Implementation of 32-bit Multiplication Unit for a
Out-of-Order RISC-V Processor utilizing Radix-4 Booth
Algorithm and Wallace Tree

Enzo E. C. Ibiapina', Benjamin S. Silva', Ivan S. Silva'

'Departamento de Computagio — Universidade Federal do Piaui (UFPI)
Teresina, PI — Brazil

{enzoeduardo-aluno,benjamin.santos, ivan}Q@ufpi.edu.br

Abstract. Multiplication is a fundamental arithmetic operation critical to a
broad spectrum of computational applications. Its implementation in hardware
significantly influences overall system performance, given that multiplication in-
herently involves a series of successive addition operations, which can introduce
potential bottlenecks in pipelined systems. This paper focuses on the design and
implementation of an efficient 32-bit multiplier unit for educational purposes,
within the context of a superscalar out-of-order RISC-V architecture, by utiliz-
ing and presenting standard techniques used on the industry in order to achieve
fast multiplication results.

1. Introduction

With the continuous advancements on fields such as computer graphics, artificial intelli-
gence and neural networks, the multiplication operation is of utmost importance on the
context of hardware implementation. The operation is considered to be a critical point
on the pipeline of a processor, as it is composed by multiple addition operations, each
one taking up to one clock cycle. In scenarios where multiple multiplication instructions
are issued consecutively, instruction throughput and overall system performance can be
significantly impacted. Therefore, accelerating the multiplication operation is essential to
guarantee better performances during the runtime of the programs used in those areas of
1nterest.

The RISC-V architecture represents an open and well-defined reduced instruc-
tion set that offers a standardized framework for developing hardware implementations
[Foundation 2024]. Widely adopted in numerous deployed systems, the RISC-V instruc-
tion set architecture (ISA) includes the M extension module, which provides a contempo-
rary and robust framework for implementing efficient multiplier units.

This paper aims to design a 32-bit integer multiplication unit for educational pur-
poses, while discussing several techniques for speed optimization. It is organized as fol-
lows: on Section 2, the Booth algorithm for partial product generation is presented, as
well as an chosen variation based on the number of bits. The Wallace Tree structure is
explained on Section 3, a technique utilized to reduce the time spent on the successive
additions of the partial products. The Section 4 shows the 4:2 Compressor, a component
used on the previous explained structure, in order to perform the additions. The imple-
mentation of the techniques are commented on Section 5, while the details of the testing
of the component are shown on Section 6. On Section 7, the conclusion of the paper is
presented, as well as discussing future improvements to the component.

2. Booth Algorithm

The Booth Algorithm is a technique that generates partial products given two binary num-
bers of any sign combination [Booth 1951].

The algorithm operates as follows: a zero bit is appended to the right of the multi-
plier, and the multiplier is then divided into overlapping groups of two bits, starting from
the right. In each group, the leftmost bit also serves as the rightmost bit of the preceding
group. The summation of partial products is initialized to zero. Each unique combina-
tion of bits in a group corresponds to specific operations performed on the multiplicand,
with the resulting value added to the cumulative sum. The final multiplication result is
obtained through successive additions of these intermediate results. An example of this
process is illustrated in Figure 1.

1101 (-3)
X 0011 (3)
00000000

00110000 +(-MTPD)
00011000 >>1
00001100 >>1

171011100 +(MTPD)

117101110 >>1
117110111 >>1

117110111 (-9)

Figure 1. An example of the original Booth algorithm technique.

A modification of the algorithm can be used in order to encode more bits on the
grouping step, effectively reducing the number of partial products generated. In general,
a Radix-2” modification groups z+1 bits, generating n/z partial products, where n is the
number of bits of the multiplier. However, as = increases linearly, the cost and complexity
of the logic increases exponentially. This trade-off must be considered when choosing the
ideal version of the algorithm to a implementation project.

As this work utilizes 32-bit operands, the Radix-4 modification was chosen, where
three bits of the multiplier are encoded per group, lowering the total number of products
to n/2. The groups and its respective operations are presented on Table 1.

3. Wallace Tree

The Wallace Tree structure is a tree-based logic used to add partial products
[Wallace 1964]. Each level of the tree divides its operands into blocks, which are then
added together through subcomponents, such as pseudoadders or compressors, with the
result of every block being stored on the next level. The logic continues up until the last
level, where two operands are added in order to achieve the final result. This structure
enables high-speed addition of partial products by leveraging parallel operations across

Table 1. Respective operations for every group on the Radix-4 Booth Algorithm.

Group Operation

000 Add 0 * multiplicand to the current sum, and shift arithmetic the
current sum one bit to the right.

001 Add 1 * multiplicand to the current sum, and shift arithmetic the
current sum one bit to the right.

010 Add 1 * multiplicand to the current sum, and shift arithmetic the
current sum one bit to the right.

on Add 2 * multiplicand to the current sum, and shift arithmetic the
current sum one bit to the right.

100 Add -2 * multiplicand to the current sum, and shift arithmetic the
current sum one bit to the right.

101 Add -1 * multiplicand to the current sum, and shift arithmetic the
current sum one bit to the right.

110 Add -1 * multiplicand to the current sum, and shift arithmetic the
current sum one bit to the right.

111 Add 0 * multiplicand to the current sum, and shift arithmetic the
current sum one bit to the right.

multiple subcomponents, making it a scalable solution as the number of partial products
increases.

An example of a Wallace Tree utilizing 4:2 compressors as subcomponents is
illustrated on Figure 2. On the first level on the tree, the block of four products is added
with the following logic: starting from the rightmost column of bits inside the block, if
the column has less than three bits, the entire column is preserved onto the corresponding
block on the next tree level. Otherwise, from the bottom, the last three bits of the column
are fed into a 4:2 compressor. The resulting bit from the compressor, along with the
unused fourth bit of the column, forms a column in the block on the next level. In this
structure, every block with four products inside a tree level is reduced to two products on
the next level. Since the next tree level has only two partial products, instead of dividing
into blocks, an adder is used to perform a direct addition of the products, returning the
final result of the multiplication.

4. 4:2 Compressor

The 4:2 Compressor is a combinational logic that produces two output bits with the addi-
tion of four input bits and a carry bit. It is utilized as the component that adds the partial
products inside a group on a Wallace tree level. Different designs of such compressor have
been developed [Yeh and Jen 2000, Zhang et al. 2023], with the standard composition of
the component being two connected full adders [Edavoor et al. 2020]. The diagram for
the exact 4:2 compressor is shown on Figure 3.

5. Implementation

The project utilized the Kanban methodology for the implementation. Standard tech-
niques and components used in multipliers were studied, as well as the integration
with the RISC-V’s 20191213 specification of the M extension for the RV32I ISA
[Foundation 2019]. The implementation uses VHDL-2002 for compilation.

1101 (-3)

X 0011 (3)
Ao
11| |[l}|[o] 1
ollollol/oljoll0
00000
11110101
00000 1
11110111 (-9)

Figure 2. An example of a Wallace Tree structure on a usual multiplication, with
4:2 compressors as subcomponents.

The Booth Algorithm component receives the operands from the main component.
The multiplicand is extended to 64 bits, while the multiplier receives an zero bit append
before it gets analyzed, in order to produce the partial products. The component imple-
ments the Radix-4 modification, that generates 16 partial products for 32-bit operands.

The Wallace Tree component receives the 16 partial products, which composes the
operands of the first tree level. The tree has four tree levels, with the number of operands
reducing by half on every level. Furthermore, inside every tree level, the operands are
divided into blocks of four, where they are added utilizing instances of 4:2 compressors.
Each 4:2 compressor component receives four bits, A, B, C'and D, as well as a Carryln
bit. The logic follows the representation on Figure 3.

The compressor chain inside a block works as follows: starting from the right on
every block, the first compressor on the pipeline has its D and C'arryln bits set to zero,
and each of the remaining input bits comes from one of the partial products inside that
block. For every other compressor on the block, A, B and C' continues to be each bit
from one of the partial products, while D and CarrylIn are the output bits C'arryOut
and C'arry from the previous component. The Sum bit from every compressor goes into
the next tree level. The compressor chain extends through every column inside a block of
a Wallace tree level, that has at least three bits. The interconnection between compressors
on the same level is illustrated on Figure 4.

6. Analysis

For testing the multiplication unit, a testbench was designed, aiming to ensure the correct-
ness of the results. A 1/0O file with 10000 different cases was created utilizing ChatGPT
[OpenAl 2024], and it is read by the testbench in order to send the inputs to the component
and compare the final output with the expected result.

An brief section of the testbench execution is shown on Figure 5. Utilizing the
execution of the test A as an example, the inputs represented by A; enter the internal
pipeline of the multiplier. The implementation takes 6 clock cycles to return the expected
result of the multiplication, as shown by the output represented by A,. In comparison,

A B CDCin

Carry

Cout

Figure 3. Exact 4:2 Compressor component.

the usual shift-and-add algorithm (also named sequential multiplication) [Koren 2002]
can take at least 32 clock cycles to perform a operation, which shows the considerable
increase in performance by implementing the algorithms described on this paper.

The implementation also presents a higher throughput: by utilizing registers be-
tween each stage of the process, the unit can store up to 5 operations in different stages
of multiplication. The result is, to execute upcoming instructions where the input is one
instruction every cycle, the shift-and-add algorithm without pipeline can take at least 32x
clock cycles to complete all the instructions, while the implementation takes 6 + = clock
cycles, showing effective execution times on the context of superscalar processors.

7. Conclusion and Future works

In this paper, the design for an implementation of a integer multiplier was presented, while
discussing several techniques for the different stages of the multiplication operation. The
tests showed success for every input case, and an notable increase in speed performance
of 80% on executing a instruction, in comparison with an shift-and-add multiplication
solution, as well as an linear growth of clock cycles on executing multiple instructions in
a row. However, the implementation realizes a trade-off to achieve these numbers, as it
consumes a larger area of the processor.

In future works, the study aims to tackle floating-point multiplication, as well as
implementing fixed-point multiplication by constants for further speed optimization.
References

Booth, A. D. (1951). A signed binary multiplication technique. The Quarterly Journal of
Mechanics and Applied Mathematics, pages 236—-240.

Carry1 Carry o

o
Full Adder
Full Adder

_—
Cout

Cout
1

Full Adder

> ® O
Full Adder
o

Figure 4. An example of the compressor chain, utilizing two 4:2 compressors.

Clock 0 e % % 1@ ‘~—1 11
Funct3 000 000

Operand_A 0 A _|:>) | & 31207 4563 15300 {=18077 41669 (24524 (32142 122593 Y4361
Operand_B 0 i t 35306 40462 18229)-20669 {18077 1-38347 {43349 {40816)-26638] {-12675
WT_Result 0 (1852] {16671 391688232 |-1052728002 [-998186800]-1667317634 J-37548927 J109545700 Y326777529

Figure 5. An excerpt of the execution of the testbench file.

Edavoor, P. J., Raveendran, S., and Rahulkar, A. D. (2020). Approximate multiplier
design using novel dual-stage 4:2 compressors. I[EEE Access, 8:48337-48351.

Foundation, R.-V. (2019). RISC-V Instruction Set Manual Volume I: User-
Level ISA. https://riscv.org/wp—content/uploads/2019/12/
riscv-spec-20191213.pdf. Online; accessed in: 12-July-2024.

Foundation, R.-V. (2024). About RISC-V. https://riscv.org/about/. Online;
accessed in: 12-July-2024.

Koren, 1. (2002). Computer Arithmetic Algorithms. A K Peters/CRC Press, 2th edition.

OpenAl (2024). ChatGPT. https://www.openai.com/research/chatgpt.
Online; accessed in: 12-July-2024.

Wallace, C. S. (1964). A suggestion for a fast multiplier. IEEE Transactions on Electronic
Computers, EC-13(1):14-17.

Yeh, W.-C. and Jen, C.-W. (2000). High-speed booth encoded parallel multiplier design.
IEEE Transactions on Computers, 49(7):692-701.

Zhang, M., Nishizawa, S., and Kimura, S. (2023). Area efficient approximate 4-2
compressor and probability-based error adjustment for approximate multiplier. /EEE
Transactions on Circuits and Systems I1: Express Briefs, 70(5):1714-1718.

