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Abstract. Test data generation for mutation testing consists of identifying a set
of inputs that maximizes the number of mutants killed. Mutation Testing is an ex-
cellent test criterion for detecting faults and measuring the effectiveness of test
data sets. However, it is not widely used in practice due to the cost and com-
plexity to perform some activities as generating test data. Although test suites
can be produced and selected manually by a tester this practice is susceptible to
errors and tools are needed to facilitate it. Several tools have been developed to
automate mutation testing, but, only a few address the test data generation. The
present paper proposes an automated test data generation tool based on weak
mutation for Python programming language using the Hill Climbing algorithm.
For evaluation, we performed an empirical study concerning the effectiveness
and cost computational of the tool in a database composed of 348 mutants and
we compare it with random generation. Overall, the experiment achieved an
average mutation score of 86% for our proposed tool and random testing 64%
on average.

1. Introduction
Mutation testing is the most common type of software fault-based testing and this is based
on producing hypothetical faulty programs by creating variants of the program under test
(PUT). This criterion was proposed by [DeMillo and Offutt 1991] for detecting faults and
measuring the effectiveness of tests. The process works from faults that are injected into
the program under test to produce faulty program versions called mutants. In general,
to perform software testing using any technique is required to create a set of test cases
to execute the artifact under test, be it code, interfaces, or requirements. A test case is
composed of a pair of, i) test data which are inputs to execute the program under test and
ii) expected output. Thus, test data generation is an activity focused on finding valid input
according to specific test criteria.

Mutation testing is widely considered as effective and powerful. However, this
criterion also is known as extremely costly, mainly due to three factors: i) the high number
of mutants produced, ii) the number of test data necessary to identify the mutants, and iii)
the difficulty of finding the equivalent mutants which are mutants with the same behavior
regarding the original program. The number of test data to detect a fault into a mutant is



related to the strategy applied for generating them since if the test data set is generated
manually can be labor-intensive and susceptible to errors task [Papadakis and Malevris
2010].

The main objective of the mutation testing is to generate a test data set that can
reveal the faults in the mutant programs so that they fail, that is, to distinguish the outputs
of the mutant programs from the original ones. The test data generation is an activity that
has been a growing interest in the community due to being hard and it not having reached
a high level of automation. Thus, an approach able to completely automate this activity
is an important step to reduce mutation testing costs and increase more reliability in the
tests. For these reasons intelligent approaches to solving this problem have been arising
amongst them the utilizing of search-based algorithms.

Mutation testing is considered to be a powerful test criterion, due to its effective-
ness in revealing faults. Nevertheless, it is a very expensive technique, for this reason,
alternatives have emerged to reduce its costs which were named, weak mutation, firm
mutation, and strong mutation that refers to the traditional mutation testing. In this case,
mutants killed in this context is said as mutants strongly killed. In weak mutation, mu-
tants are killed if immediately after the execution of the mutated statements there is a state
difference between the original and mutant programs, and they are called weakly killed
mutants. In Firm mutation, the aim is to verify if there is a difference between the states
of the original and mutant programs at a later point after the execution of the mutation
point, the more differences, the more likely the mutant has to be killed by a test die.

In this context, the paper presents an automated approach for generating test data
based on the weak mutation to strongly kill mutants using a Hill Climbing algorithm for
programs written in the Python language. In this study, we utilized an objective function
derived from a study proposed by Weneger et al. [Wegener et al. 2001] and applied for
the same context in [Souza et al. 2016] called Reach distance and Mutation distance.
The difference from the previous works is that it aims at generating test data to kill mu-
tants in Python, the frameworks in the literature only automatize the process of mutants
production and tests execution that shows there is still the problem in this area.

2. Mutation testing for Python

Mutation testing aims to verify whether the program under test is not present defects and
also assess the quality of the test suite. Assessing of the test sets, faulty versions of the
program original are produced, which simulate the mistakes made by programmers, these
versions are defined as mutants. Hence, the goal is to execute test data that causes the
mutants to behave differently from the original program. A test data that identifies a fault
makes the mutant be considered dead, otherwise, it is said to be alive [DeMillo and Of-
futt 1991]. However, there are two possibilities if a mutant remains alive after executing
each input of the test data set. The first one, the mutant is considered equivalent, i.e,. for
all inputs, the mutant will produce the same output as the original program. The second
possibility is that the test set is weak to kill the mutant, i.e., improvements are necessary
to carry out the mutants identifications. To generate the mutants, it is necessary to con-
sider the features of a programming language, since the process for generating mutants is
performed though applying mutation operators. The mutant operators are usually based
on typical errors that occur during the software development and they determine the type



of syntactic change that must be made to generate mutants, such as command mutations,
operator mutations, variable mutations, and constant mutations.

Performing mutation testing depends largely on the existing tools to automate its
process since applying this technique manually is impracticable. Despite producing mu-
tants and generating test sets can be performed non-automatic by a tester, this practice is
complex and time-consuming. For Python programming language, according to Derezin-
ska and Halas [Derezinska and Halas 2014] the first mutation tool was created in 2002
based on a Java mutation tool Jester and currently has emerged better tools, but not suffi-
ciently automated to perform all mutation testing activities as can be seen in Table 1.

Currently, we consider four main tools to test python programs based on mutation
testing and they are defined as Cosmic Ray, MutMut, MutPy, PyMuTester. Cosmic Ray
is a mutation testing tool for Python 3 and it has been successfully used on a variety of
projects ranging such as assemblers to oil exploration software. MutMut is a mutation
testing system also for Python 3 it focuses mainly on ease of use and supports to all test
runners. MutPy is a tool for Python programs from 3.3+ version, it uses the standard
unittest module, generates YAML/HTML reports, and has colorful output, also supports
high order mutations (HOM) and code coverage analysis. PyMuTester is a tool to execute
mutation testing, its main purpose is to assist faults in if-condition negation and loop
skipping

Table 1 shows information about whether the tools can produce mutants (second
column), they generate test data sets automatically (third column), execute the test sets
against the mutants (fourth column), if the tools have some features to analyze equivalent
mutants by the tester (fifth column), the number of mutant operators available (sixth col-
umn) and the year of the first and the last version (seventh and eighth column). As we can
see, the features analyzed in the tools, most of them can produce mutants and execute the
tests against mutants, however, none of them generate test data sets, i.e., the inputs must
be produced manually to execute the tests.

Table 1. Python Mutation Testing Tools

Tools Generate
Mutants

Generate
Test sets

Execute
Test

Marking of
Eq. Mutants

Mutant
Operators

First Version Current
Version

Cosmic Ray Yes No Yes Yes 14 2017 2020
MutMut Yes No Yes No 12 2016 2020
MutPy Yes No Yes No 17 2011 2019
PyMuTester Yes No Yes No 2 2011 2017

3. Related work
Several publications have appeared in recent years documenting different techniques for
test data generation in mutation testing, these studies address the use of search-based
algorithms such as Hill Climbing [Souza et al. 2016], particle swarm optimization (PSO)
[Jatana et al. 2016] and, genetic algorithm (GA) [Rani et al. 2019]. There are also a few
studies specifically about mutation testing for Python [Derezinska and Halas 2015] and
[Derezinska and Halas 2014]. However, as far we know no research addresses automatic
test data generation for this context.

Papadakis and Malevris [Papadakis and Malevris 2010] proposed an approach
that generates test data to kill weak and strong mutants using Dynamic Symbolic Exe-



cution (DSE) for Java programs. The approach transforms the original program into a
meta-program, containing all the weak-mutant-killing constraints, and then the test data
to cover all the branches the meta-program are generated through DSE. Thus, the DSE
produces test data to strongly kill the mutants automatically based on weak-mutant-killing
constraints. The work concludes that a high level of automation of the generation of test
cases for killing the mutants can be achieved.

According to Souza et al. [Souza et al. 2016], a Hill Climbing algorithm was
used to generate the test data for weak and strong mutants for programs written in C.
In this study, an objective function involving three parts was used to find the best result.
The first one, with the help of Branch Coverage Testing, is guided to the test data to
reach the mutation point. The second function is used to assist in the generation of data
test that can infect the mutation point, and the third one makes this infection to impact
the flow of the program in such a way that the fault is propagated to the output. More
recently, Rani et al. [Rani et al. 2019] proposed a genetic algorithm to generate the test
cases automatically for mutation testing. This research employed a selective mutation
technique to minimize the mutation testing cost i.e, to create and execute fewer mutants
instead of all the traditional mutation operators. An experiment was performed out from
a set of mutants in Java language.

4. Approach Description

Test data generation is a fundamental activity to improve the automatizing of mutation
testing. These automatizing consists mainly of mutants production, test data generation,
programs, and mutants execution using the test sets and test oracle. Excepts for test data
generation, the mentioned activities are already automated in several tools. A test data
is considered as an effective one if it kills one or more mutants, by producing different
outputs from the original program and mutants, thus checking whether the test set can
identify the changes injected into the source code. In general, to distinguish the behavior
between original program P and a mutant M, a test data t should satisfy three conditions
known RIP model, Reachability, Infection, and Propagation [DeMillo and Offutt 1991]:

1. Reachability: t must be able to reach the original statement S and mutated state-
ment S’. If S and S’ are not reached by t, t is not guaranteed to kill M.

2. Infection: t must be able to cause different internal states on P and M immediately
after executing S and S’. Thus, for t to kill M, it is necessary that S and S’ are
reached and the state after its execution must be different.

3. Propagation: t must be able to cause the final state of the M to be different from
P, i.e., the infected state must propagate to some point in P at which it can be
observed. Thus, the different state caused by satisfying the necessity condition
must be propagated through the program’s execution to produce a different output.

In this context, the proposed approach attempts to automate the mutation-based
test data generation for Python programs. This project aims to create a library that uti-
lizes search-based algorithms to produce test data sets and can be employed in different
mutation testing tools. As we can see in Figure 1, the process is composed of the follow-
ing steps: (1) searching and generating of test data; (2) executing the test suite against
mutants; (3) analyzing the outputs by the test oracle, removing the killed mutants and
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Figure 1. Scheme of the proposed tool

computing of mutation score; e (4) return and improving the generated test data from Hill
Climbing. This process is repeated until reaching a predefined score threshold.

Hill Climbing is a search algorithm that combines a general search method, i.e.,
generate and test solutions through objective functions to evaluate the states produced by
the method. This algorithm aims to identify the best path to be followed in the search
and then, it returns the optimal or a satisfactory result for a given problem. Therefore, the
algorithm consists of selecting an initial solution randomly, evaluating it, and improving
it step by step, from the investigation of the neighborhood of the current solution [Russell
and Norvig 2009].

An important element to achieve optimal results in search-based algorithms is
how to assess the candidate solutions, this element is described as objective functions.
Objective functions consist of mathematical functions that guide the search to find the best
solutions and they are created using specific information on the problem. In this paper, we
utilize an objective function based on RIP conditions, more specifically in Reachability
and Infection and it is composed into two parts: reach distance and mutation distance,
as used in [Souza et al. 2016]. The first part of the function is regarding Reachability
(RD) and it guides the search towards the mutation point. The second one called MD is
a reference to infection condition and it aims to infect the program state at the mutation
point, i.e., making a difference in the execution between the two program versions.

The approach consists of generating test data for Python programs from a Hill
Climbing algorithm based on weak mutation, i.e., considering reachability and infection
condition to kill strongly mutants. The objective function is composed of Reach distance
and Mutation distance which represents the weak mutation. Reach distance is a function
that combines two metrics and it has been widely used in previous studies [Korel 1990],
[McMinn and Holcombe 2006], and [Papadakis et al. 2010]. This function is formed
by metrics used in structural testing described as approach level and branch distance.
Approach level measures the distance that a test data needs to cover the targeted statement
using the number of the target mutant’s control dependent nodes that were not executed
by the test data. For nodes in which the execution flow was diverted, the distance for a
branch to be taken as true, and it is performed from the values of the variables or constants
in the condition statements, this metric is called Branch distance.

The second part of our objective function defined as mutation distance was pro-
posed by Papadakis et. al [Papadakis and Malevris 2013] and it is a generalization of
the study introduced by Bottaci [Bottaci 2001] in which a fitness function for a genetic



algorithm in mutation testing was presented. Mutation distance computes how close test
data are to expose a difference between the original and mutated statement according to
branch distance.

For the tool to handle mutations, we deal with the codes on an Abstract Syntax
Tree (AST) and reach branches using branch coverage. Assuming a mutant as a branch,
the aim is to generate test data to traverse a tree, in other words, a test data that achieves
coverage of the mutant branch means that the reachability condition has been fulfilled.
Whether this condition has not been fulfilled the process continues until to reach the mu-
tation. A phase of test data improvements is started utilizing the distance necessary for an
input reaching the target branch and this is calculated with branch distance and approach
level metrics as presented in [Wegener et al. 2001]. After the reachability condition is
achieved, we verify using the same test data generated if the infection condition has been
fulfilled. For achieving infection state a test data should lead to a different state on a
mutant program in the mutation point and original statement. Finally, if the infection is
achieved for a selected mutant, the test data are executed in all mutants to verify how
many have been strongly killed. The process continues to improve the test data generate
until killed all mutants.

The approach above mentioned was developed into a tool that is accessed using
a command terminal as well as the reports produced as illustrated in Figure 2. The main
features of the tool is about the following items: i) –function, ii) –method, iii) –int-min
and –int-max as presented in Table 2. The tool was developed using as a base a Python
implementation of automated test data generation for branch testing 1. From this im-
plementation, we can deal with mutants as branches to apply weak mutation, thus we
developed an extension to execute the original programs and mutant programs to verify if
they have been killed from a given test data. It is worth mentioning that our tool has no
mutants production, for the experiment we use an external tool.

Table 2. Flags arguments to execute the proposed tool

Flag argument Function
–function <target function name> define the function to be tested
–method <Hill Climbing> define search algorithm

–int-min minimum value of initial
parameters for the technique

–int-max maximum value of initial
parameters for the technique

Figure 2. Report from the proposed tool

1https://pypi.org/project/covgen/



5. Experimental Study
We conducted experiments to analyze and evaluate the proposed tool for test data gener-
ation on a set of Python programs. In this study, the guidelines recommended by Wholin
et al. [Wohlin et al. 2012] were used. The experiment was performed through a laptop
with Intel Core i7 2.4GHz CPU, 8GB memory in Ubuntu 19.10 operating system.

5.1. Experiment Definition

We used the Goal-Question-Metric (GQM) model [Basili and Weiss 1986] to set out the
objectives of the experiment that can be summarized as follows: ”Analyse proposed tool
for the purpose of evaluation with respect to the mutation-based test data generation
from the point of view of experimenters in the context of the Python programs”.

For achieving the goal, we investigate the following Research Question (RQ):
How effective is the proposed tool for test data generation to kill mutants in Python
programs? To answer this RQ, the effectiveness of the tool was measured using the
mutation-based test data generation for eight Python programs. We also performed this
experiment 30 times computing the average mutation score and the number of test data.

5.2. Procedure of Experiment

To answer the RQ, we carried out the experiment, as follows: (i) generating test data to
kill the mutants using the proposed approach; and (ii) computing mutation score. These
experiments were performed in three steps: (1) we chose eight Python programs P = (p1,
p2,..., p8) of different size as experimental subjects. Table 3 presents name and LOC of
the programs; (2) we generate mutants using mutpy tool2; (3) we generated the test data to
kill the mutants using the proposed tool; and (4) the total of mutation score is computed.

Table 3. Python programs used in the experiment

Programs LOC
boolop 25

calender 94
changerMoney 43

coordinates 30
grades 18
orelse 17

triangle 37
typeTriangle 17

5.3. Results

In this section, we answer the RQ presented in Section 5 from the analysis of results
concerning the effectiveness of the proposed approach. For this, we compare the proposed
tool with a random generation. Table 4 shows the number of mutants (second column),
test data generation using proposed tool (T ) e (R) random generation (fourth and fifth
column), the number of alive mutants by (T ) e (R) in sixth column and the number of
killed mutants by (T ) e (R) in last one.

Analyzing the last column is possible to notice that the performance of the pro-
posed tool was very significant since it killed more than random testing in all programs.

2https://pypi.org/project/MutPy/



Table 4. Comparison between the number of killed mutants by the proposed tool
(T ) and random generation (R)

Programs Mutants Equivalentes Test Data Alive Killed
T R T R T R

boolop 37 3 8 7 4 13 30 21
calendar 87 7 6 11 4 21 76 59
changerMoney 64 8 7 10 9 24 47 32
cordinates 52 4 4 8 12 21 36 27
grades 33 5 4 6 8 11 20 17
orelse 22 3 3 4 0 6 19 13
triangle 20 2 3 5 3 6 15 12
typeTriangle 33 2 5 8 3 7 28 24

Total 348 34 40 59 43 109 271 205
Average 35 3.5 4.5 7.5 4 12 29 22.5

We compared the proposed tool with random testing by evaluating the number of the test
data generated capable of killing the largest number of mutants (RQ). The program with
the most test data was calendar and the program with minimum test data was orelse. As
expected, the bigger program required more test data than the smaller ones. As presented
in Table 4, test data generation using the proposed tool is more efficient than a random
generation, since it generates 19 fewer test data with high quality able to kill 77.81% of
all mutants. Thus, it was clear that the random generation was unable to kill the whole set
of mutants since most of the test data produced are not sufficient.

Figure 3 shows the mutation score achieved by the proposed tool and random
generation against the subject programs. As the results show, the proposed tool achieved
a mutation score of 22% more than the random generation. In all programs, independent
of size, it was possible to observe that the proposed tool obtained better mutation scores
than the random generation. Also, we compute the time to generate test data sets and
execute it against the set of mutants for each program. Table 5 presents the average time
obtained by our tool, the first column indicates the name of programs, the second column
reports the average mutation score achieved per program, and the third column shows the
average time required for the whole execution.

Table 5. Time and mutation score

Programs Mutation Score Time
boolop 0.88 7.0164

calendar 0.95 8.0102
changerMoney 0.84 8.184

cordinates 0.75 6.5821
grades 0.71 7.9134
orelse 1 6.1793

triangle 0.83 5.3258
typeTriangle 0.9 6.7134

Average 0.86 6.8649

We can notice that the test data set generated based on reachability and infection
condition is adequate to strongly kill mutants. However, even our benchmark be com-
posed of simple programs, for some mutants are necessary more efforts to find adequate
test data, this is due to the difficulty of satisfying more complex requirements or difficulty
for a test data to propagate the wrong state to the program’s output. Thus, we notice that
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it is important to add in our objective function the propagation condition.

6. Conclusion
Test data generation is an important activity in software testing, the goal is generating a
large number of test data to fulfill testing criteria. Although this activity is known to be
performed manually by a Tester, it demands a lot of effort and automation is necessary.
For several years a great effort has been devoted to the study of techniques and methods to
address this issue, but only a few tools are considered sufficiently adequate to be applied
in industrial environments. Generating test data based on mutation for python programs
is still a gap, the existing tools focus on mutants generation, engines to execute the test
data against mutants and test oracles. An automated approach can lead to the many op-
portunities to produce quality test data sets and ensuring the cost reduction for mutation
testing.

The paper proposes an attempt to automate the test data generation activity
through a tool. Our tool is based on approaches presented in previous studies as [Pa-
padakis and Malevris 2013], [Fraser and Arcuri 2015] and [Souza et al. 2016] which use
search-based algorithms to generate adequate test data employing the RIP conditions. For
guiding the test generation we employed an objective function based on weak mutation,
i.e., it is composed of Reachability and Infection conditions to kill strongly mutants. From
our preliminary experimental, the results indicate that for toy Python programs the tool
was able to kill 86% on average of all mutants and 22% more than random generation.
Future work comprises in i) conducting additional experiments using real programs, ii)
increase the impact condition on the objective function and iii) finally, we will attempt
to provide a tool for Python programs that can be employed in different mutation testing
tools which no generates test data automatically.
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