
Arquitetura de Microsserviços: Uma Revisão Multivocal

Larissa Zanata Morais, André F. R. Cordeiro, Edson OliveiraJr

1Departamento de Informática – Universidade Estadual de Maringá (UEM)
Maringá – PR – Brazil

ra99495@uem.br, cordeiroandrefelipe@gmail.com, edson@din.uem.br

Abstract. Microservices architecture has emerged as a robust and efficient ap-
proach to software development, enabling the construction of large systems
composed of smaller, independent, and interoperable services. In this context,
this paper presents a multi-voiced review of microservices architecture, aiming
to identify the main topics covered, explore the challenges and proposed solu-
tions, examine the technologies used, and identify research opportunities. This
review contributes to a deeper and more comprehensive understanding of micro-
services architecture, providing insights for software engineering practitioners
and researchers.

Resumo. Arquitetura de microsserviços tem se destacado como uma forma ro-
busta e eficiente para o desenvolvimento de software, permitindo a construção
de grandes sistemas compostos de serviços menores, independentes e intero-
peráveis. Nesse contexto, o presente trabalho apresenta uma revisão multivocal
sobre arquitetura de microsserviços, com o intuito de identificar os principais
tópicos abordados, explorar os desafios e soluções propostas, examinar as tec-
nologias utilizadas e identificar oportunidades de pesquisa. Esta revisão con-
tribui para uma compreensão mais profunda e abrangente da arquitetura de
microsserviços, fornecendo percepções para profissionais e pesquisadores na
área de engenharia de software.

1. Introdução
Com o crescimento das necessidades de escalabilidade, flexibilidade e manutenção nas
aplicações, as arquiteturas de software têm passado por transformações. Durante anos,
as arquiteturas monolı́ticas foram adotadas em razão de sua simplicidade e coesão
[Society 2018]. O aumento crescente na complexidade evidenciou a existência de di-
ficuldades significativas nas aplicações, principalmente em relação à escalabilidade e
manutenção [Fowler 2023]. A transição para aplicações baseadas em microsserviços re-
presenta uma resposta a essas dificuldades [Bonfiglioli 2021].

A arquitetura de microsserviços influencia o projeto e o desenvolvi-
mento das aplicações, além de favorecer a escalabilidade e a adaptabilidade
[Lima and Fontoura 2023]. A arquitetura permite que os desenvolvedores escalem ele-
mentos individuais de maneira autônoma, proporcionando maior eficiência no uso dos
recursos computacionais. Esse modelo permite que as aplicações se adaptem com maior
rapidez às novas demandas [Fowler 2023].

A adaptabilidade pode ser observada durante a divisão das aplicações em serviços
modulares. Dessa maneira, os desenvolvedores podem atualizar ou modificar elementos



individuais, sem a necessidade de reestruturar toda a aplicação [Lima and Fontoura 2023].
Essa abordagem modular reduz os riscos associados a mudanças e facilita o desenvolvi-
mento alinhado com as práticas de Integração Contı́nua (Continuous Integration - CI)
e Implantação Contı́nua (Continuous Deployment - CD). Tais práticas são fundamen-
tais em ambientes de desenvolvimento caracterizados pela rápida evolução de demandas
[Fowler 2023].

Mesmo com os benefı́cios relevantes associados, é importante destacar que a
implementação de uma arquitetura de microsserviços também apresenta desafios. A
descentralização dos elementos exige uma coordenação cuidadosa para garantir que os
serviços interajam de forma eficaz. A comunicação entre os serviços é outro aspecto
crı́tico, principalmente em ambientes distribuı́dos [Kubernets 2024].

Diante das informações apresentadas, entende-se que a arquitetura de
microsserviços oferece possibilidades relevantes para o desenvolvimento de software,
bem como apresenta novos desafios. Estudos multivocais sobre tal arquitetura não fo-
ram encontrados na literatura. Considerando essa ausência, este artigo apresenta uma
revisão multivocal realizada sobre arquiteturas de microsserviços.

Este trabalho está organizado da seguinte maneira: a Seção 2 apresenta a
fundamentação teórica; a Seção 3 apresenta a metodologia aplicada; a Seção 4 apresenta
os resultados obtidos; a Seção 5 apresenta a discussão dos resultados; a Seção 6 discute
as ameaças à validade; e a Seção 7 apresenta as considerações finais.

2. Arquitetura de Software e Microsserviços
Segundo a IEEE Computer Society [Society 2018], uma Arquitetura de Software é uma
estrutura para representar uma aplicação. Essa estrutura é construı́da considerando dife-
rentes decisões sobre a organização dos elementos que compõem o software. Além de
influenciar diretamente a qualidade, entende-se que a arquitetura é essencial para lidar
com a complexidade das aplicações, favorecendo atributos como desempenho e manute-
nibilidade [Society 2018].

Diferentes modelos de arquitetura são descritos na literatura
[Pressman and Maxim 2021]. A arquitetura de microsserviços representa um des-
ses modelos e é caracterizada por elementos de software independentes, que realizam
tarefas especı́ficas. Essa abordagem representa uma evolução das Arquiteturas Orientadas
a Serviços [Amazon 2024].

De acordo com Samad, a arquitetura baseada em microsserviços surgiu como
uma resposta às grandes demandas do mercado por softwares escaláveis, rápidos e
flexı́veis [Samad 2021]. Para Maxime, as principais caracterı́sticas dos microsserviços
são as capacidades de descentralização e desacoplamento, em que cada serviço é
responsável por uma única funcionalidade [Maxime 2023]. Tecnologias como Doc-
ker e Kubernetes têm sido utilizadas para conteineres e orquestração, respectivamente
[Docker 2024, Kubernets 2024].

A transição de arquiteturas monolı́ticas para arquiteturas baseadas em
microsserviços tem sido um foco crescente de pesquisa devido às vantagens oferecidas
em termos de modularidade, escalabilidade e flexibilidade. Essa transição envolve desa-
fios significativos, como a remodularização contı́nua do software, a integração de novas



abordagens e a gestão da dı́vida técnica [Bushong et al. 2021].

Para lidar com a complexidade da migração de sistemas monolı́ticos para
microserviços, diferentes soluções têm sido desenvolvidas. Ferramentas de gerencia-
mento de dependências têm sido utilizadas para detectar “cheiros” de microsserviços
[Walker et al. 2020].

3. Metodologia de Pesquisa
Esta revisão multivocal considerou orientações apresentadas na literatura, com o objetivo
de identificar materiais relevantes para os objetivos da revisão [Garousi et al. 2019]. Para
favorecer a reprodução da metodologia, foram consideradas as etapas de definição dos ob-
jetivos e das questões de pesquisa, definição e execução dos processos de busca, seleção,
extração e análise. Mais informações sobre cada etapa são apresentadas nesta seção.

3.1. Objetivos e Questões de Pesquisa

O objetivo desta revisão é identificar e analisar as principais tendências, desafios e
oportunidades de pesquisa existentes sobre arquiteturas de microsserviços. As seguin-
tes questões de pesquisa (QP) foram consideradas: QP1: Quais são as principais
tendências e avanços no estudo e aplicação das arquiteturas baseadas em microsserviços?;
QP2: Quais desafios são enfrentados pelos profissionais na adoção e implementação de
microsserviços?; QP3: Quais soluções foram propostas para mitigar os desafios iden-
tificados na adoção e implementação de microsserviços?; e QP4: Quais ferramentas e
tecnologias são utilizadas nas arquiteturas baseadas em microsserviços?

3.2. Processo de Busca

A busca pelos materiais foi realizada em diferentes locais. que incluem a Biblioteca Di-
gital da Sociedade Brasileira de Computação, a IEEE Computer Society, o MDPI, a rede
ResearchGate e as empresas Amazon, Docker e Kubernetes. Tais locais foram consi-
derados em razão do conhecimento preliminar, antes da revisão, sobre a existência de
materiais relevantes nesses locais. Ao final, a string de busca utilizada foi:

(“microservices architecture” OR “microservices”)
AND

(“challenges” OR “solutions” OR “tools” OR “trends”)

Após a definição, a string de busca foi executada. Ao final da execução, foram
retornados 283 materiais.

3.3. Processo de Seleção

A seleção inicial foi realizada considerando um processo estabelecido com o objetivo
de garantir a relevância dos materiais selecionados. A contribuição para responder às
questões de pesquisa foi o único critério de seleção adotado. O processo considerou as
leituras do tı́tulo, do resumo e das palavras-chave de cada material retornado. Ao final
da seleção, foram considerados 24 materiais. O processo foi realizado por uma autora.
Inicialmente, foi estabelecido que, em caso de dúvidas sobre a seleção, o artigo deveria
ser mantido.



Os materiais incluem dissertações, teses, artigos cientı́ficos, relatórios técnicos e
fontes de referência técnica de empresas de tecnologia, como Amazon, Docker e Micro-
soft. Os materiais selecionados estão apresentados na Tabela 1. Esses materiais abordam
assuntos relacionados às questões de pesquisa. Para cada material selecionado, foi esta-
belecido um identificador (ID), bem como o registro do tı́tulo e do ano de publicação.

Tabela 1. Conjunto final de estudos.

ID Tı́tulo Ano
E1 Estratégias de deployment em arquitetura de microsserviços 2023
E2 Desenvolvendo aplicações utilizando a arquitetura de microsserviços 2021
E3 On Microservice Analysis and Architecture Evolution: A Systematic Mapping Study 2021
E4 DevOps, CI/CD and Containerization: 44 Images Explaining a Winning Trio 2023
E5 What is Docker 2024
E6 Arquitetura de Microsserviços 2021
E7 Aplicando Arquitetura de Microsserviços no Desenvolvimento de Software 2021
E8 Uma Arquitetura de Microsserviços Centrada na Observabilidade Multinı́vel para

Espaços Inteligentes Baseados em Visão Computacional
2021

E9 Segurança em Micro Serviços: Boas Práticas e Estratégias 2023
E10 Kubernetes Documentation 2019
E11 A Comprehensive Study of the Transition from Monolithic to Microservices-Based Soft-

ware Architectures
2023

E12 Automated Database Schema Evolution in Microservices 2023
E13 Considerações de dados para microsserviços 2024
E14 Circuit Breakers, Discovery, and API Gateways in Microservices 2016
E15 Arquitetura de Microsserviços 2022
E16 Adesão da arquitetura de microsserviços nas grandes corporações para desenvolvimento

ou migração de aplicações
2023

E17 Avaliação experimental de uma arquitetura de microsserviços para o gerenciamento de
notas fiscais eletrônicas

2022

E18 Micro Serviços: 3 métodos de comunicação entre serviços 2019
E19 Auto-scaling Policies to Adapt the Application Deployment in Kubernetes 2020
E20 Architectural Transition: Unveiling the Shift from Monolithic to Microservices in Digi-

tal Experience Platforms
2021

E21 Proposta Introdutória de Processo Para Seleção de Tecnologias para Comunicação entre
Microserviços

2018

E22 Uma abordagem de conformidade arquitetural para arquitetura de microsserviços 2019
E23 Arquitetura de microsserviços: quando vale a pena migrar? 2020
E24 Arquitetura de microsserviços: um estudo de caso 2023

Mais informações sobre os estudos podem ser encontradas em
https://zenodo.org/records/17238803.

3.4. Processo de Extração
Após a seleção dos materiais, foi realizada a etapa de extração dos dados. Inicialmente, foi
elaborado um formulário de extração contendo as informações necessárias para responder
as questões de pesquisa (tendências e avanços, desafios enfrentados, soluções para os
desafios e ferramentas e tecnologias). Cada questão de pesquisa representa um campo do
formulário.

3.5. Processo de Análise
Os dados extraı́dos dos materiais foram utilizados para responder às questões apresenta-
das na Seção 3.1. Os resultados e discussões são apresentados nas Seções 4 e 5, respecti-



vamente.

4. Resultados
Esta seção apresenta os resultados do estudo em função das questões de pesquisa estabe-
lecidas.

4.1. QP1 - Tendências e Avanços

Diferentes avanços e tendências foram observados. Tais resultados estão registrados na
Tabela 2.

Considerando os resultados apresentados na Tabela 2, é possı́vel observar di-
ferentes tendências e avanços no estudo e aplicação das arquiteturas baseadas em
microsserviços. Por exemplo, o estudo E5 destaca que a utilização de containers facilita
a criação de ambientes isolados para cada serviço, promovendo uma maior consistência
entre as fases de desenvolvimento, teste e produção. O estudo E9, por sua vez, enfa-
tiza que a combinação de DevOps e microsserviços permite a implementação de sistemas
mais robustos e resilientes, uma vez que facilita a detecção e correção de falhas de forma
contı́nua e em tempo real.

Outras tendências e avanços estão relacionados com escalabilidade horizontal
(E6), comunicação por Application Programming Interface (API) (E7 e E8), gestão de fa-
lhas e resiliência (E15), orquestração com kubernetes (E10), bancos de dados distribuı́dos
(E12), segurança (E2), erros de observabilidade (E8), conformidade arquitetural (E22),
desafios de migração (E23), gestão de dependências (E24), erros no deployment (E1),
particionamento de domı́nios (E2) e estratégias de segurança (E9).

4.2. QP2 - Desafios Enfrentados

Uma possı́vel categorização dos principais desafios enfrentados pelos profissionais é apre-
sentada na Tabela 3.

A partir da Tabela 3, é possı́vel observar quais desafios são enfrentados pelos pro-
fissionais na adoção e implementação de microsserviços. Entre os desafios registrados
estão a escolha de tecnologias de comunicação e a gestão de falhas. O estudo E21, sobre
a escolha de tecnologias, discute como a seleção de tecnologias deve ser planejada, con-
siderando fatores como a latência, a compatibilidade entre os serviços e as necessidades
de escalabilidade. O estudo E13, sobre a gestão de falhas e resiliência, descreve que,
em arquiteturas de microsserviços, falhas em um serviço podem impactar todo o sistema,
sendo fundamental a implementação de mecanismos de resiliência, como circuit breakers
e retries automáticos. Tais técnicas minimizam o impacto das falhas e permitem que o
sistema continue operando de forma eficiente, mesmo diante de problemas em um dos
serviços.

Outros desafios enfrentados estão relacionados com a comunicação entre serviços
(E18 e E21), a escalabilidade (E15, E17 e E19), a consistência dos dados (E15) e o
monitoramento e rastreamento (E3, E14 e E19).

4.3. QP3 - Soluções para os Desafios

As soluções propostas para os desafios enfrentados estão registradas na Tabela 4.



Tabela 2. Principais tendências e avanços na área.

Tendência/Avanço Descrição ID
Uso de Containers e
Orquestração

Containers criam ambientes isolados para cada serviço; Ku-
bernetes facilita a implementação e gerenciamento eficiente de
microsserviços

E5

Escalabilidade Horizon-
tal

Permite que cada microsserviço seja escalado de forma inde-
pendente, atendendo a variações de demanda sem impactar o
sistema como um todo

E6

Comunicação por APIs Tecnologias como REST e GraphQL garantem integração efici-
ente e consultas otimizadas entre microsserviços

E7, E8

Práticas DevOps e
CI/CD

Automação de testes, integração e deploy aumenta a rapidez e a
qualidade do ciclo de vida dos microsserviços

E9

Gestão de Falhas e Re-
siliência

Padrões como Circuit Breaker e observabilidade ajudam na
recuperação automática de falhas, mantendo a continuidade dos
sistemas

E15

Orquestração com Ku-
bernetes

Facilita balanceamento de carga, implantação, escalabilidade e
gerenciamento de falhas em sistemas distribuı́dos

E10

Bancos de Dados Dis-
tribuı́dos

Bancos como Cassandra e MongoDB garantem acesso eficiente
e escalável aos dados em arquiteturas descentralizadas

E12

Segurança Implementação de autenticação, autorização por tokens e cripto-
grafia para proteger dados e comunicação entre microsserviços

E2

Erros de Observabili-
dade

A falta de ferramentas robustas de monitoramento multinı́vel
dificulta o diagnóstico de falhas em sistemas inteligentes base-
ados em visão computacional, prejudicando a escalabilidade e
manutenção

E8

Conformidade Arquite-
tural

A ausência de padrões bem definidos na comunicação entre
serviços causa inconsistências em contratos, impactando a in-
teroperabilidade e a confiabilidade dos sistemas

E22

Desafios de Migração Decisões de migração sem análises detalhadas de viabilidade
podem aumentar desnecessariamente a complexidade e os cus-
tos, comprometendo os objetivos do projeto

E23

Gestão de Dependências Falhas no gerenciamento de versões de serviços prejudicam a
integração e evolução contı́nua, levando a problemas de compa-
tibilidade no sistema

E24

Erros no Deployment A falta de automação e pipelines bem estruturados no pro-
cesso de entrega contı́nua aumenta a introdução de falhas em
produção e afeta a estabilidade do sistema

E1

Particionamento de
Domı́nios

Dividir funcionalidades sem análise criteriosa resulta em pro-
blemas de coesão e acoplamento excessivo, reduzindo a flexibi-
lidade da solução

E2

Estratégias de Segurança A ausência de autenticação e autorização granulares expõe
dados sensı́veis e compromete a integridade de sistemas dis-
tribuı́dos e de alta complexidade

E9

Tabela 3. Desafios enfrentados.

Desafio ID Quantidade
Comunicação entre serviços E18, E21 2
Escolha de tecnologias de comunicação E21 1
Escalabilidade E15, E17, E19 3
Consistência dos dados E15 1
Gestão de falhas e resiliência E13 1
Monitoramento e rastreamento E3, E14, E19 3



Tabela 4. Soluções propostas.

Solução ID Quantidade
Comunicação entre serviços E2, E6, E11 3
Gestão de dados distribuı́dos E12 1
Gestão de falhas e resiliência E7, E13 2
Orquestração de microsserviços E5, E10, E15, E17, E19 5
Segurança E16 1
Automação e DevOps E9 1

Ao analisar a Tabela 4, é possı́vel observar as soluções propostas para os desafios
mais comuns enfrentados pelos profissionais. Entre as soluções estão a gestão de dados
distribuı́dos e a melhoria dos aspectos de segurança.

A gestão de dados distribuı́dos, abordada no estudo E12, é descrita com o objetivo
de garantir que cada microsserviço tenha acesso eficiente às suas próprias informações,
sem que haja redundância ou inconsistência. Para melhorar a gestão, a prática de ”banco
de dados por serviço”tem sido adotada. Nesse contexto, cada microsserviço possui seu
próprio banco de dados, descentralizando o armazenamento e evitando conflitos. Essa
abordagem é combinada com o uso de bancos de dados distribuı́dos, que são projetados
para suportar grandes volumes de dados e escalabilidade horizontal, permitindo que o
sistema lide com aumentos no tráfego sem prejudicar o desempenho.

A segurança em sistemas de microsserviços, abordada no estudo E16, é conside-
rada um desafio relevante. O estudo destaca que a solução mais comum para enfrentar
esse desafio é a implementação de autenticação e autorização baseadas em tokens, que
permite que os microsserviços verifiquem a identidade do usuário de maneira segura e
eficiente. A criptografia de dados também é fundamental para garantir a privacidade e a
integridade da comunicação entre os microsserviços. Além disso, o uso de ferramentas
de monitoramento e logs permite a detecção precoce de incidentes de segurança.

Outras soluções propostas consideram a comunicação entre serviços (E2, E6 e
E11), gestão de dados distribuı́dos (E12), gestão de falhas e resiliência (E7 e E13),
orquestração de microsserviços (E5, E10, E15, E17 e E19), automação e devops (E9).

4.4. QP4 - Ferramentas e Tecnologias

As principais ferramentas e tecnologias utilizadas estão descritas na Tabela 5.

5. Discussão dos Resultados

A análise dos resultados obtidos na adoção da arquitetura de microsserviços revelou be-
nefı́cios importantes em relação à escalabilidade, flexibilidade e eficiência no desenvol-
vimento de software. A utilização de ferramentas como Kubernetes 1 e Docker 2 foi
essencial para alcançar maior agilidade no gerenciamento de aplicações, permitindo a
distribuição dinâmica de cargas de trabalho e a implantação rápida de novos serviços.

Outro ponto relevante foi a adoção de ferramentas de monitoramento, como Pro-

1https://kubernetes.io/pt-br/
2https://www.docker.com/



Tabela 5. Ferramentas e tecnologias utilizadas.

Ferramenta/Tecnologia Descrição ID
Kubernetes Automação de implantação, escala e gerencia-

mento de aplicativos baseados em contêineres
E15, E19,
E17

Docker Criação, implantação e execução de aplicati-
vos em contêineres isolados e portáveis

E16, E20,
E15

Prometheus, Grafana Coleta de métricas e visualização de dados
para análise de desempenho e monitoramento
contı́nuo

E19

Jenkins, GitLab CI Automação de testes, builds e implantações
em um fluxo de desenvolvimento contı́nuo

E4

Helm, ConfigMaps (Kuberne-
tes)

Gerenciamento de configurações e controle de
versões para ambientes de microsserviços

E19

ELK Stack (Elasticsearch,
Logstash, Kibana)

Ferramentas para coleta, análise e visualização
de logs gerados pelos serviços

E3

MongoDB, PostgreSQL, Re-
dis

Bancos de dados otimizados para diferentes
necessidades de armazenamento e consulta

E17

metheus 3 e Grafana 4, que permitiram uma visão detalhada do desempenho do sistema. A
coleta contı́nua de métricas possibilitou a identificação precoce de gargalos. Essas ferra-
mentas são importantes para manter a operação estável em ambientes distribuı́dos e com-
plexos, nos quais pequenos problemas podem gerar impactos significativos. A integração
e entrega contı́nuas (CI/CD), implementadas por meio de Jenkins 5 e GitLab 6, também
se destacaram na redução do tempo necessário para implementar mudanças. O pipeline
automatizado eliminou etapas manuais, reduzindo a probabilidade de erros e acelerando
o ciclo de desenvolvimento.

Os resultados ainda apontaram que a comunicação entre os microsserviços,
quando estruturada com protocolos adequados como gRPC 7 e mensagens assı́ncronas
via RabbitMQ 8 ou Kafka 9, garantiu a troca eficiente de informações. Esse modelo di-
minuiu a latência e aumentou a capacidade de processar grandes volumes de dados de
maneira distribuı́da. No entanto, desafios relacionados à complexidade da configuração
inicial foram identificados, especialmente em equipes sem experiência prévia nesse tipo
de arquitetura.

Por outro lado, alguns desafios relacionados à migração de sistemas legados para
microsserviços foram destacados. A transição exigiu um planejamento robusto, incluindo
a escolha de padrões arquiteturais adequados e a reestruturação do código existente. A
complexidade dessa migração apresentou custos iniciais elevados, mas os benefı́cios a
longo prazo, como a facilidade de manutenção e atualização, compensaram esse inves-
timento inicial. Por fim, os resultados também evidenciaram a importância de uma cul-
tura organizacional alinhada ao uso dessa arquitetura. A adoção de práticas ágeis e a
capacitação contı́nua das equipes foram essenciais para o sucesso da implementação. Essa

3https://www.opservices.com.br/monitoramento-prometheus/
4https://www.opservices.com.br/grafana/
5https://www.jenkins.io/
6https://about.gitlab.com/
7https://grpc.io/
8https://www.rabbitmq.com/
9https://www.redhat.com/pt-br/topics/integration/what-is-apache-kafka



integração entre tecnologia e estratégia organizacional garantiu não apenas a funcionali-
dade do sistema, mas também sua evolução conforme as demandas do mercado.

6. Ameaças à Validade
A condução deste estudo pode ter sido influenciada por algumas limitações metodológicas
que impactam a validade dos resultados. A seguir, apresentam-se as principais ameaças
identificadas.

Validade de Construção. A definição das questões de pesquisa e dos critérios
de extração pode não ter capturado todos os aspectos relevantes da literatura sobre
microsserviços. A seleção dos materiais foi realizada com base em tı́tulos, resumos e
palavras-chave, o que pode ter levado à exclusão de materiais relevantes que não utili-
zavam termos representativos considerados na string de busca. Para minimizar tal risco,
decidiu-se que um material deveria ser mantido em situações de dúvida.

Validade Interna. O processo de inclusão envolveu julgamentos subjetivos. Ape-
sar do uso de um formulário padronizado, existe o risco de viés na interpretação durante
a extração e categorização dos dados. Por isso, os materiais foram mantidos em situações
de dúvida.

Validade Externa. Os resultados refletem apenas o conjunto de estudos iden-
tificados e selecionados, não sendo possı́vel garantir que todos os trabalhos relevantes
disponı́veis na literatura cinzenta ou em bases de dados não consultadas tenham sido con-
templados. A predominância de um tipo de material também pode limitar a aplicabilidade
das conclusões. Os autores reconhecem e aceitam essa ameaça, uma vez que este estudo
pode ser considerado um ponto de partida para estudos secundários mais especı́ficos,
como uma Revisão Sistemática de Literatura [Mahood et al. 2014].

Validade de Conclusão. A validade de conclusão pode ter sido afetada pelo
número reduzido de materiais encontrados, o que restringe a generalização dos resul-
tados. Dessa maneira, entende-se que os resultados devem ser interpretados como um
panorama atual e indicativo, mas não definitivo, sobre os avanços e tendências, desafios,
soluções e tecnologias relacionadas à arquitetura de microsserviços.

7. Considerações Finais
Este trabalho apresentou uma revisão multivocal da literatura sobre arquiteturas de
microsserviços, abordando as evoluções dos estudos, desafios, soluções e tecnologias
associadas. As principais tendências identificadas estão relacionadas a práticas de de-
senvolvimento, integração contı́nua, flexibilidade e escalabilidade, com destaque para o
uso crescente de contêineres, orquestradores e ferramentas de monitoramento. Embora
avanços relevantes tenham sido observados em áreas como gerenciamento e segurança,
persistem desafios importantes, como a necessidade de padronização e a complexidade
na migração de sistemas monolı́ticos. Entre os benefı́cios, ressalta-se o impacto positivo
no desenvolvimento ágil e na escalabilidade, além da consolidação de boas práticas que
orientam profissionais e pesquisadores.

A revisão também apontou limitações e oportunidades de pesquisa, como a escas-
sez de estudos empı́ricos em larga escala e a necessidade de abordagens interdisciplinares
que integrem microsserviços a áreas emergentes, como inteligência artificial, internet das



coisas e computação em borda. Sugere-se, assim, a realização de investigações sobre
ferramentas automatizadas de monitoramento, metodologias que facilitem a transição de
arquiteturas monolı́ticas e análises de custo-benefı́cio da adoção de microsserviços em
projetos complexos, oferecendo um panorama útil tanto para o meio acadêmico quanto
para a prática profissional. Existe ainda a possibilidade de realizar estudos secundários
mais especı́ficos sobre a temática de microsserviços, tais como as tendências e os desafios
enfrentados.

Referências
Amazon (2024). O que são microsserviços? https://aws.amazon.com/pt/
microservices/.

Bonfiglioli, C. P. (2021). Desenvolvendo aplicações utilizando a arquitetura de
microsserviços. Acesso em: 2024-12-06.

Bushong, V., Abdl-Fattah, A. S., Maruf, A. A., Das, D., Lehman, A., Jaroszewski, E.,
Coffey, M., Cerny, T., Frajtak, K., Tisnovsky, P., and Bures, M. (2021). On micro-
service analysis and architecture evolution: A systematic mapping study. MDPI Open
Access Journals, page 27.

Docker (2024). What is docker. https://www.docker.com/resources/
what-container.

Fowler, M. (2023). A comprehensive study of the transition from monolithic to
microservices-based software architectures. Acesso em: 20 dez. 2024.

Garousi, V., Felderer, M., and Mäntylä, M. V. (2019). Guidelines for including grey litera-
ture and conducting multivocal literature reviews in software engineering. Information
and software technology, 106:101–121.

Kubernets (2024). Kubernetes documentation. https://kubernetes.io/docs/
home/.

Lima, G. P. D. S. and Fontoura, J. R. D. A. (2023). Adesão da arquitetura
de microsserviços nas grandes corporações para desenvolvimento ou migração de
aplicações. Acesso em: 2024-12-07.

Mahood, Q., Van Eerd, D., and Irvin, E. (2014). Searching for grey literature for syste-
matic reviews: challenges and benefits. Research synthesis methods, 5(3):221–234.

Maxime, A. (2023). Automated database schema evolution in microservices. Conference:
49th International Conference on Very Large Data Bases (VLDB 2023) PhD Workshop,
page 34.

Pressman, R. S. and Maxim, B. R. (2021). Engenharia de software-9. McGraw Hill
Brasil.

Samad, A. (2021). Architectural transition: Unveiling the shift from monolithic to mi-
croservices in digital experience platforms. Massachusetts Institute of Technology,
page 17.

Society, I. C. (2018). What is software architecture in software engineering?

Walker, A., Das, D., and Cerny, T. (2020). Automated code-smell detection in microser-
vices through static analysis: A case study. Applied Sciences, 10:7800.


