
Systematic Literature Review on Web Performance Testing
Guilherme Legramante1, Maicon Bernardino1, Elder Rodrigues1,

Fábio Basso1

1 Laboratory of Empirical Studies in Software Engineering
Universidade Federal do Pampa (UNIPAMPA)

Caixa Postal 15.064 – 97.546-550 – Alegrete – RS – Brazil

guilhermelegramante@gmail.com,

{bernardino,elderrodrigues,fabiobasso}@unipampa.edu.br

Abstract. Performance Testing is essential to ensure the quality and scalabil-
ity of Web applications. A well-defined process may guide Performance Test-
ing Engineer in conducting this task. We intended to enlighten some major
inputs related to web performance testing. For this, we have formulated and
executed a given protocol, according to the Systematic Literature Review (SLR)
protocol in Software Engineering. So, 37 papers were selected/analyzed and we
have extracted their most relevant contribution in order to answer our research
questions. This analysis enabled us discovering preeminent performance test-
ing profiles/roles, approaches, artifacts, methods, stages or phases and activity
flows that have been reported in the literature. We believe that, despite those
several studies that mapping performance test context, there are a few remarks
in which a clarification might be needed, once there is no well-established pro-
cess that comprises the whole activities mapped as well as established a relation
with other studies. Therefore, this study intends to provide relevant input that
one may establish a novel web performance testing process.

Resumo. Teste de desempenho é essencial para garantir a qualidade e a escal-
abilidade de aplicações web. Um processo bem definido pode orientar o Engen-
heiro de Teste de Desempenho na condução desses testes. Pretendemos inves-
tigar os principais conceitos relacionados a Teste de Desempenho. Para isso,
executamos uma Revisão Sistemática da Literatura. Assim, 37 artigos foram
analisados e suas principais contribuições foram extraı́das visando responder
às nossas questões de pesquisa. Essa análise nos permitiu descobrir perfis /
funções de teste de desempenho proeminentes, abordagens, artefatos, métodos,
estágios ou fases e fluxos de atividades que estão relatados na literatura. Apesar
de alguns estudos elencarem as entradas e saı́das relacionadas ao processo de
teste de desempenho, não há um processo bem estabelecido que abranja todas
as atividades mapeadas e estabeleça uma relação com outros estudos. Desta
forma, este estudo fornece informações relevantes para estabelecer um novo
processo de teste de desempenho da web.

1. Introduction
Web applications need to respond quickly to user actions, once that user engagement is
conditioned by the speed in which the system responds to their actions. For instance, a few



seconds of waiting in a determinate task may deflect a purchase in a virtual store, since
this delay might make a possible client changing his mind. So, knowing the breaking
point of a given system may ensure proper functioning, which allows designing safety
mechanisms to support the expected load. Considering the crescent number of systems
and Web applications, with a large demand for infrastructure and scalability, we consider
that it is necessary to further research that foresees activities related to this demand.

Based on assumptions presented before, it seems a matter of huge importance
accessing mechanisms for software performance assessment. So that, by employing a
Performance Testing it is possible to plan, execute, monitor, and analyze the results of a
system under certain conditions, thereby obtaining the possible expected behaviors of a
given software when subjected to these conditions [Bernardino et al. 2016]. In this con-
text, Software Performance Engineering (SPE) [Woodside et al. 2007] can be divided into
two general approaches. The former one focuses on early-cycle, by a predictive model-
based, i.e. performance evaluation and modeling. The latter one adopts a measurement-
based approach that involves its late-cycle, i.e. performance testing. Considering these
assumptions, this research addresses the latter approach, since it enables us to investigate
all phases, stages, and activities of performance testing.

For the sake of automating some performance testing tasks, some techniques have
been developed. The Capture and Replay (CR) is one of the most used and widespread
techniques in performance test automation tools. This technique consists of writing scripts
automatically through some system execution functionality. Then, the generated script
is executed and the test is performed. Another technique broadly utilized is Model-
Based Testing (MBT), in which a model is created, using a specific notation, to gener-
ate a test according to planning in the model. MBT may use formal methods to vali-
date the system under test and can be applied either at the hardware or software level.
Based on system requirements, test cases are generated based on the models generated
[Rodrigues et al. 2015].

Although there are already numerous tools and approaches to performance testing,
we assume that information could be better summarized. Discrepancies among defined
content by approaches and techniques might hinder the flow of performance testing activ-
ities. Based on this, we conducted an SLR on the performance testing area, seeking out
comply with to meet this demand. Thus, we selected 37 studies with the purpose of ex-
plains the main concepts related to web performance testing. We summarize SLR results
in a feature model, followed by a brief explanation of each located input. This provided
us an area overview, according to our research questions.

The present paper is organized as follows. In Section 2, we present paper back-
ground. Section 3 SLR protocol/execution is presented, followed by SLR results in Sec-
tion 4. In Section 5, conclusion and future works are discussed.

2. Background
Performance testing is a possibility to plan, execute, monitor, and analyze the results of
a system under certain conditions, thereby obtaining the possible expected behaviors of
determining software, when subjected to these conditions [Bernardino et al. 2016]. Ac-
cording to Freitas and Vieira [Freitas and Vieira 2014], performance testing is a test that
aims to evaluate the performance of the system at a given load scenario. In summary, per-

2



formance testing provides a load simulation and measurement to detect bottlenecks and
the breaking point in which a system crashes under a certain workload.

Woodside [Woodside et al. 2007] defines Software Performance Engineering
(SPE) as representing the entire collection of software engineering activities and also re-
lated analyses throughout the software development cycle, which are directed to meeting
performance requirements. Revealing bottlenecks and achieving improvements in scala-
bility and software performance are some of the main objectives of SPE. In that sense,
SPE is classified into two general approaches: predictive model-based and measurement-
based. The former one concentrate on the early-cycle and the latter one in the late-cycle
of the software development life cycle. Hence, performance testing is associated with a
measurement-based approach.

According to Meier et al [Meier et al. 2007], a performance testing may be di-
vided into two categories; Load Testing and Stress Testing. A load testing aims to deter-
mine a System Under Test (SUT) behavior, which in turn, depicts an application subject a
workload. It should be noticed that the load test is conducted to assess if the given system
meets specified non-functional requirements. Stress testing places a system under higher-
than-expected traffic loads so developers can see how well it works above its expected
capacity limits. Moreover, Molyneaux [Molyneaux 2009] includes soak, or scalability,
testing, in a way that a soak testing may subject the SUT to a load for a long period, in
which some problems dismissed in other categories may become noticeable.

3. Systematic Literature Review Protocol

SLR scope is conducting Performance Testing study area, seeking out for guidelines,
taxonomy, process, or frameworks that support activities related to planning, execution,
monitoring, and reporting of test results. In this research, we endorsed the protocol pro-
posed by Kitchenham [A. Kitchenham 2007] in SLR. The GQM (Goal, Question, Metric)
paradigm [Caldiera and Rombach 1994] usage means to resume the review scope: For the
purpose of identify / characterize, with respect to performance testing processes, from
the viewpoint of performance test engineers and researchers, in the context of soft-
ware engineering environment.

3.1. Research Questions

We assigned the following Research Questions (RQ): RQ1. What are the performance
testing profiles/roles, artifacts, methods or approaches? RQ2. What are the performance
testing stages and phases? RQ3. What are the performance testing activities, steps or
tasks? RQ4. What are activity or task flows performed in performance testing?

3.2. Question Structure

Research questions (RQs) are design by means of (PICOC) [Wohlin et al. 2012] crite-
ria, that takes into consideration as follows: Population: published research on software;
Intervention: performance testing; Comparison: general comparison of the retrieved pro-
cesses; Outcome: published papers on Performance Testing; Context: software testing
practice and research.

3



3.3. Search Strategy

To perform the proposed search, we selected the following databases: ACM Digital Li-
brary; Engineering Village; IEEE Xplore Digital Library; ScienceDirect; Scopus. These
databases were chosen because they stored the main publications in the computer sci-
ence field and they also offered a web-based search engine. Hence, we elaborated search
strings according to each database particularity. The generic string that was used to derive
the other strings is shown in Table 1.

Table 1. Generic Search String.

(process OR framework OR method OR approach OR guideline OR taxonomy
OR ontology) AND (web) AND ((performance OR load OR stress OR

workload) AND (test OR testing)) AND (stage OR phase OR activity)

3.4. Selection Criteria and Quality Assessment Criteria

Inclusion criteria and exclusion criteria were defined and applied in order to filter in the
initial search. Besides, for a study to be included, it must satisfy at least one inclusion
criterion and at least one exclusion criterion as a means to excludes the study from our
analysis. To evaluate selected studies’ relevance and also answering some research ques-
tions, we used quality assessment criteria. The quality assessment criteria are featured
which may be exploited in two stages: the first stage being the individual evaluation of
each researcher, to reduce bias probability; the second stage is where researchers should
reach a consensual note about publications in a “divergent state” in a quality measurement
grade. Due to space limitation, we provide a set of documents in an online repository that
including the list of inclusion and exclusion criteria; quality assessment criteria, and; data
extraction strategy (http://bit.ly/2wKwUPp).

3.5. Selection Process

(1) Pilot Search Strategy: In order to verify the quality of the proposed search string, the
approach called Search-Based String Generation (SBSG) [Souza et al. 2018] was applied.
The approach is based on precision and sensitivity indexes calculation. The precision is
the ability to identify the amount of irrelevant studies, while the sensibility is a measure to
identify all of the relevant studies. When precision is zero, no irrelevant study is detected.
This approach applies an Artificial Intelligence technique through the Hill-Climbing al-
gorithm suggested by Russell [Russell and Norvig 2016], which allows the measurement
of precision and sensitivity indexes for a set of keywords and an initial set of selected
papers. The proposed string was submitted on the basis of 8 (eight) pre-selected stud-
ies. Thus, the achieved results were 11.27% precision and 79.49% sensitivity. (2) Search
Databases: The strings were generated using selected terms and synonyms and were
run in the selected databases, resulting in an initial aggregation of studies; (3) Removal
of Duplicates: The results of initial selection were filtered-out for duplicated entries;
(4) Selection Studies: In this step, we read separately the title and the abstract (read-
ing the introduction and conclusion when necessary) of each study. Here, we decided to
select or reject an article following defined inclusion and exclusion criteria; (5) Quality
Assessment: The selected studies from inclusion and exclusion criteria application were

4

http://bit.ly/2wKwUPp


submitted to quality assessment criteria; (6) Data Extraction: To answer to RQs, the
selected/classified studies were obtained and relevant data were extracted using a form.

Our initial selection was conducted in May 2019, on ACM Digital Library, Engi-
neering Village, IEEE Explore, Science Direct, and Scopus and provided close to 1328 re-
sults. After filtering out duplicate entries, the number of results was reduced to 1081. The
number of duplicate entries was quite large and this might be attributed to papers being
revised from conferences publications into journal articles, being extended and submitted
in later conferences, and overlapping results from databases. After separately applying
inclusion and exclusion criteria fifty-two (52) studies remained. Finally, the quality as-
sessment reduced the number of results was reduced to thirty-seven (37) papers.

4. Results and Discussion
This section presents the SLR results, in which thirty-seven (37) studies are discussed
to respond to defined research questions. Figure 1 provides us an overview of obtained
results in the form of a feature model. Nodes Test Plan, Model, Planning and Analysis
are of optional nature, e.g., an approach that does not use a model as an artifact, this is not
required.

Performance Testing Process

Profiles/Roles

Performance Engineer

Architect Tester Analyst

Methods

Scripting CR MBT

Artifacts

Test Plan Model Script Workload Scenario Test Report

Approaches

Load Stress Endurance Spike

Stages

Pre-Test

Planning Scripting Design Configuration

Test

Execution Monitoring

Post-Test

Analysis Reporting

Mandatory
Optional
Or
Abstract
Concrete

Figure 1. Overview of web performance testing process.

4.1. RQ1. What are the performance testing profiles/roles, artifacts, methods or
approaches?

4.1.1. Profiles/Roles

After to analyze selected studies, we identified the following four (4) profiles/roles:
(1) Performance Engineer: The performance engineer must have the knowledge to
support all stages, phases, and activities of the performance test. This role can be spe-
cialized in other roles (Performance Architect, Performance Tester, and Performance An-
alyst). Some papers make reference directly or indirectly to this role [Subraya 2006]
[Xu et al. 2014] [Van Der Ster et al. 2011]. (2) Performance Architect: This role is in-
volved within Design and Configuration Phases and it must make a connecting bridge
between early phases and testing execution. A Performance Architect must-have skills to
make design and configuration activities. The term ”Performance Architect” is reported
in Subraya [Subraya 2006] paper. (3) Performance Tester: This role is directly related

5



to the testing execution phase. A Performance Tester is the one who should ”operate” per-
formance testing, making use of available tools for performing this activity. A few papers
bring this role within another nomenclature as User and Developer [Tselikis et al. 2007]
[Pfau et al. 2017]. We merged these terms in Performance Tester, once we believe to be
more suitable for this context. (4) Performance Analyst: Performance Analyst has par-
ticipation in early and late performance testing phases. He is responsible for initial testing
planning and documentation, providing input to subsequent phases, design, and configu-
ration. This role is also present after testing execution, on this account, it is employed in
the analysis and reporting phases. This role is not directly reported in the chosen papers.
However, Subraya [Subraya 2006] refers to their activities, without specific nomenclature.

4.1.2. Artifacts

The most relevant artifacts are presented to support performance testing activities:
Performance Test Plan: is a document elaborated by a Performance Analyst as a means
to, provide support and guiding the team in the whole test activities. In this docu-
ment general testing features, such as testing type, scope, approach, and the steps to
achieve performance testing goals are explained. This artifact is generated in the plan-
ning phase and it is reported in some papers that focuses on this phase [Meier et al. 2007]
[Freitas and Vieira 2014] [Yin et al. 2008] [Huang et al. 2011]; Model: is used as input
in technique known as Model-Based Testing. A model is an abstraction of software be-
havior that enables reuse and facilitates the understanding of the flow of activities per-
formed by the test [Yin et al. 2008]; Performance Script: is the main input artifact for
running the test. Through it, the test execution flow is defined, since a script is repre-
sented by a set of instructions and may be obtained in an automatic or manual manner.
In the former, scripts are generated through tools that use a capture and replay mecha-
nisms [Subraya 2006]. On the latter one, in manual form scripts are generated through a
programming language code; Workload: is responsible for modifying the SUT situation
through its different configurations. A workload may vary based on the test approach
and it includes a number of users, concurrent active users, data volumes, and transaction
volumes, along with the transaction mix. For performance modeling, a workload is asso-
ciated with an individual scenario [Pfau et al. 2017]; Performance Scenario: defines as
a set of steps in an application [Meier et al. 2007]. Moreover, a scenario may map a given
application context, within a determinate workload for a user profile, it should be modeled
on the basis in usage patterns and log files. Performance Test Report: reports the data
retrieved by test execution. This report must contain test results, organized in a way that
allows their interpretation by stakeholders. Meier et al [Meier et al. 2007] lists six key
components, which are not mandatory, of a technical report: a results graph, a table with
single-instance measurements, a workload model, test environment, general observations
and a references section.

4.1.3. Methods

Three methods are related to performance testing conducting [Rodrigues et al. 2015]:
Scripting: This method involves technique support by the manual script where the per-
formance tester writes a set of code statements, which are going to be inputted to a load

6



generator to providing a workload in a given scenario; Model-Based Testing: In this
method, a software behavior under test is verified according to their model. It has some
advantages such as enabling the application of models for appropriate testing models cre-
ation, as well its use in performance testing; Capture and Replay: This method consist
of recording the execution of the application’s functionalities for the generation of test
scripts for the later execution of these scripts simulating the execution of the application’s
functionalities.

4.1.4. Approaches

Subraya [Subraya 2006] presents a set of four (4) performance testing approaches called
LESS (Load, Endurance, Stress, Spike): (1) Load Testing: A load is a quantitative of
users which compete to increase traffic of application. It is useful for determining the
break-point and checking when bottlenecks begin to emerge; (2) Endurance Testing:
An endurance testing is directly related to the reliability of the application. Different test
execution times can be set to check the behavior of the application in different scenarios
based on the duration of the test. Endurance testing may be to performed on a normal
load or on a stress load, but the main focus of this approach is the test duration; (3) Stress
Testing: A stress testing is similar to the load testing. However, the stress testing aims to
check how the application handles in its limit. Therefore, it helps researches to identify
the load that the system can handle before breaking down or degrading quickly; (4) Spike
Testing: A spike testing is conducted to verify application behavior under a surge in a
short duration. The application is subjected to a sudden load increase.

4.2. RQ2. What are the performance testing stages and phases?

For our purpose, stages were mapped as being the activities group in the high level, which
may have one or more phases. We identified three (3) stages and nine (9) phases in the
performance testing context. The stages and phases are as follows:

4.2.1. Pre-Test

This stage comprises previous phases to test execution. The test definition and prepara-
tion are prepared in this stage. The Pre-Test stage has four (4) phases: (1) Planning:
In this phase occurs test definition. Major requirements related to the test are mapped
and some factors should be analyzed, such as network and infrastructure environment,
business functions related with the performance requirements and everything that may be
really relevant to the test; (2) Scripting: This phase involves activities that focus on script
elaboration, which can be obtained by different means. For instance, supported by models
and uses the MBT or CR for a automatic generation or also by means of coding, where
scripts are made from specific programming language; (3) Design: Using the test specifi-
cations defined in the planning phase, performance testing is designed taking into account
environments particularities and performance testing goals; (4) Configuration: It is the
last phase before test execution. In this state, adjusts and setting performance testing are
made. Issues like workload type, performance testing type and tool functionalities should
be considered as well as infrastructure issues.

7



4.2.2. Test

After the Pre-Test stage, in this stage occurs the Test stage, moment in which test execu-
tion is realized. Execution: In this phase workload is generated and the SUT is monitored
to obtain inputs that indicate the main bottlenecks and the behavior of the system under
this load. In addition to this monitoring, test should provide mechanisms to collect nec-
essary metrics, which were defined in the Pre-Test stage. Monitoring: Defined metrics
as throughput, response time, hits per second must be monitored during test execution.
This monitoring allows performance testing roles to obtain outputs for subsequent phases,
analysis and reporting in post-test stage.

4.2.3. Post-Test

This stage encompasses the phases that postdate Execution, Analysis and Reporting re-
spectively. 1. Analysis: In this phase result analysis is conducted, according to the metrics
that were collected during test execution. The support by a specific tool is very important
in this phase, once manual execution is impracticable. However, this analysis is directly
related to the collection of metrics results exposure during the test, not the analysis by
the performance engineer in a decision making process; 2. Reporting: This phase is the
sequence of the analysis phase. In this phase, test results are reported. This report might
vary between a detailed and automated report, depending on the tool used, or a report with
minor information, so that the performance engineer/architect has the task of interpreting
performance testing report results.

It was possible to verify that most of studies addresses test execution. Other is-
sue demonstrated in this table is an evaluation type, achieved by selected studies. Case
studies are more recurring in this context, once eleven (11) empirical studies this type
were founded, followed by experiments with seven (7) studies that used this approach to
assessing the study. Another relevant question to be highlighted is that the majority of
studies are not focused on all phases and stages of a performance testing, on the grounds
that they focus on some specific phases.

4.3. RQ3. What are the performance testing activities, steps or tasks?

Based on the selected papers, we found one hundred thirty eight (138) performance testing
activities, steps or tasks, so it is unfeasible to detail them in this paper In Figure 2 it is
possible to identify that assumption, as well as the trend evidenced in previous research
questions. There is a greater concentration of activities in the test execution phase, where
we identified forty seven (47) activities related to this phase. The other phases have a
similar commensurate of activities, ranging from fifteen (15) to twenty two (22) activities,
except Scripting and Reporting phase where twelve (12) and five (5) related activities,
respectively, were found.

It is relevant to allude that some activities can have differences only in their
nomenclature, for the sake of having same objective in practice. It is also worth em-
phasizing that due to the varied possibilities for a performance test, not necessarily all the
mapped activities must be used, as a result of the particularity of each test, a certain group
of activities will be executed.

8



0 10 20 30 40 50

Reporting

Analysis

Execution

Configuration

Design

Scripting

Planning

5

19

47

22

18

12

15

Activities/Steps/Tasks Quantitative

Figure 2. Relation Activities/Steps/Tasks Quantitative X Phases.

4.4. RQ4. What are activities/tasks flow performed in performance testing?

The mapping of the stages, phases and subsequent activities reported in the selected stud-
ies allowed us allowed us to understand that the phases can be organized in a circular
manner. Performance testing may be thought of as a sequential activity and may be in-
stantiated as many times as necessary. In this flow the sequence starts in the Planning,
following the six (6) next phases until completing the cycle. Another reason that moti-
vated us to model the flow in this manner is due to the fact that is the large variety of
activities and tasks that do not include all mapped phases, making it possible to under-
stand the sequence of the test independent of the activity described to contemplate the
phases in their totality or not.

5. Conclusion and Future Work

Performance Testing is an important area that has a direct influence on application relia-
bility and scalability. Based on this, mapping the main concepts of the area is important
when trying to define a generic process in the context of performance testing for Web ap-
plications. In this paper, we present the protocol, execution, and results of an SLR for an
overview of performance testing for Web applications. Hence, thirty-seven (37) studies
were selected and analyzed to obtain subsidies that answered our research questions. We
assume that our main contribution was obtained through SLR results, which allowed us
to map the main concepts related to the performance testing area, encompassing all its
stages and phases. Our results were reported in a textual description of them and by a
feature model that encompasses the whole SLR results.

Currently, we are working on the development of a broad and generic web perfor-
mance testing process, supporting those involved in performance testing activities with a
well-defined process that presents roles, phases, and activities with their respective inputs
and outputs. This SLR is the initial point of this process, once despite highlighting the
main concepts, it is still necessary that they are refined and confronted with the state of
practice in the industrial environment. Thus, we have also employed efforts to conduct a
survey to this end.

9



References

A. Kitchenham, B. (2007). Guidelines for performing Systematic Literature Reviews in
software engineering. EBSE Technical Report EBSE-2007-01.

Bernardino, M., Zorzo, A. F., and Rodrigues, E. M. (2016). Canopus: A domain-specific
language for modeling performance testing. In IEEE International Conference on
Software Testing, Verification and Validation (ICST), pages 157–167. IEEE.

Caldiera, V. R. B.-G. and Rombach, H. D. (1994). Goal question metric paradigm. Ency-
clopedia of software engineering, 1:528–532.

Freitas, A. and Vieira, R. (2014). An ontology for guiding performance testing. In 2014
IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelli-
gent Agent Technologies (IAT), volume 1, pages 400–407. IEEE.

Huang, X., Wang, W., Zhang, W., Wei, J., and Huang, T. (2011). An adaptive performance
modeling approach to performance profiling of multi-service web applications. In
Proc. International Computer Software and Applications Conference, pages 4–13.

Meier, J., Farre, C., Bansode, P., Barber, S., and Rea, D. (2007). Performance testing
guidance for web applications: patterns & practices. Microsoft press.

Molyneaux, I. (2009). The art of application performance testing: Help for programmers
and quality assurance. ” O’Reilly Media, Inc.”.

Pfau, J., Smeddinck, J. D., and Malaka, R. (2017). Automated Game Testing with
ICARUS: Intelligent Completion of Adventure Riddles via Unsupervised Solving. In
Extended Abstracts Publication of the Annual Symposium on Computer-Human Inter-
action in Play, pages 153–164, New York, NY, USA. ACM.

Rodrigues, E., Bernardino, M., Costa, L., Zorzo, A., and Oliveira, F. (2015). Pletsperf-a
model-based performance testing tool. In 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST), pages 1–8. IEEE.

Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited,.

Souza, F. C., Santos, A., Andrade, S., Durelli, R., Durelli, V., and Oliveira, R. (2018). Au-
tomating Search Strings for Secondary Studies, chapter 558, pages 839–848. Springer
International Publishing.

Subraya, B. M. (2006). Integrated approach to web performance testing: A practitioner’s
guide.

Tselikis, C., Mitropoulos, S., and Douligeris, C. (2007). An evaluation of the middle-
ware’s impact on the performance of object oriented distributed systems. Journal of
Systems and Software, 80(7):1169–1181.

Van Der Ster, D. C., Elmsheuser, J., Garcia, M. U., and Paladin, M. (2011). Hammer-
Cloud: A stress testing system for distributed analysis. In Journal of Physics: Confer-
ence Series, volume 331, Taipei, Taiwan.

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B., and Wessln, A. (2012). Ex-
perimentation in Software Engineering. Springer Publishing Company, Incorporated.

10



Woodside, M., Franks, G., and Petriu, D. C. (2007). The future of software performance
engineering. In Future of Software Engineering, pages 171–187. IEEE.

Xu, X., Jin, H., Wu, S., Tang, L., and Wang, Y. (2014). URMG: Enhanced CBMG-based
method for automatically testing web applications in the cloud. Tsinghua Science and
Technology, 19(1):65–75.

Yin, J., Ming, Z., Xiao, Z., and Wang, H. (2008). A web performance modeling process
based on the methodology of learning from data. In Proceedings of the 9th Inter-
national Conference for Young Computer Scientists, ICYCS 2008, pages 1285–1291,
Zhang Jia Jie, Hunan, China.

11


	Introduction
	Background
	Systematic Literature Review Protocol
	Research Questions
	Question Structure
	Search Strategy
	Selection Criteria and Quality Assessment Criteria
	Selection Process

	Results and Discussion
	RQ1. What are the performance testing profiles/roles, artifacts, methods or approaches?
	Profiles/Roles
	Artifacts
	Methods
	Approaches

	RQ2. What are the performance testing stages and phases?
	Pre-Test
	Test
	Post-Test

	RQ3. What are the performance testing activities, steps or tasks?
	RQ4. What are activities/tasks flow performed in performance testing?

	Conclusion and Future Work

