each modification notification, an attempt to acquire the lock is
reiterated. Note that ZooKeeper allows setting a watch on the same transaction as getting
the node, avoiding race conditions. It also returns a ZXID that can be used as fencing
token.

Watch triggers are asynchronous, with ZooKeeper ensuring the dispatch of no-
tifications to clients via underlying TCP communication. Given the absence of a znode
expiration concept, ZooKeeper uses ephemeral nodes, which are automatically eliminated
upon the disconnection of the creating session, thereby compensating for the lack of ex-
piration functionality and avoiding deadlock scenarios. Nevertheless, network partitions
may occasion the premature release and acquisition of leases by competing entities, while
the original owner remains under the impression of continued ownership dilemma,this a
different instance of the same problem presented on section 3.1.

To facilitate a comparative analysis of blocking and non-blocking strategies, the
latter will be adapted to a blocking framework utilizing a retry-and-timeout technique.
This approach entails repeated attempts to acquire the lock until a pre-determined time-
out threshold is reached. Should the lock remain unsecured beyond the timeout duration,
further attempts are ceased, culminating in failure. While this method mitigates the pas-
sive waiting, that lead to race conditions, it increases resource consumption.

6. Benchmarking

Tabela 1. Hardware Specification

OS Ubuntu 18.04
CPU Intel I7 8665U
RAM 16GB 2400MHz

Storage 120GB SSD Sata

For the benchmarking, a straightforward HTTP API was implemented to simulate
a real-world resource. This API incorporates fencing tokens, as detailed in Section 3.1,
and offers two operations:

• Get Value: a GET endpoint that retrieves the shared value, returning a 200 OK
response along with the current counter. This endpoint also has a 5% chance to
sleep for 1s on every call. This is made to emulate “stop the world” freezes.



• Set Value: a PUT endpoint for setting the shared value, returning a 201 status
code upon successful execution.

Both operations accept a fencing token as input; if the token is deemed incorrect, a 409
Conflict error is returned. Notably, the API was intentionally designed to support
concurrent requests and induce race conditions on counter operations, with the assurance
that the fencing token will keep it consistent.

Figura 1. Steps for testing blocking strategies

The benchmark code was created following the steps illustrated in Figure 1:

1. Acquire a distributed lease with fencing token.
2. Issue a Get operation and save to the local counter.
3. Add 1 to the local counter.
4. Issue a Put operation passing the updated local counter.
5. Release the lease.

The rationale behind this decision stems from the creation of a racy counter. Should steps
(2, 3, 4) be executed concurrently, there exists the risk of the counter losing increments.
The usage of the distributed lease is intended to address this issue, also guarded by the
fencing token.

For the test to account for high-availability, all the stores were run in a 3 node
cluster setup. Partitions were forced every 10 seconds during the tests by force killing
random nodes of the key-value stores, this should lead to new elections and probable
issues with Redis.

The tests were run on a single machine with the hardware specifications outlined
in Table 1. Multiple nodes were simulated using Docker. Each iteration of the test ran for
10 minutes.

A baseline benchmark was conducted without implementing any locking mecha-
nisms to establish a reference point for assessing the API’s performance under optimal
conditions. This approach allows for a clear comparison between the unlocked state and
various locking configurations. By excluding locks, the benchmark tests the system’s
maximum throughput and response time, providing a fundamental understanding of the
API’s capacity and efficiency. This baseline serves as a control in the experimental de-
sign, enabling subsequent analyses to quantify the impact of different locking strategies
on the system’s performance.



6.1. Performance Indicators

To comprehensively evaluate the performance of distributed locking mechanisms within
the established testbed as detailed in section 6, two critical performance indicators were
selected: Throughput and Conflicts. These metrics are essential for assessing the effici-
ency and robustness of distributed locks across a variety of operational contexts and stress
scenarios.

Throughput High throughput indicates that the system can handle a significant number
of operations simultaneously without substantial delays, reflecting efficient management
of concurrent accesses. This metric is particularly important as it demonstrates the capa-
bility of the locking mechanisms to facilitate rapid processing while guaranteeing mutual
exclusion.

Conflict Rate The conflict rate is a critical indicator of the reliability and correctness of
the locking protocol. It measures the frequency of conflicts that arise when the locks fail
to ensure mutual exclusion among concurrent operations. A high conflict rate is indicative
of synchronization issues.

Tabela 2. Benchmark with 3 Clients

3 Clients

Store Lease TTL(s) Total Ops Op/s Conflicts

Base Line

N/A N/A 37440 62.40 N/A

Redis 1 10389 17.31 761
ZooKeeper N/A 10031 16.71 0
Etcd 1 5176 8.62 294

Tabela 3. Benchmark with 5 Clients

5 Clients

Store Lease TTL(s) Total Ops Op/s Conflicts

Base Line

N/A N/A 57720 96.2 N/A

Redis 1 13894 23.15 801
ZooKeeper N/A 10987 18.31 0
Etcd 1 7642 12.73 412



7. Result discussion
The comparative analysis revealed on Tables 2 and 3, show that distributed locking me-
chanisms across different HA key-value stores exhibit varied performance under high
concurrency and partitioning scenarios. The benchmarks highlight the trade-offs between
throughput, consistency, and conflict handling, essential for designing reliable distributed
systems.

Redis, despite its popularity and ease of use, demonstrated limitations in handling
partitions and maintaining data consistency under high load, as indicated by the number
of conflicts observed. This aligns with previous studies questioning Redis’s suitability for
distributed locking without additional safeguards like fencing tokens.

Etcd, leveraging the Raft consensus algorithm, showed lower throughput but bet-
ter consistency and fewer conflicts. Its design principles around strict serializability and
linearizability suggest a stronger guarantee for distributed locking, albeit at the cost of
performance, making it a potentially more reliable choice for scenarios where data inte-
grity is paramount. Is also noted that Etcd, despite the lower throughtput, scaled well with
the number of clients, achieving a 47% increase on op/s with 5 clients when comparing
to 3 clients.

ZooKeeper’s performance and conflict handling suggest its effectiveness in distri-
buted locking, attributable to its use of ZAB for consensus and its recipe for locks using
watches. Despite the weak throughput increase of 10% between the two scenarios, its
architecture appears to balance consistency and throughput effectively. It’s important to
understand what lead to ZooKeeper having no conflicts, it’s lack of lock expiration. This
design decision entails a significant tradeoff: while it avoids conflicts that typically arise
from lease expiration, it also introduces potential vulnerabilities in scenarios involving
client crashes. In such cases, locks held by clients with lingering connections persist until
these connections timeout. This aspect of ZooKeeper’s design is vital for understanding
its behavior under conditions of partial system failures and the subsequent implications
for system reliability and error recovery.

The introduction of network partitions and random sleeps revealed the critical im-
portance of fencing tokens and lease mechanisms in preventing conflict scenarios and
ensuring the integrity of locks. This emphasizes the need for distributed systems to incor-
porate robust error handling and recovery strategies to mitigate the risks associated with
partitions and node failures.

8. Conclusion and Perspectives
This study underscores the complexity of achieving reliable distributed locking within HA
key-value stores. It highlights that no one-size-fits-all solution exists; instead, the choice
of a locking mechanism depends on the specific requirements of consistency, throughput,
and fault tolerance of the application.

Redis offers ease of use and high throughput but requires careful consideration
and additional mechanisms to ensure data consistency in distributed environments, speci-
ally when dealing with critical applications. Etcd provides strong consistency guarantees
at the expense of throughput, making it suitable for applications where data integrity is
critical. ZooKeeper presents a balanced option with good performance and reliability,



suitable for a wide range of distributed locking scenarios.

Future research should explore the implications of newer technologies and algo-
rithms, such as Redis-Raft, on the landscape of distributed locking. Additionally, de-
veloping standardized benchmarks and performance metrics will aid in more accurately
assessing and comparing the effectiveness of distributed locking mechanisms across dif-
ferent key-value stores.

This study contributes to the broader understanding of distributed systems by pro-
viding insights into the performance and reliability of distributed locking mechanisms,
offering valuable guidance for system designers and developers in choosing the appropri-
ate technology for their specific needs.
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