Strategies for Mitigating Microservice Anti-Patterns in the
Pre-Migration of Monolithic Legacy Systems

Guilherme L. D. Villaca', Ivonei F. da Silva', Wesley K. G. Assun¢io?,
Rodrigo B. Rocha!, Gabriel C. Fermino!

'PPGComp — Western Paran4 State University (UNIOESTE)
Cascavel — PR — Brazil

2Department of Computer Science, North Carolina State University
Raleigh — North Carolina — USA

guidvillaca@gmail.com, wguezas@ncsu.edu
{ivonei.silva, rodrigo.rocha5}@unioeste.br
gabriel.cf2009@hotmail.com

Abstract. This article analyzes strategies for mitigating antipatterns during the
pre-migration phase of monolithic systems to microservices architectures. Us-
ing a multi-method research approach, the study examines the challenges and
best practices involved in this transition. The research highlights that Domain-
Driven Design (DDD) and the Strangler Fig Pattern are essential strategies for
the gradual decomposition and migration of systems. Key success factors also
include modularization, effective management of coupling, and the implementa-
tion of automated testing. The analysis emphasizes the importance of consider-
ing the specific context when selecting migration strategies. Overall, the study
identified 25 strategies and concluded that these approaches, when applied in
the pre-migration phase, can effectively mitigate antipatterns during the transi-
tion to microservices.

1. Introduction

Monolithic legacy systems suffer degradation over time due to extensive mainte-
nance, architectural violations, and inadequate design decisions [Wolfart et al. 2021,
Macia et al. 2012]. To mitigate this degradation, one option is complete reconstruc-
tion using new technologies, but software modernization is a more economical ap-
proach [Mahanta and Chouta 2020, Wolfart et al. 2021], whether through refactoring, re-
modeling, or migration to modern paradigms such as microservices [Candela et al. 2016].
The migration to microservices, adopted by companies like Amazon and Netflix, involves
decomposing systems into smaller services, each operating independently and communi-
cating through lightweight APIs [Newman and Reisz 2020].

Despite its advantages, the migration from monoliths to microservices is challeng-
ing, introducing problems such as boundary conflicts and versioning difficulties. More-
over, microservices architectures may suffer from antipatterns, inadequate practices that
arise during development and impact several software quality attributes, such as com-
prehensibility, testability, extensibility, reusability, and maintainability [Taibi et al. 2020,
Liet al. 2021, Cerny et al. 2023]. The most common antipatterns in microservices in-
clude Nano-service, Mega-service, Duplicated services, Wrong cuts, Knot service, Con-
tent coupling, Tightly coupled services, Shared libraries, Hard-coded endpoint, Mi-

croservice greedy, Data-driven migration, Lack of communication standards among mi-
croservices, Inappropriate service intimacy, Shared persistence, and Legacy organiza-
tion [Cerny et al. 2023]. This study investigates strategies to mitigate these antipatterns
during the pre-migration phase of migrating legacy systems to microservices. While
there are few studies on microservices antipatterns, none focus on monolith migra-
tion [Taibi et al. 2020, Carrasco et al. 2018]. This study aims to fill this gap by assisting
professionals in more effectively planning migrations and preventing antipatterns from
the beginning.

2. Background

2.1. Monolithic Architecture and Its Modernization

Monolithic architectures are rigid and highly coupled, making even small
changes challenging and negatively impacting productivity, cost, and deployment
[Jambunathan and Y. 2016]. Over time, these architectures may experience difficul-
ties related to constant modifications, evolving requirements, an increase in defects,
and design issues, which might affect performance and increase costs. In software
engineering, it is recommended to continuously adapt or improve systems to keep
them operational [Khadka et al. 2015]. Modernization, alongside maintenance and
replacement, is essential to enhance maintainability, flexibility, and potentially re-
duce costs [Comella-Dorda et al. 2000]. The decision to modernize a monolithic
system to a microservices architecture is typically considered when: (i) they be-
come too large and complex to maintain, (ii)) modularity and decentralization are
crucial, and (iii) there are clear long-term benefits anticipated from such a transi-
tion [KazanaviCius and MaZeika 2019].

2.2. Microservices and Antipatterns

Microservices are sets of independent services, organized around business functions, with
automated deployment and decentralized control of languages and data [Fowler 2014].
Each service should follow the single responsibility principle, focusing on a spe-
cific function [Knoche and Hasselbring 2019]. Although they bring benefits, microser-
vices increase the complexity of distributed systems [Carrasco et al. 2018]. Common
problems, known as antipatterns, arise during migration due to a lack of knowledge
about best practices, impacting attributes such as comprehensibility and maintainabil-
ity [Taibi et al. 2020].

Antipatterns, such as wrong cuts, cyclic dependency, and shared persistence, have
been identified in microservices [Taibi et al. 2020], with solutions focused on the mi-
croservices context, without considering the migration process from monolithic systems.
Studies suggest that some pitfalls, such as mega-service and shared libraries, need to be
addressed in the pre-migration phase [Carrasco et al. 2018].

2.3. Phases of Microservices Migration

The migration from monolithic systems to microservices follows four phases: (i) Under-
standing the monolithic system, (ii) Defining the microservices architecture, (iii) Exe-
cuting the transformation, and (iv) Post-migration monitoring [Wolfart et al. 2021]. This
study focuses on the first two phases, considered pre-migration, as the execution and
monitoring phases are beyond the scope of this research.

3. Methodology

The research was conducted in three Steps, as illustrated in Figure 1. Step 1, which
took place between 2020 and 2022, aimed to identify strategies for mitigating an-
tipatterns in microservices before migrating monolithic systems. A Systematic Lit-
erature Mapping (SLM) was carried out with the central research question: What
strategies adopted during the pre-migration phase of legacy systems migration to mi-
croservices can mitigate antipatterns? This question was analyzed using the PICO
framework [Huang et al. 2006]. Alongside the SLM, a rapid review of grey litera-
ture was conducted to validate the data [Kamei et al. 2021]. Subsequently, interviews
were conducted with industry professionals to gather insights into their experiences and
perspectives on the migration of monolithic systems to microservices. These inter-
views were systematically planned and guided by the Goal-Question-Metric (GQM) ap-
proach [Basili and Rombach 1988, Solingen and Berghout 1999], ensuring a focused ex-
ploration of the challenges and best practices in the migration process. Nine experts from
industry were selected based on their practical experience with microservices migration.

Steps 2 and 3, completed in 2024, involved a Systematic Literature Review (SLR)
focusing on both scientific and grey literature. In Step 2, the goal was to investigate
how existing refactoring strategies contribute to mitigating antipatterns during the pre-
migration phase, with data sourced from grey literature, including blogs, publications,
and videos. For Step 3, the focus shifted to exploring how refactoring strategies applied
before migration aid in the transition to microservices, with data collected from a review
of scientific literature, including conference papers and research. The scientific review
utilized databases such as ACM Digital Library, IEEE Xplore, Scopus, and SpringerLink,
where quality was assessed based on context clarity and how well the research questions
were addressed. For the grey literature, quality was measured by the practical relevance
and reputation of the sources, using tools like Google and arXiv for data collection.

The search string used was: (monolith) AND (smell OR antipattern OR badprac-
tice OR pitfall* OR refactor* OR reengineer* OR violation OR defect OR degradation)
AND (microservice®* OR micro-service®* OR “micro services”). A total of 847 studies
were identified. Inclusion criteria were defined to ensure that the selected works addressed
strategies implemented prior to the migration from monolithic systems to microservices.
These included detailed descriptions of strategies, practical migration experiences, and
the provision of guidelines or step-by-step procedures for the process. Exclusion crite-
ria were applied to eliminate studies that did not align with the research scope, such as
systems originally developed in microservices architecture, works outside the migration
context, and those that did not address strategies prior to the migration process. After
applying the inclusion and exclusion criteria, 135 studies were selected for the final anal-
ysis.

3.1. Thematic Analysis

All studies employed thematic analysis as a research method, a widely used approach
for identifying, analyzing, and reporting patterns in qualitative data. This method al-
lows for organizing and describing data in detail, as well as interpreting various as-
pects of the investigated topic. Thematic analysis can be applied in different theoretical
frameworks, whether essentialist or realist, capturing participants’ experiences and mean-

Step 1

v —

s lf 04/2020
Sﬁfp’;i‘&;‘gﬁ;’e Total studies: 847
After inclusion/exclusion: 135
Rapid Review
({1033 0512021
Interview with
Practitioners 2021 Step 2 Step 3
Thematic Map
02/2022 l 2022 l 2022

Systematic Review of Systematic Grey
Scientific Literature Literature Review
(114/17) (111/26)

i ¥

Thematic Map Thematic Map

2024 2024

Figure 1. Research Timeline

ings [Cruzes and Dyba 2011]. In this study, the information was coded and grouped into
broader themes.

The methodological differences between the steps reflect the complexity of system
migration, highlighting the need for multiple perspectives. The analysis of the adopted
methodologies emphasizes the importance of using diverse sources and approaches to
build a more comprehensive understanding of the migration of monolithic systems to
microservices.

4. Results and Discussions

The thematic analysis followed a similar process across all studies, with stages of coding,
grouping into themes, and analyzing the relationships between them. However, the data
sources and identified themes varied. Below, we describe the results of each step.

In Step 1, the main themes identified were modularity, data, and organizational
culture. As a result, ten strategies to mitigate antipatterns were found, with a focus on
DDD and the Strangler Fig Pattern. In Step 2, the main themes were decomposition,
modularity, and data. The analysis identified 13 refactoring strategies and techniques,
which were mapped based on the identified themes. In Step 3, nine strategies related to
the discussed themes were identified.

The identified strategies are detailed in the spreadsheet [Villaca 2024]. Modularity
emerged as a central theme across all steps, reinforcing the importance of breaking down
the monolithic system into smaller components before migration. Additionally, DDD and
the Strangler Fig Pattern were consistently mentioned across all three steps as effective
refactoring strategies. The three steps of the study resulted in some duplicated strategies
(see Table 1), and after removing these duplications, the total number of strategies is 25.

Table 1. Themes & Codes

Theme

Code

Step 1

Step2 | Step 3

Modularity

Domain-Driven Design
Strangler Fig Pattern
Measure Coupling and Cohesion
Backlog

Bounded Context
Model-Driven Design
Anti Corruption Layer
Branch by Abstraction
Glue Code

Aggregates

Modular Monolith

UI Composition

ASNENENEN

SNENEN

AN N N NEN
<\

Data

Group Entities

Classify DB in Business SubSystem
Data First

CQRS

Data Access Object

SNENEN

SNEN

Organizational Culture

Clean Architecture
Twelve Factor App
Evolvability Assurance

SNENEN

Testability

Test-Driven Development

Intermediate Architecture

Service Oriented Architecture
Hexagonal Architecture

SENEN

Decomposition

Sidecar
Functional Decomposition

4.1. Themes

The codes identified in the three steps of this research were grouped and transformed
into themes [Cruzes and Dyba 2011], which are: modularity, data, organizational culture,
testability, intermediate architecture, and decomposition, as presented in Table 1 and the
thematic map in Figure 2. In the table, each strategy is also related to a column that
indicates the step in which it was identified.

RS { Glue Code
{Modular Monolith| ;

(Data Access l { S }

Obiject

Data

Group Entities |

Branch by
Abstraction
{Anh-corrup(ion 1
Layer

Model-Driven J

g

| DataFist |

Classify DB in Business
Subsystem

Test-Driven Smm— P -
Architecture

Testability

Measure Coupling
and Cohesion

Bounded
‘ DDD ‘ Context
Strangler Fig | Backiog \
Pattern () [

Clean Architecture |

Organizational
Culture

Evolvability ‘
Assurance

Intermediate
Architecture

[Functional
b \ Twelve Factor App

Decomposition

Figure 2. Thematic map of strategies to mitigate antipatterns in microservices

4.2. Discussion

This study addresses a central challenge in modern software engineering: the migration
from monolithic systems to microservices architectures. Focusing on the pre-migration
phase, it highlights the importance of applying specific strategies to mitigate antipatterns,

facilitating a more effective transition. In addition to acknowledging the complexity in-
volved in the process, the study directly contributes to practical problems faced by devel-
opers and companies, identifying practical solutions to prevent common difficulties and
ensure a successful migration.

4.2.1. Strategies to Mitigate Antipatterns

The association between strategies and antipatterns was made by the authors of this
study during Steps 1, 2, and 3 and are listed in Table 2. In this analysis, we iden-
tified a set of strategies and techniques that, if applied in the pre-migration phase
can minimize the occurrence of antipatterns. Among the key findings, the impor-
tance of modularizing the monolithic system before migration stands out. Breaking
down the system into smaller, independent components facilitates the subsequent de-
composition into microservices. The research identifies DDD as a powerful tool for
achieving modularity. By focusing on business domains and dividing the system into
Bounded Contexts, DDD helps avoid antipatterns such as Mega Service and Wrong
Cuts [Fan and Ma 2017, Silva et al. 2019, Newman and Reisz 2020, Lavann et al. 2021,
Assouline and Grazi 2017, Samokhin 2018].

Another highlighted technique is the Strangler Fig Pattern, which proposes a grad-
ual and incremental migration, proving effective in reducing risks and migration complex-
ity [Kornilov 2020, Sitnikova 2021, Goel 202, Richardson 2016]. Data management is
also a crucial point in the process. The research emphasizes the importance of analyzing,
classifying, and organizing data before migration, ensuring that each microservice has
a well-defined and independent data structure [Hubers 2021, Santos and Rito Silva 2020,
Baeldung 2018]. The CQRS (Command Query Responsibility Segregation) pattern, espe-
cially recommended for complex domains, allows for the selective application of Bounded
Contexts in DDD. When combined with event sourcing, CQRS significantly improves ap-
plication organization [Gongalves 2023].

Additionally, the research emphasizes the implementation of automated tests dur-
ing the pre-migration phase. Comprehensive testing ensures code quality and helps iden-
tify issues early, facilitating migration and preventing failures [Martin 2023]. Another
aspect addressed is the use of intermediate architectures, such as Service-Oriented Ar-

chitecture (SOA), which can serve as a gradual step in the transition to microservices
[AWS 2024].

The research demonstrates the importance of pre-migration planning as a funda-
mental step for successful adoption of microservices. The identified strategies offer a
practical guide for developers and architects aiming to execute this transition efficiently
and securely, minimizing risks and costs associated with migration.

4.3. Study Limitations

This study contributes to software migration but has limitations. Some strategies are only
superficially explored, with limited practical examples, and validation relies heavily on
literature rather than real-world case studies. The focus on general migration to microser-
vices, without considering specific application domains, may overlook domain-specific
challenges. Organizational factors like company culture and resistance to change are not

Table 2. Strategies & Antipattern

Strategies [Antipatterns

Domain-Driven Design

Bounded Context Mega Service, Duplicated services, Wrong cuts, Lack of
Model-Driven Design communication standards among microservices
Aggregates

Strangler Fig Pattern . . .

Anti-Corruption Layer Mega Service and Big Bang

Measure Coupling and Cohesion Shared Libraries

Backlog Mega Service and Microservice Greedy

Branch By Abstraction Big Bang

No API-Gateway, Too many standards, Inadequate
techniques support, Golden Hammer

UI Composition Ambiguous Service

Classify DB in Business Subsystem
Functional Decomposition

Group Entities Shared Persistence
Data first

Sidecar

CQRS

Data Access Object
Clean Architecture

Glue Code

Data-Driven Migration

Twelve Factor App and Shared Libraries and Cyclic Dependencies
Evolvability Assurance

Test-Driven Development Insufficient Monitoring

Service Oriented Architecture .

Modular Monolith Mega Service e Wrong cuts

Hexagonal Architecture Mega Service, Wrong cuts, No API-gateway, Big Bang

deeply examined, despite their importance to migration success. The research was con-
ducted individually, which could introduce bias, and the nine professional interviews,
while useful, offer limited conclusions. The subjectivity in constructing the thematic map
may have also affected strategy categorization. These limitations suggest the need for
further research to deepen the understanding of monolithic to microservices migration.

5. Future Work

Several areas still require further exploration to improve knowledge on migrating from
monolithic systems to microservices. Key challenges include managing inter-service
communication, ensuring data consistency in distributed environments, and handling fail-
ures. Post-migration challenges, such as monitoring, scalability, security, and updates,
also need further investigation. Detailed methodological steps, including case studies and
real-world examples, would aid in the application of strategies. Comparative studies of
different strategies and refactoring techniques, considering factors like system size and
team experience, would be valuable.

In addition to technical challenges, it is essential to study how organizational fac-
tors—such as company culture, team structure, and resistance to change—affect migra-
tion success. The impact on development teams, including the learning curve, training,
and changes in work processes, should also be explored. Addressing these gaps will
provide a more comprehensive guide for companies and developers, supporting more ef-
ficient and sustainable migrations to microservices.

6. Conclusion

This research explored strategies to mitigate anti-patterns in microservices before migrat-
ing from monolithic systems to microservice architectures, with an emphasis on modu-
larization as a central point. Dividing the monolithic system into smaller, independent
components, using techniques such as DDD and the Strangler Fig Pattern, facilitates the
subsequent decomposition into microservices. This approach minimizes the risk of fail-
ures and accelerates the migration process, making it more manageable. In addition to
modularization, data management also emerges as a crucial aspect. Analyzing, classify-
ing, and organizing data before migration is essential to ensure that each microservice
operates with a well-defined and independent data structure, avoiding coupling issues and
inconsistencies.

Another key point is testability, underscoring the need to implement automated
tests throughout the migration process to ensure code quality and prevent failures. This
research demonstrates that the pre-migration phase should not be neglected, as applying
appropriate strategies during this phase can mitigate antipatterns in microservice systems.

7. Acknowledgment

We would like to thank the Coordenagdao de Aperfeicoamento de Pessoal de Nivel Su-
perior (CAPES)- Programa de Exceléncia Académica (PROEX) - Brasil for Financial
Support.

References

Assouline, P. and Grazi, V. (2017). Perspective on architectural fitness of microservices.
https://www.infog.com/articles/Microservices—-Architectur
al-Fitness/.

AWS (2024). Padrao de figo strangler - aws orientagdo prescritiva. https://docs.a
ws.amazon.com/pt_br/prescriptive-guidance/latest/cloud-d
esign-patterns/strangler-fig.html.

Baeldung (2018). The dao pattern in java. https://docs.aws.amazon.com/pt
_br/prescriptive—-guidance/latest/cloud-design—-patterns/st
rangler—-fig.html.

Basili, V. and Rombach, H. (1988). The tame project: towards improvement-oriented
software environments. /[EEE Transactions on Software Engineering, 14(6):758-773.

Candela, I., Bavota, G., Russo, B., and Oliveto, R. (2016). Using cohesion and cou-
pling for software remodularization. ACM Transactions on Software Engineering and
Methodology (TOSEM), 25:1 — 28.

Carrasco, A., van Bladel, B., and Demeyer, S. (2018). Migrating towards microservices:
migration and architecture smells. pages 1-6.

Cerny, T., Abdelfattah, A. S., Maruf, A. A., Janes, A., and Taibi, D. (2023). Catalog and
detection techniques of microservice anti-patterns and bad smells: A tertiary study.
Journal of Systems and Software, 206:111829.

Comella-Dorda, Wallnau, Seacord, and Robert (2000). A survey of black-box modern-
ization approaches for information systems. In Proceedings 2000 International Con-
ference on Software Maintenance, pages 173—183.

Cruzes, D. S. and Dyba, T. (2011). Recommended steps for thematic synthesis in software
engineering. In 2011 International Symposium on Empirical Software Engineering and
Measurement, pages 275-284.

Fan, C.-Y. and Ma, S.-P. (2017). Migrating monolithic mobile application to microservice
architecture: An experiment report. In 2017 IEEE International Conference on Al
Mobile Services (AIMS), pages 109-112.

Fowler, M. (2014). Microservices a definition of this new architectural term. http:
//martinfowler.com/articles/microservices.html.

Goel, A. (202). Choosing the right strategy to migrate your monolithic application to a
microservices-based architecture. shorturl.at/dedV7.

Gongalves, M. M. (2023). Cqgrs (command query responsibility segregation) em uma
arquitetura de micro servicos. https://medium.com/@marcelomg2l/cqgrs
—command-query-responsibility—-segregation—-em—-uma—-arquite
tura-de—-micro-servi%C3%A70s-71dcb687a8a09.

Huang, X., Lin, J., and Demner-Fushman, D. (2006). Evaluation of pico as a knowledge
representation for clinical questions. AMIA ... Annual Symposium proceedings. AMIA
Symposium, pages 359-363.

Hubers, T. (2021). How big is a microservice? https://medium.com/geekcul
ture/the-size-of-a-microservice-b9e6bc90475.

Jambunathan, B. and Y., K. (2016). Multi cloud deployment with containers. 8:421-428.

Kamei, F., Wiese, 1., Lima, C., Polato, I., Nepomuceno, V., Ferreira, W., Ribeiro, M.,
Pena, C., Cartaxo, B., Pinto, G., and Soares, S. (2021). Grey literature in software
engineering: A critical review. Information and Software Technology, 138:106609.

Kazanavicius, J. and MaZeika, D. (2019). Migrating legacy software to microservices
architecture. In 2019 Open Conference of Electrical, Electronic and Information Sci-
ences (eStream), pages 1-5.

Khadka, R., Shrestha, P., Klein, B., Saeidi, A., Hage, J., Jansen, S., van Dis, E., and
Bruntink, M. (2015). Does software modernization deliver what it aimed for? a post
modernization analysis of five software modernization case studies. In 2015 IEEE In-

ternational Conference on Software Maintenance and Evolution (ICSME), pages 477—
486.

Knoche, H. and Hasselbring, W. (2019). Drivers and barriers for microservice adoption -
a survey among professionals in germany. 14:1-35.

Kornilov, D. (2020). Monolithic to microservices: Design patterns to ensure migration
success. https://blogs.oracle.com/cloud-infrastructure/post
/monolithic-to-microservices—-how-design-patterns-help-e
nsure-migration—-success.

Lavann, EdPrice, and neilpeterson (2021). Migrate a monolith application to microser-
vices using domain-driven design. https://docs.microsoft.com/en-us/
azure/architecture/microservices/migrate-monolith.

Li, S., Zhang, H., Jia, Z., Zhong, C., Zhang, C., Shan, Z., Shen, J., and Babar, M. A.
(2021). Understanding and addressing quality attributes of microservices architecture:
A systematic literature review. Information and Software Technology, 131:106449.

Macia, 1., Garcia, J., Popescu, D., Garcia, A., Medvidovic, N., and von Staa, A. (2012).
Are automatically-detected code anomalies relevant to architectural modularity? an
exploratory analysis of evolving systems. In Proceedings of the 11th Annual In-

ternational Conference on Aspect-Oriented Software Development, AOSD *12, page
167-178, New York, NY, USA. Association for Computing Machinery.

Mahanta, P. and Chouta, S. (2020). Translating a Legacy Stack to Microservices Using
a Modernization Facade with Performance Optimization for Container Deployments,
pages 143-154.

Martin, M. (2023). Test driven development. https://martinfowler.com/bli
ki/TestDrivenDevelopment.html.

Newman, S. and Reisz, W. (2020). Sam newman: Monolith to microservices. https:
//www.infoqg.com/podcasts/monolith-microservices/.

Richardson, C. (2016). Refactoring a monolith into microservices. https://www.ng
inx.com/blog/refactoring-a-monolith-into-microservices/.

Samokhin, V. (2018). Why microservices fail. https://hackernoon.com/why-m
icroservices—-fail-6cdc006£9540.

Santos, N. and Rito Silva, A. (2020). A complexity metric for microservices architecture
migration. In 2020 IEEE International Conference on Software Architecture (ICSA),
pages 169-178.

Silva, H., Carneiro, G., and Monteiro, M. (2019). Towards a roadmap for the migration
of legacy software systems to a microservice based architecture. pages 37—47.

Sitnikova, A. (2021). Monolith vs microservices: Everything you need to know. https:
//bambooagile.eu/insights/monolith-vs-microservices/.

Solingen, R. and Berghout, E. (1999). The goal/question/metric method: A practical
guide for quality improvement of software development.

Taibi, D., Lenarduzzi, V., and Pahl, C. (2020). Microservices anti-patterns: A taxonomy.
Microservices: Science and Engineering, pages 111-128.

Villaca, G. (2024). Strategies to mitigate antipatterns in microservices.

Wolfart, D., Assun¢do, W. K. G., da Silva, I. F., Domingos, D. C. P., Schmeing, E., Villaca,
G. L. D., and Paza, D. d. N. (2021). Modernizing legacy systems with microservices:
A roadmap. In Evaluation and Assessment in Software Engineering, EASE 2021, page
149-159, New York, NY, USA. Association for Computing Machinery.

