
Achievements, Challenges and Opportunities on Mutation

Testing of Concurrent Programs

Rodolfo Adamshuk Silva1, Simone do Rocio Senger de Souza2

1Software Engineering Course Coordination – Federal University of Technology - PR

85660-000 – Dois Vizinhos – PR – Brazil

2Institute of Mathematics and Computer Sciences – University of São Paulo

13566-590 – São Carlos – SP – Brazil

rodolfoa@utfpr.edu.br, srocio@icmc.usp.br

Abstract. With the increasing advances in the hardware technology and the

massive presence of multicore processors in personal computers, concurrent

programming has been becoming more popular. Therefore, new challenges have

been emerged due to the communication and synchronization aspects inherent

in concurrent programs. The testing activity in this scenario is considered es-

sential for the delivery of reliable programs. Mutation testing is a fault-based

testing criterion that uses mistakes done by developers during the software de-

velopment. The application of this criterion in concurrent programs is challeng-

ing due to the non-determinism and concurrency problems, such as starvation

and deadlock. Studies have been conducted for the application of the mutation

test in concurrent programs, however, some aspects still need attention and im-

provements, leading researchers to face a collection of challenges. This paper

presents a roadmap of this field identifying the achievements, challenges, and

opportunities to study in the context of mutation testing of concurrent programs.

As a result, researchers may find a guide for the proposal of new researches in

the field.

1. Introduction

Concurrent programming paradigm has become more popular nowadays. It happens be-

cause the hardware supports parallel programming, increasing the performance of con-

current programs. Concurrent programming adds new concepts, models and primitives to

sequential programming, supporting the development of algorithms that, when executed,

create processes that can perform concurrently and that interact in problem-solving. In

this way, concurrent programming allows the split of a task into smaller portions to in-

crease application performance, improve fault tolerance, or optimize the use of resources

such as processors, memory, and I/O devices.

A concurrent program is composed of two or more processes or threads that work

together to perform a task (Andrews, 2001). This programming style differs from sequen-

tial programming in which the Von Neumman’s architecture is used that is composed of

statements executed sequentially, conditional and unconditional deviations, calls to pro-

cedures and repetitive structures. Concurrent programming permits a performance opti-

mization of applications, exploiting the concurrency in different architectures, allowing

better use of available resources.

Anais da 2a Escola Regional de Engenharia de Software (ERES 2018)

em Dois Vizinhos, PR, Brasil, 22 a 24 de outubro de 2018

137



The basic idea of concurrent programming is the partition of an application into

concurrent processes, each one responsible for solving a piece of the problem. The par-

tition is done through additional software features not available for sequential programs,

such as the activation and termination of concurrent processes. According to Almasi and

Gottlieb (1989), concurrent processes are processes that began its execution and, at a spe-

cific point in time, have not finalized it yet. These processes compete for resources such

as processors, memory, and I/O devices. Parallel processes represent a special type of

concurrent processes, as there is a guarantee that they are running on different processors

at the same time.

Mutation testing is a testing criterion that uses information about typical errors that

can be made in the software development process to derive test cases. Hence, the typical

errors in a domain or paradigm of development are characterized and implemented as

mutation operators that during the test activity, generate modified versions (mutants) of

the product under test. The objective of the mutation test is to create a test set that can

identify the behavior difference between the original program and the mutated program

that has undergone a minor modification. When this difference in behavior is found, then

it can be said that the mutant is dead (killed). Consider a program P that runs with a set of

T test cases. The creation of mutants is based on a model of faults F . Each fault f present

in F it is introduced in P one by one producing a set of mutants M . Each element present

in F is a mutation operator. When M is executed with T and has a behavior other than

P , mutant M is killed by the test case t. The goal is to kill all M with at least one t. If a

mutant cannot be killed, the tester needs to show that M is equivalent to P or to add new

t that kills M . If in the attempt to kill a mutant, a new t is generated and when executed

in P , makes it to fail, the program need to be corrected and the test must reinitialize.

In the context of concurrent programs, apply software testing becomes a challenge

because new issues must be explored such as nondeterminism and race conditions. When

a test input is executed in a sequential program, only one correct output is given. The

statements in a sequential program are always executed in the same order and do not

change from one execution to another. This is false for concurrent programs, in which

different executions of the same input may exercise different statements and may result in

different outputs depending on the order in which the processes were executed. This can

be a problem in mutation testing. When a mutant M is executed by a test case t, it will

be killed if it exhibits an incorrect output according to a given specification. In the case

of concurrent programs, an alternative would be the comparison of the set of all possible

results of M with t with all possible results of P with t and then kill M if any output is

different.

This paper addresses a roadmap, defining the achievements, challenges, and op-

portunities for mutation testing of concurrent programs. The remainder of the paper is

organized as follows: Section 2 presents an overview of the roadmap. Section 3 pro-

vides the achievements in mutation testing of concurrent programs; Section 4 addresses

the challenges identified in the mutation testing procedure in concurrent programs; Sec-

tion 5 describes some opportunities in the mutation testing of concurrent programs; the

conclusions are summarized in Section 6.

Anais da 2a Escola Regional de Engenharia de Software (ERES 2018)

em Dois Vizinhos, PR, Brasil, 22 a 24 de outubro de 2018

138



2. Mutation testing research roadmap

A roadmap provides directions to reach the desired destination starting from the body

of knowledge of the field and going until an ideal scenario. The mutation testing for

concurrent programs is organized as follows:

• Achievements: The first section constitutes in the theoretical background of muta-

tion testing of concurrent programs. The main research in the area is the definition

of mutation operators. Each programming language, library, and API has its own

set of mutation operators. Another point is how the mutants will be executed and

evaluated. This characterizes the definition of testing strategies that basically uses

deterministic and non-deterministic approaches. Finally, some tools have been

defined to support the testing application.

• Challenges: In this section, we discuss the main problems faced in the defini-

tion of new techniques, approaches, and tools in the context of mutation testing

of concurrent programs. Example of challenges is the program selection, mu-

tant generation, and the definition of deterministic or non-deterministic execution.

These challenges must guide researches to propose solutions to these problems.

• Opportunities: The last section presents the opportunities in the research field,

with examples of researches that must be addressed to improve the application of

the mutation test to concurrent programs.

Fig. 1 illustrates the roadmap. The main activities of the mutation testing process

are at the top of the figure, namely initial execution, mutant generation, mutant execution,

and equivalent mutant identification. In the horizontal, there are the roadmap sections,

namely achievements, challenges, and opportunities. In the white boxes, there are the

aspects identified.

Initial 

Execution

Mutant 

Generation

Mutant 

Execution

Equivalent 

Identification

Achievements

Challenges

Opportunities

Empirical Studies

Operators Strategies

Support Tools

Test Case 

Generation

Test Oracles

Repository

Program 

Selection

Mutant 

Suggestion

Mutant 

Identification

Tools Development

Tools Maintenance

Context Generation Execution

Evaluation

Deterministic 

Execution

Figure 1. Mutation testing for concurrent programs roadmap.

Anais da 2a Escola Regional de Engenharia de Software (ERES 2018)

em Dois Vizinhos, PR, Brasil, 22 a 24 de outubro de 2018

139



3. Achievements

Besides the knowloge aquired during the years in the researching of mutation testing of

concurrent programs, this paper is based on some empiral studies defined in the literature.

Souza et al. (2011) presented a systematic review related to concurrent testing approaches,

bug classification and testing tools. Melo et al. (2015) developed a catalog containing 116

tools for testing concurrent programs. Mutation operators. In the literature, several

approaches have been defined for the definition of mutation operators for concurrent pro-

grams. Offutt et al. (1996) propose the definition of mutation operators for Ada programs.

Considering the operators defined in Offutt et al. (1996), Silva-Barradas (1998) presents

the application of the mutation test criterion for concurrent programs in Ada. The author

classifies the mutation operators into Mutation operators for declarations and mutation

operators for conditional expressions. M. Delamaro et al. (2001) defined a set of 20 muta-

tion operators to test concurrency and synchronization aspects of the Java language. The

authors state that mutation operators cover most of the aspects related to synchronization

and concurrency and are also low cost (generating a small number of mutants). Ghosh

(2002) presents a proposal of mutation operators for concurrent object-oriented programs

in Java. The focus of the approach is focused on cases where access to shared data needs

to be protected, but it is not. The failure model assumes that programmers may not use

the synchronized construct when needed.

Giacometti et al. (2003) present an initial proposal for the application of the mu-

tation test for programs in message passing environment, considering the PVM (Parallel

Virtual Machine) environment. Unlike the other works, this one presents the definition

of mutation operators considering a predefined concurrent programming pattern, while

the others define mutation operators only for some functions that allow concurrent pro-

gramming in such languages. Bradbury et al. (2006) defined mutation operators for Java

programs (J2SE 5.0). The authors used the fault taxonomy defined by Farchi et al. (2003)

as a basis for the creation of the operators. Jagannath et al. (2010) define mutation oper-

ators for programs developed using the actor-oriented programming model. A program

developed with this approach consists of a set of concurrent objects that communicate

through message exchange.

Wu and Kaiser (2011) present an approach where second-order mutation opera-

tors are applied which generate competition errors not represented by first-order operators.

The authors present 6 second-order mutation operators for Java. Silva et al. (2012b) de-

fined 26 mutation operators for concurrent programs in MPI. The operators are classified

into 3 categories organized according to the function-target where the mutation operators

are applied. The “Collective” category presents mutation operators that are applied in

collective-communication functions, the “Point-to-point” category presents mutation op-

erators that are applied in point-to-point communication functions subdivided in operators

applied on send, receive or others point-to-point functions and the “All” category presents

operators that can be applied in both collective and point-to-point functions. Gligoric

et al. (2013) explored selective mutation for concurrent mutation operators for Java pro-

grams. The authors used the mutation operators implemented by Bradbury et al. (2006)

and created three operators.

Testing strategies. To deal with the non-determinism in the testing of concurrent

programs, some strategies were defined. The MET (Multiple Execution Testing) ap-

Anais da 2a Escola Regional de Engenharia de Software (ERES 2018)

em Dois Vizinhos, PR, Brasil, 22 a 24 de outubro de 2018

140



proach consists of executing a program P with an input x several times and examining the

result of each execution. If one of the executions presents an output not expected, an error

was identified in the program. This technique does not ensure that all possible synchro-

nization sequences were executed. Therefore, a different synchronization sequence can

lead to an error in the program. In the DET (Deterministic Execution Testing) approach

presented in Tai et al. (1989), each test case is defined by an input x and a synchroniza-

tion sequence s. For each test case, the execution of the x entry with the sequence s is

forced, and the result is observed. Carver (1993) defined the Deterministic Execution

Mutation Testing (DEMT) in which the mutant is run deterministically. MET is used

to generate different synchronization sequences of the original program. A pair {input,

synchronization} is considered as test input and is applied to both original and mutant

programs.

Offutt et al. (1996) present an approach in which the original program is executed

n times with the same test case T to create a subset of n possible executable outputs. After

that, each mutant is freely executed, and the output generated is compared with the subset.

The mutant is killed if the output is not present in the subset and do not consider the syn-

chronization sequence followed. Silva-Barradas (1998) defined the Behavior Mutation

Analysis approach based on behaviors that a program can show. A behavior is composed

of a synchronization sequence and an output. Initially, the approach works as DEMT,

in which the mutant is forced to execute a synchronization sequence and is killed if the

output obtained was different or if the mutant was incapable of following the sequence.

M. E. Delamaro (2004) developed an approach for reproducing the run of a concurrent

Java program using instrumentation. It is based on the technique of Record and Play-

back, in which the synchronization sequence occurred during the run of synchronized

methods and objects is recorded in the recording phase. In the playback phase, the syn-

chronization sequence guides the next event to be run when a thread enters a synchronized

point.

Lei and Carver (2010) proposed the Reachability Test in which all the feasible

synchronization sequences are obtained, reducing the number of redundant ones. Through

the identification of “dispute conditions” between pairs of synchronizations, the approach

determines during execution which synchronizations are possible to occur in a new run.

The prefix-based testing technique is employed to run the program deterministically until

a certain part and, after that point, it allows non-deterministic execution. Silva (2013) and

Silva et al. (2012a) developed two approaches to support mutation testing. the DEMT

Adapted approach runs the mutant deterministically, and the output is compared with

the set of all possible outputs generated by reachability testing. The mutant is killed if it

presents a different output or could not follow the synchronization sequence. The MET

Adapted approach runs the mutant freely several times with the objective to perform

different synchronization sequences, and the mutant is killed if it shows an output not

presented by the original program. Souza et al. (2015) developed a Composite Approach

that uses reachability testing to guide the selection of the synchronization sequences for

covering a specific structural testing criterion. The information about synchronization

coverage is used for the selection of a test case to be part of the test case set. The objective

is to reduce the test activity costs by reducing the number of tests necessary for code

coverage.

Anais da 2a Escola Regional de Engenharia de Software (ERES 2018)

em Dois Vizinhos, PR, Brasil, 22 a 24 de outubro de 2018

141



Despite the benefits of techniques to deal with the non-determinism, the compu-

tational costs are high for the execution of different synchronization sequences for each

input. This cost increases in the mutation testing, once each mutant has different synchro-

nization sequences that must be considered during the test.

Support tools. For mutation testing, a few tools have been developed to support

the mutation testing of concurrent programs. Javalanche (Schuler & Zeller, 2009) is an

open source framework for mutation testing that applies a subset of method-level mu-

tation operators. A characteristic of this tool is the possibility of ranking mutations by

their impact on the behavior of program functions. Javalanche implements a subset of

method-level mutant operators composed of 7 operators. MutMut (Gligoric, Jagannath,

& Marinov, 2010) proposes an approach for an efficient execution of mutants in multi-

threaded programs. It uses a technique for the selection of mutants to be executed. When

the original program is executed, the technique selects points in the code for mutation

considering relevant aspects of the concurrent programs. The approach also enables the

tester to select a thread to be executed, forcing the mutation introduced to be executed.

ConMan (Bradbury et al., 2006) implements a set of mutation operators for concurrent

programs in Java (J2SE 5.0). The mutation operators are classified into operators that

modify critical regions, keywords, and calls for concurrent methods and operators that

replace concurrent objects.

CCmutator (Kusano & Wang, 2013) implements those operators as well as new

specific mutation operators for concurrent programs in PThreads. It utilizes the High Or-

der Mutation technique, in which two or more mutations are inserted in the program for

the creation of strong mutants and improvements in the quality of the testing case set. Co-

mutation (Gligoric et al., 2013) uses selective mutation based on the mutation operators

for concurrent Java programs. Selective mutation selects a subset of mutation operators in

which test cases that have a high mutation score for this subset also feature for the other

operators. The objective is to reduce the mutation testing cost. ValiMut (Silva, 2013) tool

supports the use of mutation testing in competing programs developed in MPI. The tool

allows the application of mutation operators defined for MPI in Silva et al. (2012b). This

tool uses some modules of the ValiMPI tool (Hausen, Vergı́lio, Souza, Souza, & Simão,

2007) and applies the adapted MET approach (previously described) for the determin-

istic execution of the mutants. BeMutation (Behavior Mutation) (Silva, 2018) is a tool

to support the application of mutation testing in Java multithread programs. BeMutation

has implemented 27 mutation operators defined in Bradbury et al. (2006) and extended

in Gligoric et al. (2013). The tool uses JPF-Inspector tool to generate synchronizations

sequences.

4. Challenges

Context. The context means the kind of concurrent programs the approach will be ap-

plied to. There are several libraries and APIs that support concurrent programming, such

as MPI (Message Passing Interface), PVM (Parallel Virtual Machine), PThreads, Java

multithreading, etc. The challenge related to the context is the definition of a procedure

to apply mutation testing for a specific programming language or libraries. For each lan-

guage, a new procedure must be defined, considering the fault model and the mutation

operators that are strictly related to the nuances of the programming language syntax.

Anais da 2a Escola Regional de Engenharia de Software (ERES 2018)

em Dois Vizinhos, PR, Brasil, 22 a 24 de outubro de 2018

142



Program selection. In the attempt to develop new supporting tools, researchers

and developers must have a set of programs to evaluate characteristics of the tool, such

as scalability and completeness related to the target programming language. Therefore,

a challenge in this scenario is to find a set of programs classified using some software

metrics as size (or Lines of Code), complexity, toy or real program, etc. The Software-

artifact Infrastructure Repository (SIR, 2018) is a repository in which a set of programs

can be found, however, when it comes to concurrent programs, the original version of

the program is not available, only the faulty version. This was a problem, once it was

impractical to correct the programs before the use in the experiment due to the complexity

of the programs.

Mutant generation. The mutant generation is another issue in the testing of con-

current programs. Even with mutation operators defined for a given programming lan-

guage, for some programming languages (e.g. PVM) there is not a tool to support the

generation of the mutants. It is necessary a tool to support the generation of the mutants

to guarantee the application of the mutation testing criterion. Mutant execution. As

happens in the generation, it is crucial the use of a tool for the supporting of the mutant

execution. In the execution task of mutation testing of concurrent programs, it is neces-

sary to identify the synchronization sequence executed in the execution, especially when

the Deterministic Testing approach is used. Mutant evaluation. After the execution of

the mutant, it is necessary to evaluate whether output of the mutant is valid or not. It is

necessary to evaluate the output, since different executions of a concurrent program with

a single input may generate different and correct outputs. If the mutant presents an output

that is different from the execution of the original program, it is necessary to evaluate if

the different output was generate by the mutation or a different synchronization sequence.

If the output would never be presented by the original program, the mutant is consid-

ered as dead. Therefore, to evaluate this, it is mandatory to know all possible outputs of

the original program. This is impractical due to the size and complexity of concurrent

programs. An alternative is to use the deterministic execution and use a synchronization

sequence as support for this evaluation. The challenge is that there is no tool to support

the evaluation of mutants. Some testing strategies were defined, but empirical evaluations

are necessary to compare and identify the benefits of each one.

Test case generation. In the testing of programs, it is necessary to test different

inputs and evaluate the outputs. In the testing of concurrent programs, besides the input,

it is necessary to select synchronization sequences to execute and evaluate. A challenge

in this context is the use of tools and/or techniques to support this activity. Equivalent

mutants identification. The identification of equivalent is an indecisive problem for

which there is no general purpose algorithm that support it. However, ignore them is not

a good practice because it may lead to inaccurate mutation scores. The solution would

be the generation of a good set of test cases that would kill almost all mutants so that the

effort to analyze equivalent mutants would be low.

Deterministic vs. non-deterministic execution. In the context of testing concur-

rent programs, several approaches were defined to deal with the non-determinism inherent

in such programs. However, there is a difference in efficiency and cost among them (i.

e. an approach with high efficiency have a high cost and vice-versa). To the best of our

knowledge, no tool supports the execution of a single synchronization sequence and that

Anais da 2a Escola Regional de Engenharia de Software (ERES 2018)

em Dois Vizinhos, PR, Brasil, 22 a 24 de outubro de 2018

143



allows deterministic execution of threads in Java programs. The Java PathFinder model

checking tool is, so far, the most useful tool that saves the execution trace and allows the

deterministic execution. The problem with JPF is that it is not a testing tool, but a model

checking tool, therefore, it uses a graph with states and transitions to execute all possible

paths. One thing that is important to highlight is that even executing all possible paths,

JPF does not execute all possible synchronization sequences due to the race condition

algorithms used to identify states with possible thread interleaving.

5. Opportunities

Catalog of programming languages. An important aspect to be considered is the cre-

ation of a catalog of programming languages and all the techniques, support tools and

scientific papers available in the literature for each concurrent programming language,

library, and API. Benchmark and repository of programs. Along with the catalog of

the programming languages, an opportunity arises from the generation and categorization

of concurrent programs in different programming languages. Those programs must be

categorized using software metrics as size (or Lines Of Code), complexity, toy or real

program, etc. This may help researchers and developers to evaluate supporting tools and

be favorable in the conduction of empirical studies the field of mutation testing for con-

current programs. A research opportunity would be to catalog the benchmarks among the

results with different test cases used, to reduce execution time and facilitate the compar-

ison of the mutant score. Support tools. Supporting tools are required for an efficient

application of the software testing activity. However, some tools are made just as a proof

of concept of proposed approaches and sometimes are not available for download. Oth-

ers need maintenance and adaption to work as it should be. An opportunity is to contact

authors and ask for tools and available documentation to evolve and maintain those tools.

Besides that, new tools can be developed to support the testing activity in environments

where no tool is available.

Testing oracles. the results of test executions is a time-consuming and at times

error-prone activity. In the context of concurrent programs, the problems with manual

verification are exponential. A single test input in a concurrent program can generate dif-

ferent and correct outputs due to the different synchronization sequences. Depending on

the testing strategy, a given input must be executed several times in an attempt to exercise

different synchronization sequences, therefore generating different outputs. In addition,

the inherent complexity of concurrent programs generally means that significantly larger

test sets are required to achieve adequate test coverage, thus further increasing the cost

of manual verification. An alternative to manual verification is to develop a test oracle

that automatically verifies the results of test executions. However, the cost of develop-

ing an oracle by hand can approach that of implementing the system itself (Hunter &

Strooper, 2001). The opportunity in this context is the creation of test oracles to support

the application of mutation testing of concurrent programs.

Equivalent mutants suggestion. The identification of equivalent mutants is, so

far, a manual activity. Therefore, an opportunity in this context is the use of heuristics

to identify equivalent mutants and present the differences (looking for aspects of reacha-

bility, infection, and propagation of the execution) of the mutant in comparison with the

original program. Empirical studies. Experimental studies in Software Engineering are

important for the evaluation and evolution of existing techniques and tools. Through eval-

Anais da 2a Escola Regional de Engenharia de Software (ERES 2018)

em Dois Vizinhos, PR, Brasil, 22 a 24 de outubro de 2018

144



uation, you can identify gaps in approaches and limitations in tools. One opportunity is in

planning and conducting experimental studies to verify the effectiveness in finding inter-

esting synchronization sequences and evaluation of deterministic and non-deterministic

execution of mutants.

6. Conclusion

The application of mutation testing for concurrent programs is a field in software engi-

neering that has been received more attention. Therefore, several testing strategies and

tools have been developed. The testing of concurrent programs has its challenges and the

mutation testing has its own that must be investigated. In this paper, a roadmap in the field

of mutation testing for concurrent programs is presented. It is known that covering into

one article all ongoing and foreseen research directions is impossible, therefore, the main

challenges and opportunities were presented. The contribution of this paper relies on the

guide to new researches about trends and problems in the application of mutation testing

of concurrent programs.

References

Almasi, G. S., & Gottlieb, A. (1989). Highly parallel computing. Benjamin-Cummings

Publishing Co., Inc.

Andrews, G. (2001). Foundations of Multithreaded, Parallel, and Distributed Program-

ming. Addison-Wesley.

Bradbury, J. S., Cordy, J. R., & Dingel, J. (2006). Mutation operators for concurrent

Java (J2SE 5.0). In Proceedings of the second workshop on mutation analysis (pp.

11–20). IEEE.

Carver, R. (1993). Mutation-based testing of concurrent programs. In Proceedings of test

conference (pp. 845–853).

Delamaro, M., Maldonado, J., Pezzè, M., & Vincenzi, A. (2001). Mutant operators for

testing concurrent Java programs. In Xv simpósio brasileiro de es.

Delamaro, M. E. (2004). Using instrumentation to reproduce the execution of Java con-

current programs. In Simpósio brasileiro de qualidade de software.

Farchi, E., Nir, Y., & Ur, S. (2003). Concurrent bug patterns and how to test them.

In Proceedings of the 17th international symposium on parallel and distributed

processing. IEEE.

Ghosh, S. (2002). Towards measurement of testability of concurrent object-oriented

programs using fault insertion: a preliminary investigation. In Second ieee interna-

tional workshop on source code analysis and manipulation (pp. 17–25).

Giacometti, C., Souza, S. R. S., & Souza, P. S. L. (2003). Teste de mutação para

a validação de aplicações concorrentes usando PVM. In Revista eletrônica de

iniciação cientı́fica (Vol. 2).

Gligoric, M., Jagannath, V., & Marinov, D. (2010). Mutmut: Efficient exploration for

mutation testing of multithreaded code. In Proceedings of the 2010 third inter-

national conference on software testing, verification and validation (pp. 55–64).

Washington, DC, USA: IEEE.

Gligoric, M., Zhang, L., Pereira, C., & Pokam, G. (2013). Selective mutation testing for

concurrent code. In Proceedings of the 2013 international symposium on software

testing and analysis (pp. 224–234).

Anais da 2a Escola Regional de Engenharia de Software (ERES 2018)

em Dois Vizinhos, PR, Brasil, 22 a 24 de outubro de 2018

145



Hausen, A. C., Vergı́lio, S. R., Souza, S. R. S., Souza, P. S. L., & Simão, A. S. (2007). A

tool for structural testing of MPI programs. In Ieee latin-american testworkshop -

latw. IEEE.

Hunter, C., & Strooper, P. (2001). Systematically deriving partial oracles for testing

concurrent programs. In Proceedings 24th australian computer science conference.

acsc 2001 (p. 83-91).

Jagannath, V., Gligoric, M., Lauterburg, S., Marinov, D., & Agha, G. (2010). Mutation

operators for actor systems. In Proceedings of the 2010 third international confer-

ence on software testing, verification, and validation workshops (pp. 157–162).

Kusano, M., & Wang, C. (2013). Ccmutator: A mutation generator for concurrency

constructs in multithreaded c/c++ applications. In Ase (p. 722-725).

Lei, J., & Carver, R. H. (2010). A stateful approach to testing monitors in multithreaded

programs. 9th IEEE International Symposium on High-Assurance Systems Engi-

neering, 00, 54-63.

Melo, S. M., Souza, S. R. S., Silva, R. A., & Souza, P. (2015). Concurrent software

testing in practice: A catalog of tools. In 6th international workshop on automating

test case design, selection and evaluation (pp. 31–40).

Offutt, A. J., Voas, J., & Payne, J. (1996). Mutation operators for Ada (Tech. Rep.).

George Mason University.

Schuler, D., & Zeller, A. (2009). Javalanche: Efficient mutation testing for java. In

Esec/fse ’09 (pp. 297–298). New York, NY, USA: ACM.

Silva, R. A. (2013). Mutation testing applied to concurrent programs in MPI (MSc

Thesis). ICMC, Instituto de Computação e Matemática Computacional, USP.

Silva, R. A. (2018). Search based software testing for the generation of synchronization

sequences for mutation testing of concurrent programs (PhD Thesis). Institute of

Mathematics and Computer Sciences University of São Paulo.

Silva, R. A., Souza, S. R. S., & Souza, P. S. L. (2012a). Deterministic execution of

concurrent programs during the mutation testing. In 6th brazilian workshop on

systematic and automated software testing.

Silva, R. A., Souza, S. R. S., & Souza, P. S. L. (2012b). Mutation testing for concurrent

programs in MPI. In 13th latin american test workshop (pp. 69–74).

Silva-Barradas, S. (1998). Mutation analysis of concurrent software (PhD Dissertation).

Dottorato di Ricerca in Ingegneria Informatica e Automatica, Poli. di Milano.

SIR. (2018). Software-artifact infrastructure repository. Retrieved 2018-02-20, from

http://sir.unl.edu

Souza, S. R. S., Brito, M. A. S., Silva, R. A., Souza, P. S. L., & Zaluska, E. (2011).

Research in concurrent software testing: A systematic review. In Proceedings of the

workshop on parallel and distributed systems: Testing, analysis, and debugging.

Souza, S. R. S., Souza, P. S. L., Brito, M. A. S., Simao, A. S., & Zaluska, E. J. (2015). Em-

pirical evaluation of a new composite approach to the coverage criteria and reacha-

bility testing of concurrent programs. Softw. Test. Verif. Reliab., 25(3), 310–332.

Tai, K., Carver, R., & Obaid, E. (1989). Deterministic execution debugging of con-

current Ada programs. In Proceedings of the computer software and applications

conference (pp. 102–109).

Wu, G., & Kaiser, L. (2011). Constructing subtle concurrency bugs using

synchronization-centric second-order mutation operators. In Seke (p. 244-249).

Anais da 2a Escola Regional de Engenharia de Software (ERES 2018)

em Dois Vizinhos, PR, Brasil, 22 a 24 de outubro de 2018

146


