
Towards a Process for Migrating Legacy Systems into
Microservice Architectural Style

Daniele Wolfart1, Ederson Schmeing1, Gustavo C.L. Geraldino1,
Guilherme L.D. Villaca1, Diogo do N. Paza1, Diogo C.P. Domingos1,
Wesley K.G. Assunção2,1, Ivonei F. da Silva1, Victor F.A. Santander1

1PPGComp – Western Paraná State University (UNIOESTE). Cascavel, Brazil.
2COTSI – Federal University of Technology - Paraná (UTFPR). Toledo, Brazil.

{danielewolfart, edersonschmeing, gclgeraldino, guidvillaca,
diogopaganinidomingos, diogopazacvel}@gmail.com, wesleyk@utfpr.edu.br,

{ivonei.silva, Victor.Santander}@unioeste.br

Abstract. Microservice architectural style is a paradigm to develop systems as
a suite of small and autonomous services, communicating thought a lightweight
protocol. Currently, one of the most common ways of adopting microservice
architectures is by the modernization of legacy monolith systems. The migra-
tion of a legacy system into a microservice architecture is not a trivial task. In
addition, there is a lack of recommendation or guidelines on how to perform
such process. In view of this, this paper presents a preliminary process for con-
ducting the migration of legacy systems into microservice architectures. This
process was defined by analyzing and discussing pieces of work on the topic. As
result, we propose a process composed of eight steps, grouped in four phases,
which we describe together with their common input and output.

1. Introduction
The majority of industrial systems are long-lived applications, i.e., legacy system, usu-
ally having a decayed and degraded monolithic architecture [Lewis et al. 2003]. In
order to remain competitive, these monolithic legacy systems must be modernize.
Nowadays we can observe a trend on migrating legacy systems into microservice ar-
chitectures [Knoche and Hasselbring 2018]. The microservice architectural style is a
paradigm where a system is a suite of small and autonomous services that work to-
gether [Newman 2015]. The benefits of adopting microservices are: reduced effort for
maintenance and evolution, increased availability of services, ease of innovation, contin-
uous delivery, ease of DevOps incorporation, and facilitated scalability [Taibi et al. 2017].

We can find in the literature mappings and reviews in the topic of migrat-
ing legacy system into microservices [Ponce et al. 2019, Di Francesco et al. 2019], clas-
sification of refactoring approaches for this migration [Fritzsch et al. 2018], indus-
trial reports and surveys with practitioners [Carvalho et al. 2019b, Fritzsch et al. 2019,
Di Francesco et al. 2018]. These papers describe, respectively, approaches to conduct the
migration, refactoring approaches for deal with implementation artifacts, and experience
reports on how migrations were applied in practice. Despite the grown of interest in mi-
grating legacy systems into microservices, in the literature, to the best of our knowledge,
there is no study that presents recommendations/guidelines on how to perform the entire
migration process, covering activities of legacy comprehension, architecture definition,
execution of the migration, and microservices monitoring.



The goal of this paper is to define a preliminary process for the migration of legacy
systems into microservice architectures. For the definition of such process, we analyzed
and extensively discussed a set of studies describing migration processes. Our study
(presented in details in Section 3) was conducted in a subject of a master course with six
students and one professor. The resulting process (described in Section 4) is composed
of eight steps, grouped in four phases. The phases are: comprehension of the monolithic
legacy system, definition of the new architecture, execution of the transformation, and
monitoring after the migration. In addition, we also provide the observed input and output
for each step. The contribution of preliminary process defined in our study (differences
from related work are discussed in Section 2) is to serve as basis for those ones envisaging
the conduction of a migration process.

2. Related work
In this section, we discuss pieces of work that are related to our study. In
special the studies presented in [Mayer and Weinreich 2018], [Balalaie et al. 2018],
[Chen et al. 2018], [Hassan et al. 2017], [Taibi et al. 2017], [Carvalho et al. 2019b], and
[Ahmadvand and Ibrahim 2016].

Ahmadvand and Amjad Ibrahim present a methodology for microservice de-
composition from system requirements. Security and scalability requirements are in-
put for the decomposition. This methodology is base for architectural design deci-
sions [Ahmadvand and Ibrahim 2016]. This approach is related to the steps one, two, and
three of our proposed process. Balalaie et al. describe fifteen patterns to migrate a mono-
lithic system into a set of microservices considering the variation of several factors such
as requirements, current situation and skills of team members. The set of migration pat-
terns focus on several steps in our proposed process, although the authors do not guaran-
tee the completeness of patterns repository to realize the migration [Balalaie et al. 2018].
Chen et al. use the data flow diagram (DFD) to capture the business requirements of a
monolithic system, then, an algorithm combines the same operations with the same type
of output data into a decomposable data-flow, finally, a function is run to identify mi-
croservices candidates from the decomposable DFD [Chen et al. 2018]. This approach
is related to the steps two and three of our proposed process. Hassan et al. describe an
architecture-centric approach to model microservice granularity. They extend the ambient
concept [Ali et al. 2010] by introducing microservice ambient that models microservices
and uses aspects to support changes in granularity at runtime. As a result, this approach
can provide architectural modeling to aid the candidate solution for granularity adaptation
[Hassan et al. 2017]. This approach is related to the steps three and four of our process.

Taibi et al. after performing a survey with practitioners that migrate monolithic
systems to microservices, describe a process framework adopted by the practitioners dur-
ing the migration. This framework contains activities to migrate an existing monolithic
system to a microservice from scratch. There is also activities to implement new fea-
tures as microservices to replace gradually the existing system. This approach is related
to the all steps of our proposed process, although the manuscript does not present details
[Taibi et al. 2017]. Carvalho et al. also conducted a survey with practitioners and describe
adopted criteria to extract microservices on monolithic systems. Requirements, modular-
ity, cohesion, coupling, database scheme, visual models, and reuse were criteria more
important mentioned by practitioners participants of the study [Carvalho et al. 2019b].



This approach is related to the step one and three of our proposed process. Mayer and
Weinreich define an approach for continuously extracting the architecture of REST-based
microservice software systems. The approach retrieves static and dynamic data from dif-
ferent involved and distributed microservices to overview the software architecture and
supervise it over time [Mayer and Weinreich 2018]. This approach is related to the step
eight of our proposed process.

Our study presented in this paper differs from these mentioned approaches by
describing an entire process, capturing common steps, input and output. Therefore,
the proposed process in this paper has the goal broader. Despite of existing sec-
ondary studies such as [Di Francesco et al. 2019, Fritzsch et al. 2018, Ponce et al. 2019,
Francesco et al. 2017], which map primary studies describing characteristics of the mi-
gration, they do not describe a consolidated and comprehensive process. So, to the best of
our knowledge, our study is the first one that presents recommendations and/or guidelines
on how to perform the migration process.

3. Study Design
This section presents details of the methodology of our study.

3.1. Participants
The study was conducted by six master students and supervised by one professor, which
is a researcher on the topic of this study. The students were enrolled in a course of Re-
quirements Engineering from the Graduate Program X1 at University Y1. The professor
had experience on conducting research on migrating legacy systems to microservice ar-
chitectures. As part of the course, the professor taught four classes, summing 3h30min,
about the migration of legacy systems to microservices. These classes were designed to
serve as a background for the students. In addition, the professor assisted the students and
participated in all the activities of the study.

3.2. Primary Sources
The source of information to define the preliminary process were obtained from
searches on Google Scholar2 with different combinations of the keywords “Migra-
tion”, “Microservices”, “Legacy Systems”, and “Monolith”. The primary sources are:
[Balalaie et al. 2018, Chen et al. 2018, Taibi et al. 2017, Ahmadvand and Ibrahim 2016,
Mayer and Weinreich 2018, Hassan et al. 2017]. These papers were selected based on
their content, which is strictly related to the goal of our work.

3.3. Data Extraction
Next we describe the steps we followed to collect relevant information from the papers
and the discussions performed to define the preliminary process.

1. Individual reading: each paper was assigned to one student, which had one week
to read the paper and answer the following questions: “What are the driving forces
to adopt a microservice architecture?”, “What are the advantages and disadvan-
tages of adopting microservices?”, and “What does the paper describe about mi-
grating a legacy system to a microservice architecture?”.

1Omitted due to double blind review.
2https://scholar.google.com/ on November 12th, 2019.



2. Individual presentation and group discussion: the students individually pre-
sented their answers for the previous questions. During the presentation, all other
students and the professor could ask questions, complement affirmations, or re-
late the information presented with information collected by other student. This
activity took 3h30min.

3. Papers filtering and pair reading: after the individual presentations, we selected
only three papers that were more related to the topic of migrating legacy sys-
tems to microservices. These papers were: [Balalaie et al. 2018, Chen et al. 2018,
Taibi et al. 2017]. The professor defined pairs of students and assigned one of
the selected papers to each pair. The pairs were asked to answer the following
questions: “Which are the steps to perform the migration of legacy systems to
microservices?” and “What are the common input and output artifacts of each
step?”. They had one week to read the papers and answer the questions.

4. Pair presentation: each pair of students presented the steps they found in the
paper, as well as the input and output for each step. A open discussion was also
allowed, similarly to Step 2. For the presentations and to support the discussion,
we used a whiteboard, that was split in three parts, where each pair of students
could draw the information they collected. Figure 13 presents the whiteboard after
the presentation of the three pairs of students.

5. Information merging: the last step of our study was merging all the informa-
tion presented by the students and discussed in group. For this, we relied on the
drawing on the whiteboard (Figure 1). During the discussion for merging the ini-
tial processes found by each pairs, the students were asked to take notes. The
resulting process after merging all information, is described in the next section.

Figure 1. Whiteboard with the migration process identified the pairs of students.

4. Proposed Preliminary Process
After conducting the study presented in the previous section, we defined a preliminary
process for migrating monolith legacy systems to microservice architectures. This pre-
liminary process has four phases and a total of eight steps. Figure 2 presents the defined
process, together with the input and output of each step. We stress here that this is a high-
level process, and each step can be decomposed in lower level steps/tasks. In the next
subsection we describe each step in details.

3The text in the whiteboard is in Portuguese, the language used in the course.



Figure 2. Process for migrating legacy systems to microservice architecture.

4.1. Phase 1: Comprehension the monolithic legacy system

This phase is responsible for providing a understanding of the legacy system and the needs
on migrating it to a microservice architecture, i.e. the driving forces for the migration.

• Step 1: Identification of driving forces. The goal of this step is to identify
the forces, requirements, needs, or objectives that motivate the migration. These
forces can be related to technological, organizational, and/or business aspects.
For example, in the primary sources we observe driving forces for the migration
related to easier maintainability, allow scalability, easier management of devel-
opment teams, moving towards adoption of DevOps [Taibi et al. 2017]. Other
authors mention as motivation the opportunity to use of different technologies,
reduced time-to-market, and better modularization [Balalaie et al. 2018].

– Input: knowledge of stakeholders, limitation of the legacy system, logs of
the legacy system, business objectives, organizational goals.

– Output: driving forces for the migration, and decision on conducting or
not the migration.

• Step 2: Understand the legacy system. This step is dedicated to an analysis of
the actual legacy system. The goal is to understand the source code organization,
existing features, dependencies among features, database structure, and all avail-
able documentation. During this step, the responsible for the migration also need
to consider: (i) the business characteristics and goals such as keeping the company
innovative and competitive; (ii) existing technologies related to programming lan-
guages, database management system, and software tools used; and (iii) organi-
zation aspects such as size of development teams, maturity and expertise of the



developers, development process adopted in the company, etc. The legacy system
must be well-understood. In addition, the behavior of the systems and data flow
within the features either [Chen et al. 2018].

– Input: knowledge of stakeholders, logs analysis, source code, design mod-
els, database entity and relationship diagrams, static and dynamic infor-
mation of the system, and all available documentation.

– Output: existing features, dependencies between features, data depen-
dency, data flow, and a list of technologies used in the legacy system.

4.2. Phase 2: Definition of the new architecture

The new architecture depends on what was chosen as migration goal. An incremental
migration or big bang migration. In the former case, the architecture will be hybrid,
having both the legacy system parts and the new microservices that will replace other of
its parts. In the case of a big bang migration, an entire new microservice architecture
should be defined. In addition to the architecture of the system under migration, the
engineers need to define the infrastructure where the microservices will operate.

• Step 3: Identification of microservice candidates. This step has the goal of de-
composing the legacy system in units that will be transformed in microservices.
At first, the engineers should define the tasks each microservices will be respon-
sible for, indirectly defining the size of the microservices in the new architec-
ture [Hassan et al. 2017]. Based on the importance of defining the responsibility
and size of a microservice, this step is a crucial for the migration process. The
identification of microservice candidates can be performed by investigating the
coupling and cohesion among parts of the legacy system, considering the migrat-
ing whole features to a microservice architecture, or focusing on migrate most
reused parts of the legacy [Carvalho et al. 2019b]. A factor that must be taken
into account during the identification of potential microservices is the overhead
in communication that will be includes when decoupling to dependent task. In a
monolithic system, all the communication among units are based on direct mem-
ory access. However, microservices use the network for the communication, hav-
ing great impact in the time execution. For an incremental migration, Balalaie
et al. recommend starting with a fewer number of microservices and incremen-
tally perform the migration of new microservices, as the system grows and/or the
development team acquire a better understanding of microservices characteris-
tics [Balalaie et al. 2018].

– Input: the output of the previous step is used here, namely system features,
dependencies between features, data dependency, data flow, and a list of
technologies used in the legacy system.

– Output: a sorted list of microservice candidates, and descriptions of each
microservice responsibility.

• Step 4: Definition of a microservice architecture. For example, here engineers
have to describe the APIs for the microservices, define the communication proto-
col, and choose a strategy of services discovering. The architecture will be greatly
affected by the decision of conducting an incremental or a big bang migration.
In case of an incremental migration, the decisions on how integrate the microser-
vices with legacy systems should be defined. For that, we observe the use of



Feature Toggles [Carvalho et al. 2019a], which ease to revert the use of the legacy
system in case of any problem with the new microservices, allowing a better tran-
sition. Choosing a big bang migration, engineers have to figure out how to move
all the legacy to microservices at once. A challenge with the big bang migration
is to define a complete architecture beforehand. During the construction of this
entire architecture some maintenance in the legacy during the migration should be
updated in the new architecture, delaying the migration [Casey et al. 2017]. An-
other aspect that must be taken into account is the microservicification of the data.
Commonly, legacy systems rely in one central database [Taibi et al. 2017]. But in
the microservices context engineers can migrate the data of a microservice handle
to a specific database managed only by this microservices and all access for such
data is done by API requests. A central shared database also can be kept, how-
ever, this lead to data coupling among microservices, making complex activities
of maintenance. In addition, it also affects the interdependence among different
teams on charge of specific microservices.

– Input: driving forces for the migration, and list of microservices candi-
dates.

– Output: architecture of microservices, and technology stack for each mi-
croservices.

• Step 5: Definition of the infrastructure. This step is devoted to define the envi-
ronment where the microservices will operate. Here the engineers should decide
about having a local hosts for the microservices or rent a cloud platforms such as
Amazon Web Services4, Microsoft Azure5, or Google Cloud6. The infrastructure
must provide resiliency and high availability in microservices, allowing manage-
ment of scalability.

– Input: microservice architecture, and driving forces for the migration.
– Output: infrastructure and configurations defined.

4.3. Phase 3: Execution of the transformation

This phase is devoted to execute the migration considering all the planning of previous
phases.

• Step 6: Migration of the microservices. Here the transformation of the imple-
mentation artifacts is done to move the parts of the legacy system to microser-
vices. The infrastructure should be configured and be available for deploying the
microservices. As we aforementioned, feature toggle7 can be used as strategy to
incrementally integrate the microservices with the legacy system, in a incremental
migration.

– Input: microservice architecture, and infrastructure architecture.
– Output: migrated microservices operating in the defined infrastructure.

4https://aws.amazon.com/
5https://azure.microsoft.com/
6https://cloud.google.com/
7Feature Toggle is basically a flag variable used in a conditional statement with code blocks. Their goal

is either enabling or disabling the feature code in those blocks [Rahman et al. 2016]



• Step 7: Verification and Validation of the microservices. After moving parts
of the legacy systems to a microservice architecture, regression tests must be per-
formed in order identify possible bugs. We highlight the importance of having
proper test cases before starting the migration. Such tests are intend to identity
bugs introduced during the migration and also confirm if the requirements of the
migrated parts are adequate. Once interdependent microservices are migrated, in-
tegration tests are also required. For this step of verification and validation of the
migration, the legacy system can be used as oracle for the testing activity.

– Input: migrated microservices in the new infrastructure, legacy system
requirements, legacy system test cases.

– Output: testing metrics, and bug reports.

4.4. Phase 4: Monitoring after the migration
Monitoring is responsible to assess the health of the migrated microservices in the new
infrastructure.

• Step 8: Monitoring the migrated microservices. The goal here is to keep con-
trol of the behavior of the migrated microservices in the new infrastructure. The
monitoring should focus on availability of the services, bottlenecks, performance,
use of infrastructure resources, and the like. Since a desired scalability is one of
the main driving forces for migrated to a microservice architecture, here the en-
gineers should analyze if this goal has been achieved. Loris Degioanni8 describes
five principles of monitoring microservices: (i) monitor containers and what runs
inside them, (ii) use orchestration systems, (ii) prepare for elastic, multilocation
services, (iv) monitor APIs, and (v) map monitoring to the organizational struc-
ture.

– Input: migrated microservices in the new infrastructure.
– Output: monitoring metrics.

5. Limitation of our study
Three limitations need be highlighted about our study, as follows:

• Number of primary sources: the process was based on some six primary studies.
There are others that could be considered. In this case, we can only claim the
process as a preliminary version based on relevant primary studies.
• Process validation: the proposed process was not evaluated in practice, then we

cannot affirm that the process strictly adhere to practical needs and industrial sce-
narios. However, we alleviate this limitation by comparing the proposed process
with information available in survey with practitioners, namely considering the
studies [Taibi et al. 2017, Carvalho et al. 2019b, Carvalho et al. 2019a]. In addi-
tion, we believe the process was based on relevant literature for the field.
• Expertise of the authors: despite the professor that supervised this study being

a researcher on the topic of this study, a threat to validity is the expertise of the
students on migrating legacy systems to microservice architecture. To mitigate
such threat, the professor provided a background training and assisted all steps of
the study. In addition, the professor participated in all discussions regarding the
primary sources.

8Available at https://thenewstack.io/five-principles-monitoring-microservices/
accessed on March 11th, 2020.



6. Final Remarks
The microservice architectural style has emerged in industry9 and only in the recent year
has been focus of research in academia. Therefore, there is still scarce literature on the
process of migrating monolith legacy systems to microservice architectures.

Most of existing studies on migrating legacy systems to microservices have focus
specific scenarios or tasks of the migration process. Based on the lack of a broader view
of the entire process, this paper describes a preliminary process composed of four phases
that together have eight steps. As part of our preliminary process, we also described the
input and output for each step. This proposal claims to be a starting point to consolidate
a process of migrating monolithic systems into microservices.

Based on the limitations of our study, we plan future work based on mainly two di-
rections. Firstly, we have been conducting an extend study including new primary sources
to provide a more in-depth discussion of each step of the migration process. We intent to
provide a process based on more primary studies to ratify or rectify the identified phases
and steps of our preliminary process and increase new elements such as stakeholders, ar-
tifacts, guidelines and templates. Secondly, to move into an appropriate process that will
be accepted and adopted by the practitioners, we intend to evaluate/validate the proposed
process in real world case studies.

References
Ahmadvand, M. and Ibrahim, A. (2016). Requirements reconciliation for scalable and

secure microservice (de)composition. In IEEE 24th International Requirements Engi-
neering Conference Workshops (REW), pages 68–73.

Ali, N., Ramos, I., and Solı́s, C. (2010). Ambient-prisma: Ambients in mobile aspect-
oriented software architecture. Journal of Systems and Software, 83(6):937 – 958.
Software Architecture and Mobility.

Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D. A., and Lynn, T. (2018). Mi-
croservices migration patterns. Software Practice and Experience, 48(11):2019–2042.

Carvalho, L., Garcia, A., Assunção, W. K. G., Bonifácio, R., Tizzei, L. P., and Colanzi,
T. E. (2019a). Extraction of configurable and reusable microservices from legacy sys-
tems: An exploratory study. In 23rd International Systems and Software Product Line
Conference - Volume A, pages 26–31, New York, NY, USA. ACM.

Carvalho, L., Garcia, A., Assunção, W. K. G., de Mello, R., and de Lima, M. J. (2019b).
Analysis of the criteria adopted in industry to extract microservices. In 7th Interna-
tional Workshop on Conducting Empirical Studies in Industry and 6th International
Workshop on Software Engineering Research and Industrial Practice, pages 22–29.
IEEE.

Casey, A., Beeler, R., Fry, C., Mauvais, J., Pernice, E., Shor, M., Spears, J., Speck, D.,
and West, S. (2017). Strategies for migrating to a new experiment setup tool at the
national ignition facility. JACoW Publishing, pages 1–4.

Chen, R., Li, S., and Li, Z. (2018). From Monolith to Microservices: A Dataflow-Driven
Approach. In Asia-Pacific Software Engineering Conference (APSEC), pages 466–475.
9https://martinfowler.com/articles/microservices.html



Di Francesco, P., Lago, P., and Malavolta, I. (2018). Migrating towards microservice
architectures: an industrial survey. In IEEE international conference on software ar-
chitecture (ICSA), pages 29–2909. IEEE.

Di Francesco, P., Lago, P., and Malavolta, I. (2019). Architecting with microservices: A
systematic mapping study. Journal of Systems and Software, 150:77–97.

Francesco, P. D., Malavolta, I., and Lago, P. (2017). Research on architecting microser-
vices: Trends, focus, and potential for industrial adoption. In IEEE International Con-
ference on Software Architecture (ICSA), pages 21–30.

Fritzsch, J., Bogner, J., Wagner, S., and Zimmermann, A. (2019). Microservices migration
in industry: Intentions, strategies, and challenges. In IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 481–490. IEEE.

Fritzsch, J., Bogner, J., Zimmermann, A., and Wagner, S. (2018). From monolith to
microservices: a classification of refactoring approaches. In International Workshop
on Software Engineering Aspects of Continuous Development and New Paradigms of
Software Production and Deployment, pages 128–141. Springer.

Hassan, S., Ali, N., and Bahsoon, R. (2017). Microservice Ambients: An Architectural
Meta-Modelling Approach for Microservice Granularity. IEEE International Confer-
ence on Software Architecture (ICSA), pages 1–10.

Knoche, H. and Hasselbring, W. (2018). Using microservices for legacy software mod-
ernization. IEEE Software, 35(3):44–49.

Lewis, G., Plakosh, D., and Seacord, R. (2003). Modernizing Legacy Systems: Software
Technologies, Engineering Processes, and Business Practices. Addison-Wesley Pro-
fessional.

Mayer, B. and Weinreich, R. (2018). An approach to extract the architecture of
microservice-based software systems. In IEEE Symposium on Service-Oriented System
Engineering (SOSE), pages 21–30.

Newman, S. (2015). Building Microservices. O’Reilly Media, 1st edition.

Ponce, F., Márquez, G., and Astudillo, H. (2019). Migrating from monolithic architecture
to microservices: A rapid review. In 38th International Conference of the Chilean
Computer Science Society (SCCC), pages 1–7. IEEE.

Rahman, M. T., Querel, L.-P., Rigby, P. C., and Adams, B. (2016). Feature toggles:
Practitioner practices and a case study. In 13th International Conference on Mining
Software Repositories (MSR), pages 201–211, New York, NY, USA. ACM.

Taibi, D., Lenarduzzi, V., and Pahl, C. (2017). Processes, motivations, and issues for
migrating to microservices architectures: An empirical investigation. IEEE Cloud
Computing, 4(5):22–32.


