
Implementação de Testes de Integração nos Frameworks de
Desenvolvimento Mobile Flutter e React Native: um estudo

comparativo
Kelvia Kolln1, José Carlos Toniazzo1, Viviane Duarte Bonfim1

1Universidade Comunitária Regional de Chapecó (UNOCHAPECÓ), Chapecó, SC, Brasil

kkolln@unochapeco.edu.br, zetoniazzo@unochapeco.edu.br, vividb@unochapeco.edu.br

Abstract. This study compares the implementation of integration testing in mo-
bile development frameworks Flutter and React Native, using the GQM (Goal-
Question-Metric) paradigm to evaluate metrics such as code volume, resource
consumption, execution time, and robustness. Through a case study of a basic
registration system, was been analyzed ninety tests in Flutter and forty seven
in React Native, measuring CPU and RAM usage, lines of code, and perfor-
mance under load testing. Results indicate that React Native outperforms Flut-
ter in execution time, while both frameworks show similar resource consump-
tion and ease of use (mocks, documentation). However, React Native exhibited
more failures during simultaneous load tests. The choice between frameworks
should consider developer language proficiency, customization needs (Flutter),
and runtime efficiency (React Native). This work provides practical insights
for mobile developers selecting integration testing strategies in cross-platform
environments.
Keywords: Integration Testing, Flutter, React Native, GQM, Mobile

Resumo. Este estudo compara a implementação de testes de integração nos
frameworks de desenvolvimento mobile Flutter e React Native, utilizando o pa-
radigma GQM (Goal-Question-Metric) para avaliar métricas como volume de
código, consumo de recursos, tempo de execução e robustez. Por meio de um
estudo de caso com um sistema de cadastro básico, foram analisados noventa
testes no Flutter e quarenta e sete no React Native, medindo consumo de CPU
e memória RAM, linhas de código e desempenho em testes de carga. Os re-
sultados indicam que o React Native supera o Flutter em tempo de execução,
mas ambos os frameworks apresentam consumo de recursos e facilidade de uso
(mocks, documentação) similares. Verificou-se também que o React Native exi-
biu mais falhas em testes de carga simultâneos. A escolha entre os frameworks
deve considerar a experiência do desenvolvedor com a linguagem, necessida-
des de customização (Flutter) e eficiência em tempo de execução (React Native).
Este trabalho oferece esclarecimentos práticos para desenvolvedores na seleção
de estratégias de teste de integração em ambientes mobile multiplataforma.
Palavras-Chave: Testes de Integração, Flutter, React Native, GQM, Mobile

1. Introdução
O lançamento do iPhone em 2007 impulsionou a demanda por aplicativos móveis e
soluções personalizadas [Rodriguez 2019]. Frameworks multiplataforma como Flut-
ter e React Native se destacaram por permitir o desenvolvimento para iOS e Android

com um único código, otimizando tempo e recursos [Pignati 2021]. Contudo, a com-
plexidade desses sistemas exige testes de integração para garantir a comunicação entre
módulos e evitar falhas que afetem a experiência do usuário [Pressman and Maxim 2021,
Lewis and Veerapillai 2004]. A automação desses testes é essencial, embora enfrente de-
safios como fragmentação de dispositivos e custos.

Este estudo compara a implementação de testes de integração em Flutter e React
Native pelo paradigma GQM (Goal Question Metric), avaliando métricas como desem-
penho, facilidade de uso e consumo de recursos. A pesquisa, baseada em estudo de caso,
analisa critérios como quantidade de código, dependências, tempo de execução e robustez
em testes de carga, apresentando boas práticas, limitações e insights para auxiliar desen-
volvedores na escolha da tecnologia mais adequada.

2. Trabalhos Relacionados

A comparação entre Flutter e React Native é um tópico recorrente na literatura de
desenvolvimento móvel, porém com foco voltado para aspectos de desempenho em
tempo de execução, experiência do usuário ou comparações de features. O estudo de
[Kaur and Kaur 2022], por exemplo, realizou uma revisão sistemática da literatura sobre
estimativas de testes de software no desenvolvimento de aplicações mobile.

Trabalhos como o de [Zahra and Zein 2022] exploraram estratégias de teste em
React Native e Flutter, demonstrando uma similaridade grande entre ambos, o que
também foi constatado neste estudo, com ênfase para testes de integração.

No entanto, há uma lacuna de pesquisa quanto a estudos comparativos que utili-
zem um paradigma estruturado de medição, como o GQM, para avaliar a implementação
de testes de integração. Este artigo se diferencia ao preencher essa lacuna, aplicando
o paradigma GQM para uma comparação baseada em métricas como quantidade de
código, consumo de CPU e memória, e resiliência em testes de carga, contribuindo com
evidências para auxiliar na escolha entre Flutter e React Native do ponto de vista de tes-
tes de integração, cruciais para o bom uso de aplicações que demandam sincronização de
dados com ambientes online.

3. Fundamentação Teórica

3.1. Testes de Software

Segundo [Sommerville 2021], os testes visam comprovar que o software atende aos requi-
sitos e identificar defeitos antes do uso, por meio da execução com dados sintéticos para
detectar erros, anomalias ou problemas não funcionais. O processo busca tanto validar
o cumprimento dos requisitos quanto encontrar entradas que provoquem comportamen-
tos incorretos. A atividade envolve casos de teste, que definem condições, entradas e
resultados esperados [Craig and Jaskiel 2002, Mili and Tchier 2015]; procedimentos de
teste, que descrevem passos de execução [Craig and Jaskiel 2002, Graham et al. 2008];
e critérios de teste, que orientam a seleção e avaliação dos casos, como cober-
tura, adequação [Rocha et al. 2001, Desikan and Ramesh 2006] e geração de casos
[Rocha et al. 2001, Ammann and Offutt 2017]. Conforme o IEEE (Institute of Elec-
trical and Electronic Engineers), defeito é uma implementação incorreta; erro é sua
manifestação no produto; e falha é o comportamento divergente do esperado. Defeitos,

resultantes de falhas humanas, geram erros que podem levar a falhas e comprometer o uso
do software [Neto 2009].

3.2. Testes Manuais e Automatizados

Segundo [Carvalho 2022], os testes podem ser manuais, executados sem automação e
seguindo etapas documentadas para identificar falhas, ou automatizados, que utilizam
ferramentas para agilizar verificações e garantir conformidade. Os manuais têm me-
nor custo, mas são menos precisos por dependerem do fator humano; já os automati-
zados, ideais para testes repetitivos e prolongados, exigem maior investimento e tempo
de implementação. Os testes manuais são sujeitos a erros humanos, permitem a análise
humana e são mais práticos em casos pouco repetitivos. Também são indicados para
testes de usabilidade. Já os testes automatizados apresentam maior precisão por utiliza-
rem ferramentas, sendo adequados para cenários especı́ficos. Eles são ideais para testes
repetitivos e de longa duração, além de indicados para testes de estresse e carga.

3.3. Técnicas de Testes de Software

Segundo [Myers et al. 2011], as técnicas de teste variam conforme a fonte de informação
para definir requisitos, sendo recomendada a combinação de abordagens. O teste de caixa
preta avalia entradas e saı́das sem considerar a estrutura interna, verificando se funciona-
lidades e componentes operam corretamente. Já o teste de caixa branca examina a lógica
e a estrutura do código, identificando falhas e garantindo cobertura de todas as partes do
sistema.

3.4. Verificação e Validação

Segundo [Salomão 2016], a verificação assegura que o software seja desenvol-
vido corretamente, atendendo às especificações funcionais e não funcionais, en-
quanto a validação confirma se o produto final cumpre as expectativas do cliente
[Souza and Gasparotto 2013]. Esses processos, complementares e contı́nuos ao longo
do ciclo de vida, aumentam a confiabilidade do sistema. O modelo em V (Figura 1) é am-
plamente adotado por evidenciar a importância dessas atividades na detecção de defeitos
e mitigação de riscos.

Figura 1. Fases do Desenvolvimento x Fases de Testes)

Conforme exposto na Figura 1, o planejamento de testes ocorre em diferentes
nı́veis:

• Teste unitário: avalia módulos isolados, identificando falhas lógicas e de
implementação [Neto 2009, Santos 2016, Bernardo and Kon 2008].

• Teste de integração: verifica falhas nas interfaces entre módulos (Dias Neto, 2015;
Luft, 2012; Santos, 2016).

• Teste de sistema: checa se o software atende aos requisitos em uso real
[Neto 2009, Luft 2012, Santos 2016].

• Teste de aceitação: realizado por usuários finais para validar o funcionamento
[Neto 2009].

• Teste de regressão: garante que alterações não introduzam problemas, reaplicando
testes anteriores [Neto 2009, Salomão 2016].

3.5. Testes de Integração

Segundo [Pressman and Maxim 2021], o teste de integração avalia a interação entre com-
ponentes, combinando técnicas de caixa-branca e caixa-preta para garantir que módulos
individuais funcionem corretamente quando integrados. A automação desse processo au-
menta a eficiência, permitindo execuções rápidas e repetitivas que reduzem custos e ace-
leram o desenvolvimento.

Segundo [Beizer 1995] os métodos de integração podem seguir diferentes abor-
dagens: no Bottom-up, os testes começam pelos módulos de baixo nı́vel e avançam para
os superiores, utilizando drivers, sendo indicado para sistemas grandes, mas com visi-
bilidade mais lenta do todo. No Top-down, parte-se dos módulos de alto nı́vel para os
inferiores, com uso de stubs, possibilitando detectar falhas de design precocemente. Já o
Big Bang integra todos os módulos de uma vez, permitindo avaliar o sistema completo,
mas dificultando o isolamento de erros.

3.6. Paradigma GQM

O paradigma GQM (Goal Question Metric), criado por Victor Basili, estrutura a medição
na engenharia de software em três nı́veis: objetivo, questão e métrica. Conforme
[Hussain and Kutar 2009], essa abordagem parte do princı́pio que a coleta de dados deve
ser guiada por metas claras e fundamentadas logicamente, garantindo relevância nas
medições. O processo segue as etapas:

1. Definir metas.
2. Formular questões para avaliar cada meta.
3. Definir métricas para coleta de dados.

As metas GQM são estruturadas no formato: “Analisar o <objeto de estudo>
com a finalidade de <objetivo> com respeito ao <enfoque> do ponto de vista <ponto de
vista> no seguinte contexto <contexto>.”

• Objeto de estudo: o que será analisado (ex.: processo, projeto, sistema).
• Objetivo: finalidade da análise (ex.: avaliar, melhorar).
• Enfoque: atributo medido (ex.: confiabilidade, custo).
• Ponto de vista: usuário das métricas (ex.: desenvolvedores, gerentes).
• Contexto: ambiente da medição (ex.: projeto, departamento).

Flutter React Native

Bibliotecas flutter test (unitário e widget)
e integration test (integração)

Jest (unitário, componente e
integração)

Confiabilidade,
Velocidade e
Custo

Sem diferenças significativas
entre as plataformas

Sem diferenças significativas
entre as plataformas

Funcionalidades
Testes de integração com
simulação de interações e
validação entre componentes

Suporte amplo em JavaScript,
incluindo mocks; Flutter re-
quer bibliotecas extras para
mocks (ex.: Mockito)

Tabela 1. Comparativo entre Flutter e React Native na implementação de testes

4. Flutter e React Native e Suas Boas Práticas de Teste de Integração
4.1. Flutter e React Native
Flutter, criado pelo Google em 2015, é um SDK que permite desenvolver apps nativos
para iOS e Android a partir de um único código compilado diretamente para a linguagem
do dispositivo, garantindo alto desempenho e acesso a recursos nativos [Andrade 2020].
Baseado em widgets personalizáveis, o Flutter controla a interface sem depender de com-
ponentes nativos, simplificando o desenvolvimento. Segundo o Stack Overflow, 68,8%
dos desenvolvedores preferem Flutter, usado por empresas como Nubank e eBay.

React Native, criado pela Meta também em 2015, usa React JavaScript para de-
senvolvimento multiplataforma, permitindo acesso a APIs nativas via “Native Bridge”
que invoca componentes nativos para renderização [Charles 2023, Marques 2022]. Dife-
rente do React web, ele utiliza componentes nativos da UI do dispositivo. Seu modelo
de arquitetura inclui uma máquina virtual JavaScript com compilador JIT e execução da
lógica em thread separada, garantindo interface fluida e desempenho. Segundo o Stack
Overflow, 57,9% dos desenvolvedores optam por React Native, utilizado por Facebook,
Instagram e Discord.

4.2. Boas Práticas e Ferramentas
Em Flutter, a organização clara de arquivos e pastas é fundamental para facilitar a
manutenção dos testes, que devem ser isolados para evitar interferências. Interações do
usuário são simuladas com funções como tap, scroll e enterText, e é importante usar pum-
pAndSettle para aguardar animações antes de validar com expect. A biblioteca Mockito é
recomendada para mocks, desde que modelados adequadamente para maior realismo.

No React Native, a estruturação clara e a configuração do ambiente com Jest são
igualmente importantes. Boas práticas incluem isolamento dos testes, ampla cobertura
e adaptação contı́nua ao código. Recomenda-se criar componentes puros para minimizar
estados locais e evitar re-renderizações desnecessárias. Para mocks, utilizam-se ferramen-
tas como react-native-testing-library e jest.mock() para simular dependências e facilitar
testes eficazes.

5. Metodologia
Este trabalho utilizou o paradigma GQM para definir as métricas aplicadas na comparação
da implementação dos testes de integração nos frameworks Flutter e React Native. Foram

levantadas questões que orientaram a definição do objeto de estudo, do objetivo e dos
demais atributos do método. A partir dessas questões, foram estabelecidas as métricas
utilizadas para conduzir o estudo comparativo entre Flutter e React Native. Para este
artigo foram escolhidas as métricas mais relevantes que contribuı́ram para os resultados
do estudo.

O estudo define seis metas para avaliar os testes: a Meta 1 analisa a quan-
tidade de código necessária, medida em linhas (Questão 1.1/Métrica 1.1); a Meta 2
avalia o consumo de CPU e memória, considerando a média desses recursos (Questão
2.1/Métrica 2.1); a Meta 3 verifica a viabilidade de testes de estresse e carga, medindo
as falhas em requisições (Questão 3.1/Métrica 3.1); a Meta 4 trata da disponibilidade
de documentação, medida pela facilidade de acesso (Questão 4.1/Métrica 4.1); a Meta
5 avalia o uso de mocks para simulação de dados, considerando sua facilidade (Questão
5.1/Métrica 5.1); e a Meta 6 analisa a quantidade de dependências necessárias, medida
pelo número utilizado (Questão 6.1/Métrica 6.1).

5.1. Descrição geral do Estudo de caso
5.2. Requisitos
Requisitos Funcionais (RF): O sistema deve permitir que o usuário faça login (RF1);
gerencie clientes (RF2); produtos (RF3); fornecedores (RF4) e pedidos (RF5), suportando
para cada entidade as operações de cadastro, edição, listagem (busca geral ou especı́fica)
e exclusão. Além disso, o sistema deve comunicar-se com o banco de dados por meio de
uma API (RF6).

Requisitos Não Funcionais (RNF): O sistema precisa ser compatı́vel com An-
droid e iOS (RNF1); funcionar em qualquer resolução de dispositivo móvel (RNF2) e
suportar todas as versões dos sistemas operacionais contemplados (RNF3).

O modelo de domı́nio inclui o usuário, que gerencia os dados; o fornecedor, res-
ponsável pelo fornecimento dos produtos; o produto, disponı́vel para compra; o cliente,
que realiza as compras; o pedido, registro da compra feita pelo cliente com auxı́lio do
usuário; e o itemPedido, que detalha os produtos de cada pedido. Um usuário e um cli-
ente podem ter vários pedidos, cada pedido está associado a ambos e contém vários itens
vinculados a produtos. A classe fornecedor não possui relações diretas com as outras
entidades.

5.3. Metodologia de coleta de dados e comparação
Para a coleta dos dados, foram implementados testes em Flutter e React Native, regis-
trando métricas como número de dependências, linhas de código, tempo de criação dos
testes, confiabilidade, facilidade no uso de mocks e disponibilidade de documentação e
exemplos. Após o desenvolvimento, avaliou-se também o consumo de CPU e RAM du-
rante a execução, além da cobertura dos testes planejados. Foi utilizado para a realização
dos teste um notbook Dell com um processador intel i7, com 8GB de memória RAM

O tempo de desenvolvimento foi medido com cronômetro, e as linhas de código
contadas no Visual Studio Code. Um teste de estresse com 20 inserções e buscas si-
multâneas em tabelas do banco (cliente, produto, pedido e fornecedor) avaliou a robustez
do sistema. A facilidade em encontrar documentação foi avaliada via pesquisas online,
considerando fontes como o projeto clean-flutter-app para Flutter e a documentação do

Jest para React Native. Simplicidade no uso de mocks, quantidade de dependências e
organização do projeto também foram analisadas para avaliar manutenção e usabilidade.

6. Resultados do estudo de caso
O estudo de caso definiu que ambos os projetos incluı́ssem testes para validação de cam-
pos na criação e login de clientes, pedidos, produtos e fornecedores; operações de adição,
edição, exclusão e listagem; considerando respostas da API nos códigos 200, 400, 404 e
500; além de um teste de carga com 160 requisições diretas. O projeto em Flutter contou
com 90 testes, enquanto o de React Native teve 47.

A avaliação considerou métricas como linhas de código, consumo médio de CPU
e memória, número de falhas nas requisições, facilidade de acesso à documentação, uso
de mocks e quantidade de dependências.

6.1. Número de linhas de código
A primeira métrica analisada foi a quantidade de linhas de código necessárias para imple-
mentar os mesmos testes em cada framework, conforme apresentado na imagem (Figura
2). Apesar de ser uma medida subjetiva, ela demonstra uma similaridade entre ambos os
framewors.

Figura 2. Quantidade de linhas de código de cada teste

6.2. Média de Consumo De CPU e Memória
A segunda métrica avaliada foi o consumo médio de CPU e memória RAM durante a
execução dos testes para comparar o desempenho entre os frameworks. Esse parâmetro
foi baseado em um notebook convencional e replicado em outros dois computadores,
tendo resultados similares, respeitando-se as diferenças de hardware. No cenário exposto
os testes em Flutter duraram 80 segundos, a CPU iniciou em 39% e a RAM em 86%, atin-
gindo picos de 98% (CPU) e 93% (RAM) aos 31 segundos, com variações até o fim. No
React Native, em 18 segundos de teste, o uso inicial foi 81% para CPU e RAM, chegando
a 99% de CPU e 86% de RAM aos 7 segundos, mantendo-se acima de 80% por grande
parte da execução. Os testes foram repetidos em ciclos de cinco iterações para garantir
a precisão e coerência dos dados, sempre com valores próximos. As medições serviram
para demonstrar o comportamento da utilização de recursos em ambos os frameworks.

6.3. Número de Requisições com Falhas

A terceira métrica analisada foi o número de requisições com falhas para avaliar a usabi-
lidade da API em testes de stress. Individualmente, não houve falhas nas requisições em
nenhum dos frameworks. Porém, na execução simultânea de todos os testes, o teste de
carga apresentou falhas por timeout. Após os ciclos de execuções, o Flutter apresentou
menos erros no teste de estresse, enquanto o React Native apresentou falhas em todos os
ciclos executados.

6.4. Facilidade de Documentação

A quarta métrica analisada foi a facilidade de acesso à documentação e exemplos para
auxiliar na criação dos testes. Em ambos os frameworks, foram encontrados diversos
materiais, incluindo documentação oficial e exemplos práticos, como a biblioteca React
Native Faker para dados simulados, além de blogs de desenvolvedores utilizados durante
o desenvolvimento dos testes.

6.4.1. Facilidade de Utilizar os Mocks

A quinta métrica avaliada foi a facilidade de uso dos mocks, visando comparar a simplici-
dade na geração de dados sintéticos para testes. Ambos os projetos utilizaram a biblioteca
Faker — faker no Flutter e faker-js no React Native —, que se mostraram simples de usar
e sem restrições quanto aos tipos de dados gerados. Vale destar que, mesmo com métricas
subjetivas, o estudo permite nortear os desenvolvedores que desejam entender e utilizar
estas plataformas.

Figura 3. Representação da utilização do Mock no
Flutter Figura 4. Representação da

utilização do Mock
no React Native

6.5. Quantidade de Dependências

A última métrica analisada foi a quantidade de dependências utilizadas nos testes, ava-
liando o número de bibliotecas, classes ou funções importadas em cada framework para
entender o impacto no desenvolvimento.

7. Conclusão e Trabalhos Futuros
A análise dos testes em Flutter e React Native mostrou poucas diferenças na quantidade de
código, dependências e consumo de CPU e memória. Porém, o React Native apresentou
tempo de execução significativamente menor que o Flutter.

A utilização de dados sintéticos e a disponibilidade de documentação foram
semelhantes em Flutter e React Native. Apesar da curva inicial de aprendizado, a
implementação dos testes se torna mais ágil com a experiência. Ambos os frameworks

mostram eficácia na implementação de testes de integração, com a escolha influenciada
pela familiaridade com Dart ou JavaScript, pelas necessidades de customização — favo-
recendo Flutter — e pela otimização no uso de recursos — favorecendo React Native.

A relevância deste estudo vai além a comparação técnica entre os frameworks,
pois fornece um guia para profissionais que desejam se aprofundar no assunto de testes
de integração no desenvolvimento móvel. A crescente adoção de frameworks multiplata-
forma impõe a necessidade de implementar testes robustos e eficientes, que mitiguem os
riscos inerentes à integração entre módulos e a complexidade da comunicação com APIs.

Também, a investigação metódica baseada no paradigma GQM demonstra como
a engenharia de software pode ser aplicada para embasar decisões técnicas, elevando o
patamar da atividade de teste de uma função meramente executiva para uma função es-
tratégica e analı́tica. A constatação de que a complexidade inicial se equilibra entre os
frameworks é um insight para o planejamento de treinamentos e a alocação de recursos
humanos em projetos.

Por fim, a decisão entre Flutter e React Native deve considerar o domı́nio das lin-
guagens, a personalização necessária e o uso de recursos computacionais. Recomenda-se
que pesquisas futuras ampliem o escopo do sistema, realizem testes em ambiente produ-
tivo e adotem TDD no React Native para melhor comparação. Conclui-se que ambos os
frameworks são adequados para aplicações móveis, cabendo a escolha às prioridades do
projeto.

Referências

Ammann, P. and Offutt, J. (2017). Introduction to software testing. Cambridge University
Press, 2 edition.

Andrade, A. P. (2020). O que é flutter? https://www.treinaweb.com.br/blog/o-que-e-
flutter. Acesso em: 16 ago. 2025.

Beizer, B. (1995). Black-box testing: techniques for functional testing of software and
systems. John Wiley & Sons, Inc., 1 edition.

Bernardo, P. C. and Kon, F. A. (2008). A importância dos testes automatizados. Enge-
nharia de Software Magazine, 1(3):54–57.

Carvalho, S. (2022). Testes manuais x testes automatizados.
https://safewayconsultoria.com/testes-manuais-x-testes-automatizados/. Acesso
em: 16 ago. 2025.

Charles, C. (2023). Desenvolvimento mobile: o que é, desafios e tendências.
https://blog.brq.com/desenvolvimento-mobile/. Acesso em: 16 ago. 2025.

Craig, R. D. and Jaskiel, S. P. (2002). Systematic Software Testing. Artech House Pu-
blishers.

Desikan, S. and Ramesh, G. (2006). Software testing: principles and practice. Pearson
Education India.

Graham, D., Vliet, H. V., Hoof, E., and Luka, T. (2008). Foundations of software testing:
ISTQB certification. International Thomson Business Press, 1 edition.

Hussain, A. and Kutar, M. (2009). Usability metric framework for mobile phone applica-
tion. PGNet.

Kaur, A. and Kaur, K. (2022). Systematic literature review of mobile applica-
tion development and testing effort estimation. In Journal of King Saud Uni-
versity - Computer and Information Sciences, Volume 34, Issue 2. Fevereiro de
2022. https://www.sciencedirect.com/science/article/pii/S1319157818306074. Acesso
em: 16 ago. 2025.

Lewis, W. E. and Veerapillai, G. (2004). Software testing and continuous quality impro-
vement. Auerbach Publications.

Luft, C. C. (2012). Teste de software: uma necessidade das empresas. Master’s thesis,
Universidade Regional do Noroeste do Estado do Rio Grande do Sul.

Marques, S. (2022). React native: O que é, como funciona e quais as vantagens?
https://uds.com.br/blog/react-native-o-que-e/. Acesso em: 16 ago. 2025.

Mili, A. and Tchier, F. (2015). Software testing: concepts and operations. John Wiley
Sons.

Myers, G. J., Sandler, C., and Badgett, T. (2011). The art of software testing. John Wiley
Sons, 3 edition.

Neto, A. C. D. (2009). Introdução a teste de software. (1):54–59.

Pignati, G. (2021). Demanda por desenvolvedor mobile cresce em 600 por cento 2021.

Pressman, R. S. and Maxim, B. R. (2021). Engenharia de software: uma abordagem
profissional. AMGH, 9 edition.

Rocha, A. R. C., Maldonado, J. C., Weber, K. C., et al. (2001). Qualidade de software –
Teoria e prática. Prentice Hall.

Rodriguez, M. (2019). A história dos aplicativos – quem usa e quem vive de desenvolver.
Acesso em: 16 ago. 2025.

Salomão, R. G. (2016). Análise da relevância de teste de regressão para o mercado de de-
senvolvimento de software do triângulo mineiro. Master’s thesis, Universidade Federal
de Uberlândia. Acesso em: 16 ago. 2025.

Santos, D. B. (2016). Implantação de teste de software em empresa de pequeno porte: Um
estudo de caso. Master’s thesis, Centro Universitário Eurı́pides de Marı́lia – UNIVEM.
https://aberto.univem.edu.br/bitstream/handle/11077/1577/Monografia

Sommerville, I. (2021). Engenharia de Software. Pearson, 10 edition.

Souza, K. P. and Gasparotto, A. M. S. (2013). A importância da atividade de teste do de-
senvolvimento de software. In XXXIII Encontro Nacional de Engenharia de Produção,
Salvador, BA, Brasil. 08 a 11 de outubro de 2013.

Zahra, H. A. and Zein, S. (2022). A systematic comparison between flutter and react
native from automation testing perspective. In 2022 International Symposium on Mul-
tidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey. 20 a
22 de outubro de 2022. https://ieeexplore.ieee.org/abstract/document/9932749. Acesso
em: 16 ago. 2025.

