
DevOps adoption in Junior Enterprise: an experience report

of software development

Peterson Rodrigues1, Juliano R. Macedo1, Pedro H. França1

Luiz P. Franz1, João Pablo S. da Silva1, Jean F. P. Cheiran1

1Federal University of Pampa (UNIPAMPA)

Caixa Postal 118 – 97500-970 – Alegrete – RS – Brazil

{petersonlrr,juliano.rmacedo,peu06,luizpaulofranz}@gmail.com

{joaosilva,jeancheiran}@unipampa.edu.br

Abstract. Adopting new approaches to increase software development success

rate in junior enterprise context is a constant challenge for this kind of company.

In this paper, we report the experience on adoption of DevOps foundations to

integrate continuous delivery in software development process. This adoption

had three main moments: company diagnosis of maturity, application of tools

to reach DevOps maturity level, and analysis of benefits of integration through

one project in the company. Results indicate better transparency in project sta-

tus through interactive communication provided by unifying development and

operation areas, and faster software delivery.

1. Introduction

In the last decade, the manner in which software is delivered has drastically evolved.

While corporations like Amazon, Google, Netflix and Facebook provide new features for

their clients transparently, many times a day and without shutdown their services, other

companies need months to update systems. The key to success in features delivery is the

way in which company runs the development cycle [Duvall 2012].

Evolution of software development cycle provided by agile methodologies, and

Lean Software Development above them all, has culminated in ‘micro delivery’ concept.

These deliveries are product backlog items split into small activities that are developed

and placed in a Quality Assurance (QA) pipeline until they are approved and delivered to

final user [de Lange et al. 2016].

DevOps culture puts together Development (Dev), Operations (Ops) and Quality

Assurance (QA), and it focuses in collaboration and integration of all company divisions,

from developers to stakeholders [West and Groll 2017]. Moreover, Junior Enterprises

(JE) present a leading role to disseminate and update knowledge acquired in Brazilian

universities. Taking the importance of DevOps culture propagation into consideration, JE

allow undergraduate students to learn practices and cultures of modern software industry,

and among them is DevOps [Bogo et al. 2014].

The Junior Enterprise (JE) presented in this report is composed of a multidis-

ciplinary team of Software Engineering and Computer Science undergraduate students.

Like many other JE, our enterprise is affected by a high turnover of staff, impairing di-

rectly our capability to deliver software. Regarding these difficulties, adoption of DevOps

Anais da 1o Escola Regional Engenharia de Software (ERES 2017)

em Alegrete, RS, Brasil, 20 de outubro de 2017

89



culture could improve maturity of development cycle, software quality and knowledge

dissemination among the team.

This paper has goal to report the experience of adoption of DevOps concepts in a

JE placed at Alegrete campus of Universidade Federal do Pampa (Unipampa) in Brazil. To

reach this goal, we identify JE maturity level, we propose and apply a DevOps workflow

with automation tools to support software development process, and we collect JE team

perceptions about the impact of DevOps on our project.

Text is organized as follows: at section 2, we present main concepts of DevOps

movement; at section 3, we describe our JE in which our project was run; at section 4,

we present diagnosis of JE maturity and its analysis; at section 5, we report integration

of DevOps movement on JE; at section 6, we discuss lessons of DevOps adoption on our

project; and at section 7, we present our findings, conclusions and learnings.

2. DevOps Movement

Software project usually present clear division of teams into roles and responsibilities.

Developers create and evolve software products by adding value to business, while oper-

ations team is responsible for keeping production environment where product is deployed

and consumed by clients [Sato 2014].

In this context, there is a conflict of interest between development and operations,

since the first introduces new features and consequent change and the second value sta-

bility of offered services by avoiding unavailability and technical problems. This diver-

gence affects release timing by impairing agile principles and by compromising product

scheduling [Hüttermann 2012].

Agile movement describes a set of principles for software development in which

requirements and solutions evolve through a collaborative effort of auto-organized, mul-

tifunctional teams [Beck et al. 2001]. DevOps movement appears as a natural evolution

of agile movement and it aims to mitigate conflicts, approximate responsibilities and im-

prove communication of Dev, Ops and QA [Hüttermann 2012, Sato 2014]. At Figure 1,

we present an overview of DevOps workflow followed by detailed description.

Figure 1. Collaboration Diagram. Adapted of [Rathod and Surve 2015]

Anais da 1o Escola Regional Engenharia de Software (ERES 2017)

em Alegrete, RS, Brasil, 20 de outubro de 2017

90



Continuous Integration (CI): It is automation of code build and test after ev-

ery change. It is supported by tools integrated to code repository that instantly re-

port failures on build and test tasks. In doing so, the main goal of CI is to provide

a rapid response to developers by alerting when a bug is introduced on source code

[Virmani 2015, Rathod and Surve 2015].

Continuous Delivery (CDel): it is partial automation of generation of new system

releases. It covers CI phase, and it also includes submission of changes approved by

automated testing to a QA team for review. It usually means that application deploy is

manually done shortly after QA approval. This approach is commonly applied to safety

critical, money critical or information security systems which depend on high availability

[Humble and Farley 2010].

Continuous Deployment (CDep): unlike CDel, CDep brings complete automa-

tion to system release and deploy. After adding new features and after running automated

tests of CI, a new release is automatically sent to deploy system and it is directly deployed

at production environment. This strategy is used by most of Software as a Service (Saas)

applications like social networks, email servers, etc [Claps et al. 2015].

DevOps: it is complete integration and automation of previous approaches, aim-

ing the ability to develop and deliver software continuously through a transparent, re-

peatable process. This process promotes full collaboration of Dev, Ops and QA teams

in order to allow continuous delivery and infrastructure automation which easily respond

to software evolution. DevOps movement is largely used on industry, and it recently has

reached academy [West and Groll 2017].

De Lange et al. [de Lange et al. 2016] performed an experiment at RWTH Aachen

University that aims to teach DevOps movement to undergraduate students. They investi-

gate what is the technical preparation level of students to perform functions on DevOps-

compatible start-up companies after learning about DevOps. Authors also highlight that

the experiment allowed to students to reduce the gap between university learning and

industry practices.

Perera et al. [Perera et al. 2016] present a study performed on Sri Lanka com-

panies that has found correlations between quality, business adaptation needs and agility

in DevOps adoption. In order to do this, they performed interviews with Information

Technology (IT) professionals who knew DevOps movement.

Both aforementioned studies do not cover JE peculiarities and this kind of material

is deeply scarce on scientific databases, so experience reports on this environment are

pioneer and necessary.

3. Our Junior Enterprise (JE)

Ideiah Soluções em Software JE was founded in 2012. The company consists of Software

Engineering and Computer Science undergraduate students, and it currently has seven

members on staff and one adviser professor.

Since 2014, our JE has adopted agile approaches for flexibility and standardiza-

tion in product development. So, a Scrum team [Schwaber et al. 2016] composed of five

developers, one Product Owner and one Scrum Master continuously perform Extreme

Programming (XP) practices [Beck 2000] along software development.

Anais da 1o Escola Regional Engenharia de Software (ERES 2017)

em Alegrete, RS, Brasil, 20 de outubro de 2017

91



Employing daily Scrum (or daily meeting) and other techniques, we noticed de-

ficiency in used tools for software coding, testing and delivering and we also observed a

centralized responsibility on tools that had caused delivery delays. Particularly, we had

not promoted homogeneous autonomy on tools to avoid the bottleneck caused by a largely

concentrated infrastructure.

Moreover, tools were not mutually integrated, resulting in inefficient communica-

tion between development team and infrastructure management team. Since developers

seek to deliver software as soon as possible and infrastructure team needs to keep produc-

tion environment without issues, it is obligatory to reduce this gap.

These problems resulted in many delivery delays and therefore improvement of

JE processes is necessary. In order to address problems with tools and responsibilities,

we perform a brief literature review on strategies and instruments to identify JE maturity

level. Due to this search, DevOps movement emerged as an approach to mitigate issues

and to collaborate in supporting agile philosophy of our company. Results of diagnosis of

JE maturity is presented at next section.

4. Diagnosis of Maturity

Diagnosis of maturity seek to identify practices and tools adopted by JE and their in-

tegration. With this in mind, we can recognize what is missing to effectively implant

DevOps movement. Once DevOps has evolved from agile movement, JE already meets

the requirement to embrace agile culture.

Figure 1 was used to guide diagnosis process and to implant De-

vOps concepts integrally. We performed intensive, direct observations

[de Andrade Marconi and Lakatos 2010] during an entire development cycle, map-

ping practices and tools. At the end of the cycle, we compiled information and compared

it to DevOps principles and workflow.

Continuous Integration (CI): our JE uses version control and remote distributed repos-

itory as integration resources. Tools for test writing and automation are also used,

but there was not integration to repository or other tools. In addition to that, there

was not policies and support on test reuse and there was not support on test rerun-

ning by coverage analysis tools.

Continuous Delivery (CDel) and Continuous Deployment (CDep): there was no soft-

ware delivery support tool. As a result, we were heavily overloaded with manual

software delivery to QA and with manual software deployment into production

environment.

DevOps: JE did not applied a clear, repeatable process of software delivery. It was neces-

sary to manually deploy software and to manually adapt infrastructure after each

release to support software evolution. Also, communication between develop-

ment, operations and QA teams was not efficient.

Since agile culture was met and collaboration of JE divisions seems fulfilled, the

adoption of new development workflow focused on environment integration and automa-

tion should be sufficient to support DevOps and to mitigate aforementioned problems.

Anais da 1o Escola Regional Engenharia de Software (ERES 2017)

em Alegrete, RS, Brasil, 20 de outubro de 2017

92



5. Implanting DevOps

Selection of tools to support integration and automation for a JE commonly has a serious

constraint. Because the usual JE educational, nonprofit profile and because the lack of

institutional funding, we need to search low cost – or completely free – tools. Even

though there is eventual incomes from external sources, JE business model does not assure

continuous support to maintain non-free software. Besides that, it is also necessary to

choose “easy to learn” tools in order to minimize adaptation problems caused by a high

turnover of staff.

JE members from outside the project in which DevOps would be implanted

searched tools that fit our context, verified their limitations and costs, and performed pilot

tests on another JE software development project.

5.1. Tools identification and selection

Through literature review focused on needs highlighted at section 4, we select and test

tools to support software development process. At Figure 2, we draw the new JE workflow

with chosen tools1 and the phase they are applied.

Figure 2. New JE WorkFlow with DevOps

Tools at Figure 2 interact each other in favor of complete integration and automa-

tion – from coding to deployment.

We perform the entire project planning (stage 1) with JIRA and KanbanFlow

by providing software scope, scheduling milestones and defining production strategies.

NetBeans, MySQL Workbench, Maven and GIT cover development and change control

1Tools available at http://jira.atlassian.com — www.kanbanflow.com —

www.netbeans.org — http://maven.apache.org — www.git-scm.com —

www.mysqlworkbench.org — www.bitbucket.org — www.codeship.com —

www.junit.org — www.seleniumhq.org — www.codecov.io — www.heroku.com

Anais da 1o Escola Regional Engenharia de Software (ERES 2017)

em Alegrete, RS, Brasil, 20 de outubro de 2017

93



(stage 2). New or changed artifacts are sent to Bitbucket repository, and it allows Code-

Ship to try to build the project (stage 3). CodeShip itself runs test scripts (using JUnit and

Selenium in our project) while building, and CodeCov runs tests again to keep updated

the coverage analysis and other statistics (stage 4). If building is succeeded, CodeShip

does an auto-deploy to application server Heroku and JIRA update project status when

the new release is detected at repository (stage 5 and stage 6). At the end of this process,

users receive a new version of software without service interruption (stage 7).

5.2. Adoption of new workflow

The new workflow implantation was done in two moments: (1) pilot implantation with a

small team and (2) full project implantation with the whole team.

In order to test the new workflow, we ran a pilot study during a small increment in

a stable project. So, we could identify adaptations in development team practices and par-

ticularities of brand-new tools. Workflow implantation time was short, since the team uses

branches to organize development. As result, new tools tutorials and workflow overview

document were created to facilitate understanding of all.

Furthermore, DevOps workflow was completely integrated into a project for de-

veloping an Enterprise Resource Planning (ERP) software and it involved the whole team.

Tutorials in fact made implantation easier even for a small, agile team that embrace the

change. Detailed information about implantation in production environment is showed at

section 6.

6. Lessons Learned

The main project of this report is running for four months using DevOps principles, and

it was already running for twelve months when DevOps adoption started. Since DevOps

implantation, we performed regular diagnostic evaluation sessions with the team to collect

feedback about the new workflow. Besides discussing lessons of DevOps in our JE busi-

ness environment, we analyzed test coverage statistics to investigate collateral benefits of

new tools.

Opinions gathered in diagnostic evaluation suggest positive lessons and team sat-

isfaction from DevOps adoption. Not to mention the overall perception of more effective

software delivery, we point out the following main learned lessons:

Agility in identifying bugs: bugs in the project are quicker identified and addressed,

since tools run tests more frequently and they allow transparency along the en-

tire workflow to the team. Moreover, new tools allow to monitor real-time project

status for developers and managers.

Issues reduction: full test automation prevents developers to skip test phases and assure

that failures to be detected earlier that production.

Better communication between Development and Infrastructure teams: even in our

agile context, there was a natural conflict between Dev and Infra. When responsi-

bilities are decentralized, communication intensifies and conflict decreases.

Continuous deployment: automated release and deployment increase available time to

perform acceptance testing. So, development team and infrastructure team con-

tribute directly to QA.

Anais da 1o Escola Regional Engenharia de Software (ERES 2017)

em Alegrete, RS, Brasil, 20 de outubro de 2017

94



Learning new tools: there is a motivational impact on JE team, because the very edu-

cational nature of a JE environment. Since there is no incomes for its members,

learning is a key value to keep staff and to develop professional abilities.

Quicker delivery: as a result of eliminating the gap between end of coding and software

delivery, each software increment is delivered quicker.

Improving business value: spreading responsibilities and intensifying communication

foster team cohesion to reach a goal, increasing business value.

Code coverage and acceptance testing information reinforce benefits observed on

team opinion. There is a significant increase in code coverage assessed through CodeCov

before new workflow started (3% coverage) and after four months on new workflow (68%

coverage). 3% initial coverage represented only tests on critical parts of the software, so

68% current coverage represents a meaningful increase, considering the complexity of

reported project (an ERP software).

Software acceptance rate also increased after DevOps. Before new workflow

started, one in four releases had been accepted by product owner according requirements

and by team according quality criteria. After new workflow, three in four releases was

accepted, and the rejection of the first release was possibly caused by new technological

challenges and stricter quality criteria.

As a major lesson, we notice the importance of an organization open to change and

the increase of competitive factor through adoption of new technologies and techniques

even if it demands technical effort and cultural changes by team members.

7. Final Considerations

We presented in this paper an experience report describing DevOps movement adoption in

a software development Junior Enterprise (JE). Still, we presented main DevOps features

to locate our JE agile practices into DevOps workflow.

Results indicate DevOps is characterized not only by behavioral features native of

agile approaches but also by productivity increase through automated tools. As subject,

we present a new software development workflow with stages and tools that promotes

deployment automation and communication improvements.

Our main findings reinforce benefits of agile approaches integrated to DevOps

culture. So, we has achieved (1) quicker failure detection caused by bugs and by infras-

tructure issues, (2) more visibility to project status, (3) better communication between

development team and infrastructure team, (4) continuous deployment, and (5) quicker

delivery.

An important limitation to this paper is project confidentiality clauses that pre-

vents detailed data presentation in order to support statements and findings. Nonetheless,

we believe this report solidly contributes to DevOps movement literature by presenting

new case study in a very particular kind of company (Junior Enterprise) and by detailing

workflow information.

Future work includes a controlled experiment in our JE with explicit authoriza-

tion to use project artifacts, data and statistics, so we could reevaluate the new workflow

applicability.

Anais da 1o Escola Regional Engenharia de Software (ERES 2017)

em Alegrete, RS, Brasil, 20 de outubro de 2017

95



References

[Beck 2000] Beck, K. (2000). Extreme programming explained: embrace change. addison-

wesley professional.

[Beck et al. 2001] Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham,

W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al. (2001). Mani-

festo for agile software development.

[Bogo et al. 2014] Bogo, A. M., Henning, E., Schmitt, A. C., and Marco, R. G. D. (2014).

The effectiveness of junior companies from the viewpoint of engineering students at a

brazilian university. In 2014 IEEE, EDUCON, pages 745–750. IEEE.

[Claps et al. 2015] Claps, G. G., Svensson, R. B., and Aurum, A. (2015). On the journey to

continuous deployment: Technical and social challenges along the way. Information

and Software technology, 57:21–31.

[de Andrade Marconi and Lakatos 2010] de Andrade Marconi, M. and Lakatos, E. M.

(2010). Fundamentos de Metodologia Cientı́fica. Atlas, São Paulo.

[de Lange et al. 2016] de Lange, P., Nicolaescu, P., Klamma, R., and Koren, I. (2016). De-

vopsuse for rapid training of agile practices within undergraduate and startup commu-

nities. In ECTEL, pages 570–574. Springer.

[Duvall 2012] Duvall, P. (2012). Breaking down barriers and reducing cycle times with

devops and continuous delivery. Online. Acessado em Julho–2017.

[Humble and Farley 2010] Humble, J. and Farley, D. (2010). Continuous Delivery: Re-

liable Software Releases through Build, Test, and Deployment Automation. Pearson

Education.

[Hüttermann 2012] Hüttermann, M. (2012). Beginning devops for developers. DevOps for

Developers, pages 3–13.

[Perera et al. 2016] Perera, P., Bandara, M., and Perera, I. (2016). Evaluating the impact of

devops practice in sri lankan software development organizations. In Advances in ICT

for Emerging Regions (ICTer), pages 281–287. IEEE.

[Rathod and Surve 2015] Rathod, N. and Surve, A. (2015). Test orchestration a framework

for continuous integration and continuous deployment. In 2015 International Confer-

ence on Pervasive Computing (ICPC), pages 1–5.

[Sato 2014] Sato, D. (2014). DevOps na prática: entrega de software confiável e automati-

zada. Editora Casa do Código.

[Schwaber et al. 2016] Schwaber, K., Sutherland, J., and Beedle, M. (2016). The definitive

guide to scrum: the rules of the game. Scrum Guide.

[Virmani 2015] Virmani, M. (2015). Understanding devops & bridging the gap from con-

tinuous integration to continuous delivery. In Innovative Computing Technology (IN-

TECH), 2015 Fifth International Conference on, pages 78–82. IEEE.

[West and Groll 2017] West, D. and Groll, J. (2017). The convergence of scrum and devops.

Online, Scrum.org and DevOps Institute. Acessado em Setembro–2017.

Anais da 1o Escola Regional Engenharia de Software (ERES 2017)

em Alegrete, RS, Brasil, 20 de outubro de 2017

96


