Implementacao de Testes de Integracao nos Frameworks de
Desenvolvimento Mobile Flutter e React Native: um estudo
comparativo

Kelvia Kolln', José Carlos Toniazzo', Viviane Duarte Bonfim!

1Universidade Comunitdria Regional de Chapecé (UNOCHAPEC()), Chapeco, SC, Brasil

kkolln@unochapeco.edu.br, zetoniazzo@unochapeco.edu.br, vividb@unochapeco.edu.br

Abstract. This study compares the implementation of integration testing in mo-
bile development frameworks Flutter and React Native, using the GOM (Goal-
Question-Metric) paradigm to evaluate metrics such as code volume, resource
consumption, execution time, and robustness. Through a case study of a basic
registration system, was been analyzed ninety tests in Flutter and forty seven
in React Native, measuring CPU and RAM usage, lines of code, and perfor-
mance under load testing. Results indicate that React Native outperforms Flut-
ter in execution time, while both frameworks show similar resource consump-
tion and ease of use (mocks, documentation). However, React Native exhibited
more failures during simultaneous load tests. The choice between frameworks
should consider developer language proficiency, customization needs (Flutter),
and runtime efficiency (React Native). This work provides practical insights
for mobile developers selecting integration testing strategies in cross-platform
environments.

Keywords: Integration Testing, Flutter, React Native, GOM, Mobile

Resumo. Este estudo compara a implementacdo de testes de integracdo nos
frameworks de desenvolvimento mobile Flutter e React Native, utilizando o pa-
radigma GOM (Goal-Question-Metric) para avaliar métricas como volume de
codigo, consumo de recursos, tempo de execucdo e robustez. Por meio de um
estudo de caso com um sistema de cadastro bdsico, foram analisados noventa
testes no Flutter e quarenta e sete no React Native, medindo consumo de CPU
e memoria RAM, linhas de cédigo e desempenho em testes de carga. Os re-
sultados indicam que o React Native supera o Flutter em tempo de execugdo,
mas ambos os frameworks apresentam consumo de recursos e facilidade de uso
(mocks, documentacdo) similares. Verificou-se também que o React Native exi-
biu mais falhas em testes de carga simultdneos. A escolha entre os frameworks
deve considerar a experiéncia do desenvolvedor com a linguagem, necessida-
des de customizagdo (Flutter) e eficiéncia em tempo de execugdo (React Native).
Este trabalho oferece esclarecimentos prdticos para desenvolvedores na selecdo
de estratégias de teste de integracdo em ambientes mobile multiplataforma.

Palavras-Chave: Testes de Integracdo, Flutter, React Native, GOM, Mobile

1. Introducao

O lancamento do iPhone em 2007 impulsionou a demanda por aplicativos mdveis e
solugdes personalizadas [Rodriguez 2019]. Frameworks multiplataforma como Flut-
ter € React Native se destacaram por permitir o desenvolvimento para iOS e Android

com um unico codigo, otimizando tempo e recursos [Pignati 2021]. Contudo, a com-
plexidade desses sistemas exige testes de integracdo para garantir a comunicagdo entre
modulos e evitar falhas que afetem a experiéncia do usuério [Pressman and Maxim 2021,
Lewis and Veerapillai 2004]. A automacao desses testes € essencial, embora enfrente de-
safios como fragmentacao de dispositivos e custos.

Este estudo compara a implementacgdo de testes de integracdo em Flutter e React
Native pelo paradigma GQM (Goal Question Metric), avaliando métricas como desem-
penho, facilidade de uso e consumo de recursos. A pesquisa, baseada em estudo de caso,
analisa critérios como quantidade de cddigo, dependéncias, tempo de execugdo e robustez
em testes de carga, apresentando boas préticas, limitagdes e insights para auxiliar desen-
volvedores na escolha da tecnologia mais adequada.

2. Trabalhos Relacionados

A comparagdo entre Flutter e React Native é um topico recorrente na literatura de
desenvolvimento mével, porém com foco voltado para aspectos de desempenho em
tempo de execuc¢do, experiéncia do usudrio ou comparacdes de features. O estudo de
[Kaur and Kaur 2022], por exemplo, realizou uma revisao sistemadtica da literatura sobre
estimativas de testes de software no desenvolvimento de aplicacdes mobile.

Trabalhos como o de [Zahra and Zein 2022] exploraram estratégias de teste em
React Native e Flutter, demonstrando uma similaridade grande entre ambos, o que
também foi constatado neste estudo, com €nfase para testes de integragao.

No entanto, hd uma lacuna de pesquisa quanto a estudos comparativos que utili-
zem um paradigma estruturado de medicao, como o GQM, para avaliar a implementagao
de testes de integracdo. Este artigo se diferencia ao preencher essa lacuna, aplicando
o paradigma GQM para uma comparagdo baseada em métricas como quantidade de
codigo, consumo de CPU e memodria, e resiliéncia em testes de carga, contribuindo com
evidéncias para auxiliar na escolha entre Flutter e React Native do ponto de vista de tes-
tes de integragdo, cruciais para o bom uso de aplicacdes que demandam sincronizagdo de
dados com ambientes online.

3. Fundamentacao Teorica

3.1. Testes de Software

Segundo [Sommerville 2021], os testes visam comprovar que o software atende aos requi-
sitos e identificar defeitos antes do uso, por meio da execu¢cdo com dados sintéticos para
detectar erros, anomalias ou problemas ndo funcionais. O processo busca tanto validar
o cumprimento dos requisitos quanto encontrar entradas que provoquem comportamen-
tos incorretos. A atividade envolve casos de teste, que definem condi¢des, entradas e
resultados esperados [Craig and Jaskiel 2002, Mili and Tchier 2015]; procedimentos de
teste, que descrevem passos de execucdo [Craig and Jaskiel 2002, Graham et al. 2008];
e critérios de teste, que orientam a selecio e avaliacdo dos casos, como cober-
tura, adequacdo [Rocha et al. 2001, Desikan and Ramesh 2006] e geracdo de casos
[Rocha et al. 2001, Ammann and Offutt 2017]. Conforme o IEEE (Institute of Elec-
trical and Electronic Engineers), defeito é uma implementacdo incorreta; erro € sua
manifestacdo no produto; e falha € o comportamento divergente do esperado. Defeitos,

resultantes de falhas humanas, geram erros que podem levar a falhas e comprometer o uso
do software [Neto 2009].

3.2. Testes Manuais e Automatizados

Segundo [Carvalho 2022], os testes podem ser manuais, executados sem automacdo e
seguindo etapas documentadas para identificar falhas, ou automatizados, que utilizam
ferramentas para agilizar verificagdes e garantir conformidade. Os manuais tém me-
nor custo, mas sao menos precisos por dependerem do fator humano; ja os automati-
zados, ideais para testes repetitivos e prolongados, exigem maior investimento e tempo
de implementagao. Os testes manuais sdo sujeitos a erros humanos, permitem a anélise
humana e sdo mais praticos em casos pouco repetitivos. Também sao indicados para
testes de usabilidade. J4 os testes automatizados apresentam maior precisao por utiliza-
rem ferramentas, sendo adequados para cendrios especificos. Eles sdo ideais para testes
repetitivos e de longa duracgdo, além de indicados para testes de estresse e carga.

3.3. Técnicas de Testes de Software

Segundo [Myers et al. 2011], as técnicas de teste variam conforme a fonte de informacao
para definir requisitos, sendo recomendada a combinacao de abordagens. O teste de caixa
preta avalia entradas e saidas sem considerar a estrutura interna, verificando se funciona-
lidades e componentes operam corretamente. Ja o teste de caixa branca examina a logica
e a estrutura do codigo, identificando falhas e garantindo cobertura de todas as partes do
sistema.

3.4. Verificacao e Validacao

Segundo [Salomdo 2016], a verificacdo assegura que o software seja desenvol-
vido corretamente, atendendo as especificacdes funcionais e ndao funcionais, en-
quanto a validacdo confirma se o produto final cumpre as expectativas do cliente
[Souza and Gasparotto 2013]. Esses processos, complementares e continuos ao longo
do ciclo de vida, aumentam a confiabilidade do sistema. O modelo em V (Figura 1) € am-
plamente adotado por evidenciar a importincia dessas atividades na detec¢c@o de defeitos
e mitigacao de riscos.

C DI

g Y i !
v Requisito 1 1 Teste de Aceitagdo }
U \ /]

- ~

\,

-)

D S ——

Verificacdo Validagdo

Figura 1. Fases do Desenvolvimento x Fases de Testes)

Conforme exposto na Figura 1, o planejamento de testes ocorre em diferentes
niveis:

* Teste unitdrio: avalia moddulos isolados, identificando falhas ldégicas e de
implementacgdo [Neto 2009, Santos 2016, Bernardo and Kon 2008].

* Teste de integragdo: verifica falhas nas interfaces entre modulos (Dias Neto, 2015;
Luft, 2012; Santos, 2016).

» Teste de sistema: checa se o software atende aos requisitos em uso real
[Neto 2009, Luft 2012, Santos 2016].

* Teste de aceitacdo: realizado por usudrios finais para validar o funcionamento
[Neto 2009].

* Teste de regressao: garante que alteracdes nao introduzam problemas, reaplicando
testes anteriores [Neto 2009, Salomao 2016].

3.5. Testes de Integracao

Segundo [Pressman and Maxim 2021], o teste de integracao avalia a interagdo entre com-
ponentes, combinando técnicas de caixa-branca e caixa-preta para garantir que modulos
individuais funcionem corretamente quando integrados. A automacao desse processo au-
menta a efici€ncia, permitindo execucdes rapidas e repetitivas que reduzem custos e ace-
leram o desenvolvimento.

Segundo [Beizer 1995] os métodos de integragdo podem seguir diferentes abor-
dagens: no Bottom-up, os testes come¢am pelos modulos de baixo nivel e avancam para
os superiores, utilizando drivers, sendo indicado para sistemas grandes, mas com Vvisi-
bilidade mais lenta do todo. No Top-down, parte-se dos médulos de alto nivel para os
inferiores, com uso de stubs, possibilitando detectar falhas de design precocemente. Ja o
Big Bang integra todos os médulos de uma vez, permitindo avaliar o sistema completo,
mas dificultando o isolamento de erros.

3.6. Paradigma GQM

O paradigma GQM (Goal Question Metric), criado por Victor Basili, estrutura a medi¢ao
na engenharia de software em trés niveis: objetivo, questdo e métrica. Conforme
[Hussain and Kutar 2009], essa abordagem parte do principio que a coleta de dados deve
ser guiada por metas claras e fundamentadas logicamente, garantindo relevancia nas
medi¢des. O processo segue as etapas:

1. Definir metas.
2. Formular questdes para avaliar cada meta.
3. Definir métricas para coleta de dados.

As metas GQM sdo estruturadas no formato: “Analisar o <objeto de estudo>
com a finalidade de <objetivo> com respeito ao <enfoque> do ponto de vista <ponto de
vista> no seguinte contexto <contexto>."

* Objeto de estudo: o que serd analisado (ex.: processo, projeto, sistema).
* Objetivo: finalidade da andlise (ex.: avaliar, melhorar).

* Enfoque: atributo medido (ex.: confiabilidade, custo).

* Ponto de vista: usudrio das métricas (ex.: desenvolvedores, gerentes).

* Contexto: ambiente da medi¢do (ex.: projeto, departamento).

Flutter React Native
i flutter_test (unitario e widget) | Jest (unitario, componente e
Bibliotecas . . (. &)) (~ P
e integration_test (integragcdo) | integracao)
Confiabilidade,) .. .) ..)
. Sem diferencas significativas | Sem diferencgas significativas
Velocidade e
entre as plataformas entre as plataformas
Custo
. - Suporte amplo em JavaScript,
Testes de integragdo com | . po! P P
.) : - ; . incluindo mocks; Flutter re-
Funcionalidades | simulacdo de interacdes e 1
validagdo entre componentes quer bibliotecas extras para
mocks (ex.: Mockito)

Tabela 1. Comparativo entre Flutter e React Native na implementagao de testes

4. Flutter e React Native e Suas Boas Praticas de Teste de Integracao
4.1. Flutter e React Native

Flutter, criado pelo Google em 2015, é um SDK que permite desenvolver apps nativos
para i0OS e Android a partir de um unico cédigo compilado diretamente para a linguagem
do dispositivo, garantindo alto desempenho e acesso a recursos nativos [Andrade 2020].
Baseado em widgets personalizaveis, o Flutter controla a interface sem depender de com-
ponentes nativos, simplificando o desenvolvimento. Segundo o Stack Overflow, 68,8%
dos desenvolvedores preferem Flutter, usado por empresas como Nubank e eBay.

React Native, criado pela Meta também em 2015, usa React JavaScript para de-
senvolvimento multiplataforma, permitindo acesso a APIs nativas via “Native Bridge”
que invoca componentes nativos para renderizacdo [Charles 2023, Marques 2022]. Dife-
rente do React web, ele utiliza componentes nativos da Ul do dispositivo. Seu modelo
de arquitetura inclui uma maquina virtual JavaScript com compilador JIT e execucdo da
16gica em thread separada, garantindo interface fluida e desempenho. Segundo o Stack
Overflow, 57,9% dos desenvolvedores optam por React Native, utilizado por Facebook,
Instagram e Discord.

4.2. Boas Praticas e Ferramentas

Em Flutter, a organizacdo clara de arquivos e pastas € fundamental para facilitar a
manutencdo dos testes, que devem ser isolados para evitar interferéncias. Intera¢des do
usudrio sdo simuladas com fungdes como tap, scroll e enterText, e € importante usar pum-
pAndSettle para aguardar animacoes antes de validar com expect. A biblioteca Mockito é
recomendada para mocks, desde que modelados adequadamente para maior realismo.

No React Native, a estruturacdo clara e a configuragdo do ambiente com Jest sao
igualmente importantes. Boas praticas incluem isolamento dos testes, ampla cobertura
e adaptagdo continua ao cédigo. Recomenda-se criar componentes puros para minimizar
estados locais e evitar re-renderizagdes desnecessdrias. Para mocks, utilizam-se ferramen-
tas como react-native-testing-library e jest.mock() para simular dependéncias e facilitar
testes eficazes.

5. Metodologia

Este trabalho utilizou o paradigma GQM para definir as métricas aplicadas na comparagao
da implementacao dos testes de integracao nos frameworks Flutter e React Native. Foram

levantadas questdes que orientaram a definicdo do objeto de estudo, do objetivo e dos
demais atributos do método. A partir dessas questoes, foram estabelecidas as métricas
utilizadas para conduzir o estudo comparativo entre Flutter e React Native. Para este
artigo foram escolhidas as métricas mais relevantes que contribuiram para os resultados
do estudo.

O estudo define seis metas para avaliar os testes: a Meta 1 analisa a quan-
tidade de cddigo necessaria, medida em linhas (Questdo 1.1/Métrica 1.1); a Meta 2
avalia o consumo de CPU e memoria, considerando a média desses recursos (Questao
2.1/Métrica 2.1); a Meta 3 verifica a viabilidade de testes de estresse e carga, medindo
as falhas em requisi¢coes (Questdao 3.1/Métrica 3.1); a Meta 4 trata da disponibilidade
de documentagdo, medida pela facilidade de acesso (Questdo 4.1/Métrica 4.1); a Meta
5 avalia o uso de mocks para simulacido de dados, considerando sua facilidade (Questao
5.1/Métrica 5.1); e a Meta 6 analisa a quantidade de dependéncias necessarias, medida
pelo nimero utilizado (Questdo 6.1/Métrica 6.1).

5.1. Descric¢ao geral do Estudo de caso
5.2. Requisitos

Requisitos Funcionais (RF): O sistema deve permitir que o usudrio faca login (RF1);
gerencie clientes (RF2); produtos (RF3); fornecedores (RF4) e pedidos (RFS5), suportando
para cada entidade as operacdes de cadastro, edi¢do, listagem (busca geral ou especifica)
e exclusdo. Além disso, o sistema deve comunicar-se com o banco de dados por meio de
uma API (RF6).

Requisitos Nao Funcionais (RNF): O sistema precisa ser compativel com An-
droid e iOS (RNF1); funcionar em qualquer resolu¢ao de dispositivo mével (RNF2) e
suportar todas as versdes dos sistemas operacionais contemplados (RNF3).

O modelo de dominio inclui o usudrio, que gerencia os dados; o fornecedor, res-
ponsavel pelo fornecimento dos produtos; o produto, disponivel para compra; o cliente,
que realiza as compras; o pedido, registro da compra feita pelo cliente com auxilio do
usudrio; e o itemPedido, que detalha os produtos de cada pedido. Um usuério e um cli-
ente podem ter vdrios pedidos, cada pedido estd associado a ambos e contém varios itens
vinculados a produtos. A classe fornecedor nao possui relagdes diretas com as outras
entidades.

5.3. Metodologia de coleta de dados e comparacao

Para a coleta dos dados, foram implementados testes em Flutter e React Native, regis-
trando métricas como numero de dependéncias, linhas de cddigo, tempo de criagdo dos
testes, confiabilidade, facilidade no uso de mocks e disponibilidade de documentacao e
exemplos. Apds o desenvolvimento, avaliou-se também o consumo de CPU e RAM du-
rante a execugdo, além da cobertura dos testes planejados. Foi utilizado para a realiza¢ao
dos teste um notbook Dell com um processador intel 17, com 8GB de memoria RAM

O tempo de desenvolvimento foi medido com crondmetro, e as linhas de cédigo
contadas no Visual Studio Code. Um teste de estresse com 20 inser¢des e buscas si-
multaneas em tabelas do banco (cliente, produto, pedido e fornecedor) avaliou a robustez
do sistema. A facilidade em encontrar documentacao foi avaliada via pesquisas online,
considerando fontes como o projeto clean-flutter-app para Flutter e a documentagao do

Jest para React Native. Simplicidade no uso de mocks, quantidade de dependéncias e
organizagao do projeto também foram analisadas para avaliar manutenc¢do e usabilidade.

6. Resultados do estudo de caso

O estudo de caso definiu que ambos os projetos incluissem testes para validagdo de cam-
pos na criacdo e login de clientes, pedidos, produtos e fornecedores; operacoes de adicao,
edicao, exclusdo e listagem; considerando respostas da API nos cddigos 200, 400, 404 e
500; além de um teste de carga com 160 requisi¢des diretas. O projeto em Flutter contou
com 90 testes, enquanto o de React Native teve 47.

A avaliacio considerou métricas como linhas de cddigo, consumo médio de CPU
e memoria, numero de falhas nas requisi¢des, facilidade de acesso a documentagdo, uso
de mocks e quantidade de dependéncias.

6.1. Numero de linhas de coédigo

A primeira métrica analisada foi a quantidade de linhas de c6digo necessdrias para imple-
mentar os mesmos testes em cada framework, conforme apresentado na imagem (Figura
2). Apesar de ser uma medida subjetiva, ela demonstra uma similaridade entre ambos os
framewors.

Carga

Validar Campos do Login
Validar Campos do Fornecedor
Validar Campos do Produto
Validar Campos do Pedido
Validar Campos do Cliente
Listar Fornecedores

Listar Produtos

Listar Pedidos

Listar Clientes

Editar Fornecedor

Editar Produto

Editar Pedido

Editar Cliente

Teste

Excluir Fornecedor
Excluir Produto
Excluir Pedido
Excluir Cliente
Adicionar Fornecedores
Adicionar Produtos
Adicionar Pedidos
Adicionar Clientes

20 40 60 80 100 120

Quantidade de Linhas

Figura 2. Quantidade de linhas de cédigo de cada teste

6.2. Média de Consumo De CPU e Memoéria

A segunda métrica avaliada foi o consumo médio de CPU e memoria RAM durante a
execucgao dos testes para comparar o desempenho entre os frameworks. Esse parametro
foi baseado em um notebook convencional e replicado em outros dois computadores,
tendo resultados similares, respeitando-se as diferencas de hardware. No cendrio exposto
os testes em Flutter duraram 80 segundos, a CPU iniciou em 39% e a RAM em 86%, atin-
gindo picos de 98% (CPU) e 93% (RAM) aos 31 segundos, com variacdes at€ o fim. No
React Native, em 18 segundos de teste, o uso inicial foi 81% para CPU e RAM, chegando
a99% de CPU e 86% de RAM aos 7 segundos, mantendo-se acima de 80% por grande
parte da execucdo. Os testes foram repetidos em ciclos de cinco iteracOes para garantir
a precisao e coeréncia dos dados, sempre com valores proximos. As medi¢des serviram
para demonstrar o comportamento da utiliza¢io de recursos em ambos os frameworks.

6.3. Numero de Requisicoes com Falhas

A terceira métrica analisada foi o numero de requisi¢des com falhas para avaliar a usabi-
lidade da API em testes de stress. Individualmente, ndo houve falhas nas requisi¢des em
nenhum dos frameworks. Porém, na execucdo simultdnea de todos os testes, o teste de
carga apresentou falhas por timeout. Apds os ciclos de execucdes, o Flutter apresentou
menos erros no teste de estresse, enquanto o React Native apresentou falhas em todos os
ciclos executados.

6.4. Facilidade de Documentacao

A quarta métrica analisada foi a facilidade de acesso a documentacido e exemplos para
auxiliar na criagdo dos testes. Em ambos os frameworks, foram encontrados diversos
materiais, incluindo documentagdo oficial e exemplos préticos, como a biblioteca React
Native Faker para dados simulados, além de blogs de desenvolvedores utilizados durante
o desenvolvimento dos testes.

6.4.1. Facilidade de Utilizar os Mocks

A quinta métrica avaliada foi a facilidade de uso dos mocks, visando comparar a simplici-
dade na geragdo de dados sintéticos para testes. Ambos os projetos utilizaram a biblioteca
Faker — taker no Flutter e faker-js no React Native —, que se mostraram simples de usar
e sem restri¢des quanto aos tipos de dados gerados. Vale destar que, mesmo com métricas
subjetivas, o estudo permite nortear os desenvolvedores que desejam entender e utilizar
estas plataformas.

const mockData =

codigo
nome: f

mer (httpclient: httpclient, url: url);

dValueOnce({ status: 200, data: mockData

Figura 3. Representacao da utilizagao do Mock no

Flutter Figura 4. Representacéo da

utilizacao do Mock
no React Native

6.5. Quantidade de Dependéncias

A ultima métrica analisada foi a quantidade de dependéncias utilizadas nos testes, ava-
liando o nimero de bibliotecas, classes ou fun¢des importadas em cada framework para
entender o impacto no desenvolvimento.

7. Conclusao e Trabalhos Futuros

A andlise dos testes em Flutter e React Native mostrou poucas diferencas na quantidade de
codigo, dependéncias e consumo de CPU e memoria. Porém, o React Native apresentou
tempo de execugdo significativamente menor que o Flutter.

A utilizacdo de dados sintéticos e a disponibilidade de documentagcdo foram
semelhantes em Flutter e React Native. Apesar da curva inicial de aprendizado, a
implementagdo dos testes se torna mais agil com a experiéncia. Ambos os frameworks

mostram eficdcia na implementagdo de testes de integracdo, com a escolha influenciada
pela familiaridade com Dart ou JavaScript, pelas necessidades de customizagdo — favo-
recendo Flutter — e pela otimiza¢ao no uso de recursos — favorecendo React Native.

A relevancia deste estudo vai além a comparagdo técnica entre os frameworks,
pois fornece um guia para profissionais que desejam se aprofundar no assunto de testes
de integracdo no desenvolvimento mdvel. A crescente ado¢do de frameworks multiplata-
forma impde a necessidade de implementar testes robustos e eficientes, que mitiguem os
riscos inerentes a integracdo entre modulos e a complexidade da comunica¢do com APIs.

Também, a investigagdo metddica baseada no paradigma GQM demonstra como
a engenharia de software pode ser aplicada para embasar decisdes técnicas, elevando o
patamar da atividade de teste de uma fun¢do meramente executiva para uma funcio es-
tratégica e analitica. A constatagdo de que a complexidade inicial se equilibra entre os
frameworks € um insight para o planejamento de treinamentos e a alocacdo de recursos
humanos em projetos.

Por fim, a decisao entre Flutter € React Native deve considerar o dominio das lin-
guagens, a personalizacio necessaria e o uso de recursos computacionais. Recomenda-se
que pesquisas futuras ampliem o escopo do sistema, realizem testes em ambiente produ-
tivo e adotem TDD no React Native para melhor comparagdo. Conclui-se que ambos os
frameworks sao adequados para aplicacdes moveis, cabendo a escolha as prioridades do
projeto.

Referéncias

Ammann, P. and Offutt, J. (2017). Introduction to software testing. Cambridge University
Press, 2 edition.

Andrade, A. P. (2020). O que é flutter? https://www.treinaweb.com.br/blog/o-que-e-
flutter. Acesso em: 16 ago. 2025.

Beizer, B. (1995). Black-box testing: techniques for functional testing of software and
systems. John Wiley & Sons, Inc., 1 edition.

Bernardo, P. C. and Kon, F. A. (2008). A importincia dos testes automatizados. Enge-
nharia de Software Magazine, 1(3):54-57.

Carvalho, S, (2022). Testes manuais X testes automatizados.
https://safewayconsultoria.com/testes-manuais-x-testes-automatizados/. Acesso
em: 16 ago. 2025.

Charles, C. (2023). Desenvolvimento mobile: o que €, desafios e tendéncias.
https://blog.brq.com/desenvolvimento-mobile/. Acesso em: 16 ago. 2025.

Craig, R. D. and Jaskiel, S. P. (2002). Systematic Software Testing. Artech House Pu-
blishers.

Desikan, S. and Ramesh, G. (2006). Software testing: principles and practice. Pearson
Education India.

Graham, D., Vliet, H. V., Hoof, E., and Luka, T. (2008). Foundations of software testing:
ISTQB certification. International Thomson Business Press, 1 edition.

Hussain, A. and Kutar, M. (2009). Usability metric framework for mobile phone applica-
tion. PGNet.

Kaur, A. and Kaur, K. (2022). Systematic literature review of mobile applica-
tion development and testing effort estimation. In Journal of King Saud Uni-
versity - Computer and Information Sciences, Volume 34, Issue 2. Fevereiro de
2022. https://www.sciencedirect.com/science/article/pii/S1319157818306074. Acesso
em: 16 ago. 2025.

Lewis, W. E. and Veerapillai, G. (2004). Software testing and continuous quality impro-
vement. Auerbach Publications.

Luft, C. C. (2012). Teste de software: uma necessidade das empresas. Master’s thesis,
Universidade Regional do Noroeste do Estado do Rio Grande do Sul.

Marques, S. (2022). React native: O que €, como funciona e quais as vantagens?
https://uds.com.br/blog/react-native-o-que-e/. Acesso em: 16 ago. 2025.

Mili, A. and Tchier, F. (2015). Software testing: concepts and operations. John Wiley
Sons.

Myers, G. J., Sandler, C., and Badgett, T. (2011). The art of software testing. John Wiley
Sons, 3 edition.

Neto, A. C. D. (2009). Introdugdo a teste de software. (1):54-59.
Pignati, G. (2021). Demanda por desenvolvedor mobile cresce em 600 por cento 2021.

Pressman, R. S. and Maxim, B. R. (2021). Engenharia de software: uma abordagem
profissional. AMGH, 9 edition.

Rocha, A. R. C., Maldonado, J. C., Weber, K. C., et al. (2001). Qualidade de software —
Teoria e prdtica. Prentice Hall.

Rodriguez, M. (2019). A histdria dos aplicativos — quem usa e quem vive de desenvolver.
Acesso em: 16 ago. 2025.

Salomao, R. G. (2016). Andlise da relevancia de teste de regressao para o mercado de de-
senvolvimento de software do tridngulo mineiro. Master’s thesis, Universidade Federal
de Uberlandia. Acesso em: 16 ago. 2025.

Santos, D. B. (2016). Implantacdo de teste de software em empresa de pequeno porte: Um
estudo de caso. Master’s thesis, Centro Universitario Euripides de Marilia— UNIVEM.
https://aberto.univem.edu.br/bitstream/handle/11077/1577/Monografia

Sommerville, I. (2021). Engenharia de Software. Pearson, 10 edition.

Souza, K. P. and Gasparotto, A. M. S. (2013). A importancia da atividade de teste do de-
senvolvimento de software. In XXXIII Encontro Nacional de Engenharia de Produgdo,
Salvador, BA, Brasil. 08 a 11 de outubro de 2013.

Zahra, H. A. and Zein, S. (2022). A systematic comparison between flutter and react
native from automation testing perspective. In 2022 International Symposium on Mul-
tidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey. 20 a
22 de outubro de 2022. https://ieeexplore.ieee.org/abstract/document/9932749. Acesso
em: 16 ago. 2025.

