
Avaliação de Qualidade de Código Java gerado por Large
Language Models

Marco Tullio Oliveira1, Pedro Márcio Oliveira Silveira1, Michelle Hanne S. de Andrade2

1Pontifı́cia Universidade Católica de Minas Gerais
(PUC Minas), Belo Horizonte – MG – Brasil

2Instituto de Ciência Exatas e Informática (ICEI)
Departamento de Engenharia de Software - PUC Minas

marco.oliveira.1278372@sga.pucminas.br, pedro.marcio@sga.pucminas.br,

michelleandrade@pucminas.br

Abstract. The quality of software systems has become increasingly relevant due
to their widespread use in various fields. Large Language Models (LLMs) have
emerged as a promising tool for improving software quality, but there are still
gaps in understanding how LLMs affect this quality. This study addressed this
gap by investigating the impact of LLMs on the quality of generated software. To
achieve this objective, analyses were conducted to measure the quality of code
generated on Java language by LLMs, using a dataset of 204 programming pro-
blems. This study aimed to contribute to closing the existing gap in the literature
on the topic by analyzing quality metrics related to the effective application of
LLMs in software development.

Resumo. A qualidade dos sistemas de software tem se tornado cada vez mais
relevante devido ao seu amplo uso em diversas áreas. Os modelos de linguagem
de grande porte (LLMs, do inglês Large Language Models) têm surgido como
uma ferramenta promissora para aprimorar a qualidade do software, mas ainda
há lacunas no entendimento de como os LLMs afetam essa qualidade. Este tra-
balho abordou essa lacuna, propondo investigar o impacto dos LLMs na qua-
lidade do software gerado. Para alcançar esse objetivo, realizou-se análises
para mensurar a qualidade do código gerado na linguagem Java por LLMs,
utilizando 204 problemas de programação. Este estudo buscou contribuir para
a redução da lacuna existente na literatura sobre o tema, ao analisar métricas
de qualidade relacionadas à aplicação eficiente de LLMs no desenvolvimento
de software.

1. Introdução
Um dos desafios da Engenharia de Software é a qualidade nas etapas de desenvolvimento.
Bibiano (2022) revela que, com frequência, os desenvolvedores aplicam refatoração com-
posta com o objetivo de remover completamente Code Smells. Nos últimos anos, a In-
teligência Artificial (IA) tem feito um progresso significativo em áreas como reconheci-
mento de imagem e reconhecimento de voz, entre outras [LUO and XIE 2018]. Nesse
contexto, verifica-se que a IA pode ser uma aliada valiosa na busca pela qualidade de
software, visto que as tendências apontam para o uso cada vez mais presente da IA
[LUO and XIE 2018], [IMAI 2022].



A literatura explora a qualidade de software sob diferentes perspectivas. Por
exemplo, Lu (2022) propõem um modelo de avaliação para testes de software crı́ticos
à segurança, enquanto Tang (2023) foca na criação de uma ferramenta para avaliar a
qualidade da documentação. Outros estudos abordam o tema Code Smells, investi-
gando desde os desafios de sua remoção [BIBIANO 2022], até a calibração de modelos
de detecção automatizada com feedback humano para lidar com sua natureza subjetiva
[NANADANI et al. 2023]. Este estudo busca contribuir para a avaliação de diferentes
LLMs na qualidade de código Java.

A IA tem a capacidade de analisar dados complexos automaticamente fa-
zendo o uso de Redes Neurais e algoritmos de Processamento de Linguagem Natural
avançado, conforme demonstrado por Hourani et al.(2019). Empresas como Meta e
Google exploram possibilidades dos LLMs desenvolvendo aplicações, como uma fer-
ramenta para melhoria de testes unitários desenvolvidos originalmente por humanos
[ALSHAHWAN et al. 2024]. Hourani, t al. (2019) preveem que, nos próximos 4 a 8
anos, a IA substituirá engenheiros de QA (Quality Assurance). Zhao (2021) revela que
a qualidade é essencial para o software, pois software de baixa qualidade pode causar
consequências variadas e graves. Portanto, nesse contexto, é importante entender como
as IAs afetam a qualidade de software, não apenas em termos de testes, mas também em
outros aspectos de qualidade como a manutenibilidade.

O objetivo geral deste trabalho é avaliar a qualidade de código Java gerada por
LLMs. Destacam-se os seguintes objetivos especı́ficos: (i) avaliar métricas de qualidade
como Complexidade Ciclomática, Complexidade Cognitiva e Code Smells na geração de
código por LLMs; (ii) realizar comparação entre diferentes LLMs, avaliando critérios
como assertividade dos LLMs e tempo de execução dos algoritmos, e (iii) examinar o
desempenho dos LLMs em tarefas de codificação de diferentes nı́veis de dificuldade.

Como resultado deste estudo, espera-se obter a comparação de como as IAs afetam
a qualidade do software. Dessa forma, o estudo pretende fornecer uma base para futuras
pesquisas e aplicações práticas, auxiliando desenvolvedores e organizações a tomarem
decisões conscientes sobre o uso de IA em seus projetos de software.

Este artigo é organizado da seguinte forma: a Seção 2 apresenta os Trabalhos
Relacionados; a Seção 3 evidencia os Materiais e Métodos utilizados para este estudo; a
Seção 4 apresenta a Caracterização do Conjunto de Dados; a Seção 5 aborda a Discussão
dos Resultados, e por fim, a Seção 6 apresenta a Conclusão e Trabalhos Futuros.

2. Trabalhos Relacionados
Nesta seção, são apresentados os trabalhos relacionados que abordam o uso de LLMs na
geração e na qualidade de código.

Coignion et al. (2024) realizaram um estudo aprofundado sobre a eficiência dos
LLMs na geração de código. O dataset foi composto de 204 problemas extraı́dos do
LeetCode1, distribuı́dos em três nı́veis de dificuldade: 56 fáceis, 104 médios e 44 difı́ceis.
O estudo comparou 18 LLMs para a resolução dos problemas. Os resultados indicaram
que, em média, os LLMs foram capazes de gerar soluções com desempenho comparável
às soluções humanas, sendo que alguns modelos produziram código mais eficiente em

1https://leetcode.com/



termos de tempo de execução. O presente estudo tem semelhanças com Coignion et al.,
como a origem do dataset, mas este trabalho utiliza outros LLMs e métodos de medição
de qualidade diferentes, como SonarQube.

Merkel e Dörpinghaus (2025) realizaram um estudo quantitativo para avaliar a
qualidade do código gerado por LLM em comparação com soluções desenvolvidas por
humanos na plataforma LeetCode. Para isso, utilizaram o modelo GPT-4o e problemas
extraı́das do próprio LeetCode. O SonarQube e a correção do LeetCode foram escolhi-
dos para obtenção de métricas. Os resultados indicaram que as soluções geradas pelo
GPT-4o apresentaram uma menor incidência de Code Smells e uma menor Complexidade
Cognitiva em comparação com o código humano. Ambos os estudos têm semelhanças,
como o uso do SonarQube2, mas o presente estudo não utiliza soluções desenvolvidas por
humanos.

Mayer et al. (2024) realizaram um estudo comparativo para avaliar a performance
de diferentes LLMs na geração de código a partir de texto. Foram analisados cinco mo-
delos: ChatGPT, BingChat, Bard, Llama2 e Code Llama, considerando três métricas
principais: corretude, tempo de execução e uso de memória. Os experimentos indicaram
que o ChatGPT superou os demais modelos, resolvendo corretamente mais de 50% das
tarefas, enquanto modelos como Llama2 e Code Llama tiveram um desempenho inferior,
com menos de 10% de acertos. Ambos os estudos têm como foco LLMs, entretanto o pre-
sente estudo utiliza métricas diferentes, como Complexidade Cognitiva, e avalia também
o DeepSeek.

Niu et al. (2024) avaliaram a eficiência do código gerado por LLMs, investigando
sua execução em diferentes benchmarks. Para medir a eficiência dos códigos gerados, os
autores utilizaram um ambiente de execução controlado, analisando métricas como tempo
de execução e taxa de aceitação. O estudo destacou que a engenharia de prompts pode
melhorar a eficiência do código gerado, especialmente ao adotar abordagens baseadas em
chain-of-thought. Diferentemente do presente estudo, que utiliza ferramentas de métricas
como SonarQube, a pesquisa de Niu et al. foca na utilização de benchmarks.

3. Materiais e Métodos
Nesta pesquisa, foi adotada uma abordagem quantitativa, voltada à análise do impacto
de modelos de LLMs na qualidade do software Java. Dado o escopo do estudo e com
base nos objetivos especı́ficos, foram elaboradas três questões de pesquisa (QP), cada
uma acompanhada de suas respectivas hipóteses: a hipótese nula (H0), que considera
a inexistência de diferença estatisticamente significativa entre os atributos avaliados dos
códigos produzidos pelas LLMs, e a hipótese alternativa (H1), que pressupõe a existência
de tal diferença para pelo menos um dos modelos analisados.

• (QP1) Existe diferença significativa na assertividade entre os códigos gerados pe-
las distintas LLMs?

• (QP2) Existe diferença significativa na Complexidade Ciclomática dos códigos
gerados pelas distintas LLMs?

• (QP3) Existe diferença significativa na Complexidade Cognitiva dos códigos ge-
rados pelas distintas LLMs?

2https://www.sonarsource.com/



Na QP1, avalia-se a taxa de soluções corretas, considerando o percentual de res-
postas marcadas como Accepted pela plataforma LeetCode. Para validar essa métrica, é
necessário que o código-fonte sugerido seja aprovado em todos os casos de teste disponi-
bilizados.

Na QP2, investiga-se a qualidade estrutural dos códigos por meio da Complexi-
dade Ciclomática. Por último, na QP3, analisa-se a legibilidade do código-fonte gerado
pelas LLMs, utilizando a métrica de Complexidade Cognitiva.

A Complexidade Ciclomática é uma métrica que quantifica o número de caminhos
independentes em um programa, onde valores menores sugerem código mais simples e
menos custoso de testar e manter [NGUYEN and NADI 2022]. Já a Complexidade Cog-
nitiva avalia a dificuldade de compreensão do código-fonte, considerando a quantidade
de conceitos e estruturas que um programador precisa assimilar, onde valores mais baixos
indicam maior legibilidade e facilidade de manutenção [NGUYEN and NADI 2022].

Para uma validação estatı́stica consolidada emprega-se o teste de normalidade de
Shapiro–Wilk e o teste não paramétrico de Mann–Whitney U [BARBETTA et al. 2010].

3.1. Arranjo Experimental

Para tanto, selecionou-se um conjunto de 204 problemas de código extraı́dos da plata-
forma LeetCode. O LeetCode é um ambiente online que possui uma vasta gama de pro-
blemas abordando codificação de algoritmos. Foram selecionados aleatoriamente: 56 pro-
blemas classificados como fáceis, 104 como médios e 44 como difı́ceis. Essa abordagem
permitiu isolar variáveis especı́ficas, como a dificuldade dos problemas e a performance
dos LLMs, para determinar com maior precisão sua influência na qualidade do software.

Para a extração dos problemas do LeetCode, foi desenvolvido um script em
Python versão 3.13.2, assim como todos os scripts utilizados para este estudo. Com
isso, automatizou-se a captura dos seguintes atributos relacionados a cada problema: ID,
Tı́tulo, Nı́vel de dificuldade, Link, Descrição, Código base em Java3. Esse script utilizou
GraphQL4 para a captura de forma aleatória dos problemas e geração de arquivo CSV,
contendo as informações estruturadas dos problemas.

Posteriormente, foram criados scripts para a leitura do arquivo CSV e submissão
dos problemas nas LLMs. A linguagem de programação adotada foi Java. Como ferra-
mentas, foram utilizados os LLMs ChatGPT5, DeepSeek6 e Gemini7. Os scripts foram si-
milares, apresentando algumas diferenças como o nome do modelo usado e configurações
especı́ficas de cada empresa. Em sı́ntese, a descrição e o código base em Java eram inse-
ridos dinamicamente no prompt. Foi instruı́do a retornar apenas o código com a resolução
do problema. O código fonte gerado pela LLM então foi inserido em um novo CSV con-
tendo os seguintes campos: ID, Tı́tulo, Dificuldade, Link, Descrição, Código Resolvido
por LLM em Java, nome da LLM. Todo esse processo foi repetido para cada um dos 204
problemas. A ferramenta de avaliação de qualidade escolhida, além do LeetCode, foi o
SonarQube.

3Código previamente fornecido pelo LeetCode com nomes, tipos de funções e parâmetros já definidos
4https://graphql.org/
5https://openai.com/chatgpt/overview/
6https://www.deepseek.com/
7https://gemini.google.com/



A plataforma utilizada para o uso dos LLMs foi o GitHub Models8, porém alguns
modelos utilizados apresentavam uma limitação diária de uso na plataforma. Para lidar
com isso, nos scripts que utilizam esta plataforma, foi criado um arquivo para o controle
da quantidade de execuções realizadas e restantes para a totalidade dos problemas. Para
cada um dos 204 problemas, foi gerada uma única solução por LLM, utilizando a primeira
resposta obtida, sem qualquer tipo de realimentação para refinar o resultado.

Após a geração das soluções, cada código foi submetido à plataforma LeetCode
para verificação automática dos resultados, a fim de confirmar se a implementação dos
LLMs atingiu a funcionalidade esperada para cada problema. Para realização das sub-
missões, foi implementado um script em Python e Selenium para realizar o login no Leet-
Code, efetuar a submissão dos problemas resolvidos por LLMs e extração dos resultados.

Em seguida, os códigos foram analisados por meio do SonarQube, ferramenta res-
ponsável por coletar métricas de qualidade, tais como Complexidade Ciclomática, Com-
plexidade Cognitiva e Code Smells9

Dessa forma, os métodos adotados neste estudo possibilitaram análises entre as
soluções geradas pelos diferentes LLMs, permitindo identificar padrões e diferenças na
qualidade do código produzido. A utilização de um conjunto padronizado de problemas
e de métricas quantitativas contribui para uma análise imparcial do impacto dos LLMs no
desenvolvimento de software.

Tratando dos ambientes em que os códigos foram executados, foi escolhido o
PyCharm 2024.3.2 para Windows. Os códigos foram executados em duas máquinas dis-
tintas: (1) Windows 11 Home 24H2, RAM de 16 GB, Armazenamento de 512 GB, Proces-
sador 11th Gen Intel i7-11390H 3.40GHz 2.92 GHz, Placa de Vı́deo NVIDIA GeForce
MX450 1GB; (2) Windows 10, RAM de 16 GB, 1 terabyte NVME, Processador Ryzen 7
5800 x 8 - Core, Placa de Vı́deo RTX 3060.

Os artefatos deste estudo se encontram em https://zenodo.org/records/15742458.

4. Caracterização dos Dados
O presente estudo utilizou-se de 204 problemas do LeetCode, entre eles 56 fáceis, 104
médios e 44 difı́ceis. Esses problemas foram resolvidos na linguagem Java pelos seguin-
tes modelos de linguagem: DeepSeek V3, DeepSeek V3 0325, ChatGPT 4o, ChatGPT
4o-mini, Gemini 2.0 Flash e Gemini 2.5 Pro. A temperature adotada para os modelos
DeepSeek e Gemini foi a padrão para gerar os códigos. No modelo ChatGPT foi testado
a temperature padrão e a temperature = 0.1, sendo a última escolhida para geração dos
códigos. O GPT-4o, DeepSeek V3 e DeepSeek V3 0325 levaram 5 dias para gerar todos
os códigos, já o GPT-4o-mini levou 2 dias para gerar os códigos. O Gemini 2.5 levou 6
dias para gerar todos os códigos, já o Gemini 2.0 Flash levou 1 dia para gerar todos os
códigos.

A Figura 1 apresenta os histogramas que descrevem a distribuição do percentual
de acerto obtido pelos 204 problemas. Para todos os casos adotou-se largura de classe
de 10 p.p. (0–10%, 10–20%, . . . , 90–100%). Convém frisar que o último intervalo do

8https://github.com/marketplace?type=models
9Code Smells são um sinal de alerta em um código-fonte que indica um problema mais profundo, embora

não seja um erro que impeça a execução do programa para a avaliação da qualidade do código gerado.



histograma (90 – 100 p.p.) agrupa todas as submissões cujo percentual de acertos se en-
contra nessa faixa, isto é, contabiliza simultaneamente os problemas resolvidos de forma
completa (100%) e aqueles com taxas de sucesso ligeiramente inferiores.

Figura 1. Histograma de percentual de acertos por modelo.

DeepSeek V3 0325 solucionou integralmente 77 problemas (37,75% do con-
junto), configurando o segundo maior ı́ndice de acertos completos; o DeepSeek V3 obteve
61 Accepted (29,90%) com perfil semelhante ao Gemini 2.0 Flash, com a mesma quanti-
dade e percentual de acertos; o ChatGPT 4o registrou 53 aprovações (25,98%), ao passo
que sua variante GPT 4o-mini obteve os mesmos valores de assertividade; por fim, o Ge-
mini 2.5 Pro destacou-se com 168 Accepted (82,35%). Quando a análise se restringe
apenas às submissões Accepted, observa-se uma redução geral dos valores extremos em
comparação ao conjunto completo, embora a hierarquia relativa entre os modelos se man-
tenha.

Se tratando de Complexidade Ciclomática, a Figura 2 mostra que o Gemini 2.5
Pro preserva a mediana mais elevada (≈ 8) e o maior intervalo interquartil (≈ 6, 3),
alcançando máxima de 26. Isso indica que, mesmo nas soluções corretas, o modelo in-
troduz fluxos de controle mais densos. O Gemini 2.0 Flash permanece em segundo lugar
(mediana ≈ 7, máximo = 21), seguido pelo DeepSeek V3 0325 (mediana ≈ 6, máximo =
23). Já os modelos ChatGPT 4o e 4o-mini concentram suas medianas em torno de 4 pon-
tos, com valores máximos não ultrapassando 10 pontos, sugerindo implementações mais
concisas e homogêneas. O DeepSeek V3 mantém a mediana em cinco e limite superior



de 14 pontos, reforçando o caráter estruturalmente simples das suas respostas aprovadas.
Os modelos que não apresentaram outliers foram os modelos ChatGPT 4o e 4o-mini.

Figura 2. Boxplot da Complexidade Ciclomática por LLMs

O padrão também se replica na métrica de Complexidade Cognitiva. É evidenci-
ado na Figura 3 que o Gemini 2.5 Pro, apresentando maior quantidade de amostras aceitas
no LeetCode, exibe a maior mediana (≈ 10) e atinge valores máximos de 90 pontos, reve-
lando aninhamentos e encadeamentos que podem dificultar a leitura. O Gemini 2.0 Flash
segue-lhe (mediana ≈ 8, máximo = 26), enquanto o DeepSeek V3 0325 oscila na faixa
entre 7 pontos de mediana e 90 pontos de máxima. Por outro lado, ChatGPT 4o e 4o-mini
mantêm medianas de 5 a 6 e limites superiores de 20 pontos, registrando a menor carga
cognitiva. O DeepSeek V3 situa-se no meio-termo (mediana ≈ 6, máximo = 25). O único
modelo que não apresentou outliers foi o Gemini 2.0 Flash.

Figura 3. Boxplot da Complexidade Cognitiva por LLMs

Para os Code Smells, o Gemini 2.5 Pro mantém a maior mediana (≈ 5) e a cauda
superior mais extensa (até 28 smells). Gemini 2.0 Flash e DeepSeek V3 0325 alinham-se
em mediana 4, sendo suas máximas de 17 e 14 pontos (incluindo seus outliers), respec-
tivamente. Já o DeepSeek V3 reduz a mediana para 4 e registra o limite superior de 9



pontos. As variantes ChatGPT 4o e 4o-mini confirmam o melhor perfil qualitativo, com
mediana de 3 smells, sendo suas máximas valores de 8 e 9 pontos (incluindo seus outliers),
respectivamente. Todos os modelos apresentaram outliers.

Em sı́ntese, os modelos com maior taxa de acertos, notadamente o Gemini 2.5
Pro, tendem a gerar soluções mais complexas, enquanto ChatGPT 4o/4o-mini se destacam
pela concisão estrutural e limpeza de código, ainda que resolvam menos problemas. Os
outliers evidenciam que alguns problemas especı́ficos são particularmente desafiadores
para as LLMs, expondo limites em termos de clareza ou estilo nas soluções geradas.

5. Discussão dos Resultados

Esta seção discute criticamente os resultados obtidos, relacionando-os às três questões de
pesquisa e às hipóteses respectivas.

Para atender à QP1, verificou-se a existência de diferenças nas taxas de Accepted
entre as seis LLMs ao transformar a quantidade de acertos em percentuais. Cada modelo
submeteu 204 problemas ao LeetCode, obtendo as seguintes taxas de acerto: ChatGPT
4o (25,98 %), ChatGPT 4o-mini (25,98%), DeepSeek V3 (29,90 %), DeepSeek V3 0325
(37,75 %), Gemini 2.0 Flash (29,90 %) e Gemini 2.5 Pro (82,35 %). Com base nesses
valores, procedeu-se inicialmente ao teste de normalidade de Shapiro–Wilk sobre os ve-
tores binários de aceitação (1 = Accepted; 0 = Not Accepted) referentes a cada LLM.
Os resultados indicaram p-valores inferiores a 0,05 para todas as seis LLMs, indicando
clara violação do pressuposto de normalidade. Em face desse resultado, adotou-se o teste
não paramétrico de Mann–Whitney U em comparações pareadas, com alternativa uni-
lateral (“Gemini 2.5 Pro > outro modelo”), a fim de verificar se o modelo Gemini 2.5
Pro apresentava proporção de Accepted estatisticamente superior às demais. Observou-se
diferença significativa em todas as comparações envolvendo Gemini 2.5 Pro (por exem-
plo: Gemini 2.5 Pro vs. ChatGPT 4o: p = 1, 82×10−30; Gemini 2.5 Pro vs. DeepSeek V3
0325: p = 2, 03× 10−20; Gemini 2.5 Pro vs. Gemini 2.0 Flash: p = 7, 71× 10−27). Em
virtude de todos os p-values serem inferiores ao nı́vel de significância de 0,05, rejeita-
se a hipótese nula H0 de igualdade de percentual de assertividade e acolhe-se H1, de
que existe pelo menos uma diferença estatisticamente significativa na assertividade das
soluções produzidas pelas LLMs analisadas. Conclui-se, portanto, que Gemini 2.5 Pro
exibe superioridade estatisticamente significativa em termos de assertividade em relação
aos demais modelos.

Com base nos dados das distribuições da Complexidade Ciclomática foi realizado
o teste de normalidade de Shapiro-Wilk apontou p-valor inferior a 0,05 para todas as seis
LLMs, indicando violação do pressuposto de normalidade das distribuições de Complexi-
dade Ciclomática. Dessa forma, procedeu-se ao teste não paramétrico de Mann-Whitney
U em comparações pareadas entre os seis grupos. Verificou-se diferença estatisticamente
significativa (por exemplo, DeepSeek V3 vs. DeepSeek V3 0325: p = 0,0486; ChatGPT
4o vs. Gemini 2.0 Flash: p = 0,00099; Gemini 2.0 Flash vs. Gemini 2.5 Pro: p = 0,0368),
enquanto apenas quatro pares não apresentaram diferença significativas (por ex., Deep-
Seek V3 vs. ChatGPT 4o: p = 0,189). Em face destas evidências, rejeita-se a hipótese
nula H0 de igualdade de Complexidade Ciclomática entre as LLMs, acolhendo-se H1

de que existe pelo menos uma diferença estatisticamente significativa na Complexidade
Ciclomática dos códigos produzidos pelas LLMs analisadas.



Para a questão de pesquisa QP3, referente à existência de diferença estatistica-
mente significativa na Complexidade Cognitiva dos códigos gerados pelas LLMs, aplicou-
se inicialmente o teste de normalidade de Shapiro-Wilk aos valores de Complexidade
Cognitiva das submissões Accepted de cada modelo. Em todos os seis casos verificou-se
rejeição do pressuposto de normalidade, o que motivou o uso de testes não paramétricos
de Mann-Whitney U em comparações pareadas. Nove comparações apresentaram p-valor
inferior a α = 0,05, destacando-se DeepSeek V3 vs. Gemini 2.5 Pro (p = 1,59 × 10−5),
DeepSeek V3 vs. Gemini 2.0 Flash (p = 0,0253) e DeepSeek V3 0325 vs. ChatGPT 4o
(p = 0,0250), ao passo que pares como DeepSeek V3 vs. DeepSeek V3 0325 (p = 0,185)
e ChatGPT 4o vs. ChatGPT 4o-mini (p = 0,734) não evidenciaram diferença significativa.
Diante desses resultados, rejeita-se a hipótese nula H0 e acolhe-se a hipótese alternativa
H1 de que existe pelo menos uma diferença estatisticamente significativa na Complexi-
dade Cognitiva dos códigos produzidos pelas LLMs analisadas.

6. Conclusão
Este trabalho investigou o impacto de seis LLMs na qualidade do software gerado,
por meio de três questões de pesquisa: assertividade (QP1), Complexidade Ciclomática
(QP2) e Complexidade Cognitiva (QP3). Os testes estatı́sticos aplicados (Shapiro–Wilk e
Mann–Whitney U) levaram a rejeição de todas as H0 e ao acolhimento das H1.

Em termos de assertividade, o modelo Gemini 2.5 Pro superou os demais,
alcançando 82,35 % de soluções Accepted, seguido pelo DeepSeek V3 0325, que ob-
teve a segunda melhor taxa de acertos entre as LLMs avaliadas 38%. Contudo, o Gemini
2.5 Pro apresentou a maior Complexidade Ciclomática e Cognitiva, bem como o maior
número de Code Smells. Por outro lado, ChatGPT 4o e sua variante mini mostraram-se
os mais concisos, com valores medianos de complexidade significativamente menores,
ainda que com taxas de acerto mais modestas. Com isso, os objetivos do trabalho foram
respondidos.

Estes resultados são importantes para os desenvolvedores que usam ou preten-
dem utilizar essas LLMs, pois fornecem dados sobre qual modelo é mais adequado para
diferentes objetivos. Com base nos resultados deste estudo, recomenda-se que os de-
senvolvedores considerem a utilização do Gemini 2.5 Pro quando a assertividade for um
ponto prioritário. Por outro lado, caso a principal preocupação esteja relacionada à Com-
plexidade Ciclomática e/ou Cognitiva, sugere-se a utilização do ChatGPT 4o ou de sua
variante mini que apresentaram resultados medianos de complexidade menores aos de-
mais modelos avaliados.

Para estudos futuros, é recomendado expandir a análise, incluindo um maior
número de LLMs, como o Claude ou a LLaMA, bem como diferentes linguagens de
programação, como Python e C#. Por fim, seria interessante investigar o impacto dessas
LLMs em projetos e cenários reais, além de avaliar a qualidade do código produzido a
longo prazo.

Referências
ALSHAHWAN, N., CHHEDA, J., FINOGENOVA, A., GOKKAYA, B., HARMAN, M.,

HARPER, I., MARGINEAN, A., SENGUPTA, S., and WANG, E. (2024). Automa-
ted unit test improvement using large language models at meta. In Companion Pro-



ceedings of the 32nd ACM International Conference on the Foundations of Software
Engineering, pages 185–196.

BARBETTA, P. A., REIS, M. M., and BORNIA, A. C. (2010). Estatı́stica: para cursos
de engenharia e informática. Editora da UFSC.

BIBIANO, A. C. (2022). Completeness of composite refactorings for smell removal. In
Companhia Proceedings da 44ª Conferência Internacional IEEE/ACM sobre Enge-
nharia de Software (ICSE-Companion), pages 264–268, Pittsburgh, PA, EUA.

COIGNION, T., QUINTON, C., and Rouvoy, R. (2024). A performance study of llm-
generated code on leetcode. In Proceedings of the 28th International Conference on
Evaluation and Assessment in Software Engineering, pages 79–89.

HOURANI, H., HAMMAD, A., and LAFI, M. (2019). The impact of artificial intelli-
gence on software testing. pages 565–570.

IMAI, S. (2022). Is github copilot a substitute for human pair-programming? an empirical
study. In 2022 IEEE/ACM 44th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pages 319–321.

LU, Y., LI, C., WANG, S., LIU, Y., and DAI, J. (2022). A quality evaluation method for
software testing about safety-critical software. pages 35–42.

LUO, X. and XIE, L. (2018). Research on artificial intelligence-based sharing education
in the era of internet+. In 2018 International Conference on Intelligent Transportation,
Big Data & Smart City (ICITBS), pages 335–338.

MAYER, L., HEUMANN, C., and Aßenmacher, M. (2024). Can opensource beat
chatgpt?–a comparative study of large language models for text-to-code generation.
arXiv preprint arXiv:2409.04164.

MERKEL, M. and Dörpinghaus, J. (2025). A case study on the transformative potential of
ai in software engineering on leetcode and chatgpt. arXiv preprint arXiv:2501.03639.

NANADANI, H., SAAD, M., and SHARMA, T. (2023). Calibrating deep learning-based
code smell detection using human feedback. pages 37–48.

NGUYEN, N. and NADI, S. (2022). An empirical evaluation of github copilot’s code
suggestions. In 2022 IEEE/ACM 19th International Conference on Mining Software
Repositories (MSR), pages 1–5.

NIU, C., ZHANG, T., LI, C., LUO, B., and NG, V. (2024). On evaluating the effici-
ency of source code generated by llms. In Proceedings of the 2024 IEEE/ACM First
International Conference on AI Foundation Models and Software Engineering, pages
103–107.

TANG, H. and NADI, S. (2023). Evaluating software documentation quality. pages 67–
78.

ZHAO, Y., HU, Y., and GONG, J. (2021). Research on international standardization of
software quality and software testing. pages 56–62.


