Avaliacao de Qualidade de Codigo Java gerado por Large
Language Models

Marco Tullio Oliveira', Pedro Marcio Oliveira Silveira', Michelle Hanne S. de Andrade?

IPontificia Universidade Catélica de Minas Gerais
(PUC Minas), Belo Horizonte — MG — Brasil

?Instituto de Ciéncia Exatas e Informatica (ICEI)
Departamento de Engenharia de Software - PUC Minas

marco.oliveira.l1l278372@sga.pucminas.br, pedro.marcio@sga.pucminas.br,

michelleandrade@pucminas.br

Abstract. The quality of software systems has become increasingly relevant due
to their widespread use in various fields. Large Language Models (LLMs) have
emerged as a promising tool for improving software quality, but there are still
gaps in understanding how LLMs affect this quality. This study addressed this
gap by investigating the impact of LLMs on the quality of generated software. To
achieve this objective, analyses were conducted to measure the quality of code
generated on Java language by LLMs, using a dataset of 204 programming pro-
blems. This study aimed to contribute to closing the existing gap in the literature
on the topic by analyzing quality metrics related to the effective application of
LLMs in software development.

Resumo. A qualidade dos sistemas de software tem se tornado cada vez mais
relevante devido ao seu amplo uso em diversas dreas. Os modelos de linguagem
de grande porte (LLMs, do inglés Large Language Models) tém surgido como
uma ferramenta promissora para aprimorar a qualidade do software, mas ainda
hd lacunas no entendimento de como os LLMs afetam essa qualidade. Este tra-
balho abordou essa lacuna, propondo investigar o impacto dos LLMs na qua-
lidade do software gerado. Para alcangar esse objetivo, realizou-se andlises
para mensurar a qualidade do cédigo gerado na linguagem Java por LLMs,
utilizando 204 problemas de programacdo. Este estudo buscou contribuir para
a redugdo da lacuna existente na literatura sobre o tema, ao analisar métricas
de qualidade relacionadas a aplicagdo eficiente de LLMs no desenvolvimento
de software.

1. Introducao

Um dos desafios da Engenharia de Software € a qualidade nas etapas de desenvolvimento.
Bibiano (2022) revela que, com frequéncia, os desenvolvedores aplicam refatoragdo com-
posta com o objetivo de remover completamente Code Smells. Nos ultimos anos, a In-
teligéncia Artificial (IA) tem feito um progresso significativo em dreas como reconheci-
mento de imagem e reconhecimento de voz, entre outras [LUO and XIE 2018]. Nesse
contexto, verifica-se que a IA pode ser uma aliada valiosa na busca pela qualidade de
software, visto que as tendéncias apontam para o uso cada vez mais presente da [A
[LUO and XIE 2018], [IMAI 2022].

A literatura explora a qualidade de software sob diferentes perspectivas. Por
exemplo, Lu (2022) propdem um modelo de avaliacdo para testes de software criticos
a segurancga, enquanto Tang (2023) foca na criagdo de uma ferramenta para avaliar a
qualidade da documentacdo. Outros estudos abordam o tema Code Smells, investi-
gando desde os desafios de sua remocao [BIBIANO 2022], até a calibracdo de modelos
de deteccdo automatizada com feedback humano para lidar com sua natureza subjetiva
[NANADANI et al. 2023]. Este estudo busca contribuir para a avaliagdo de diferentes
LLMs na qualidade de codigo Java.

A TA tem a capacidade de analisar dados complexos automaticamente fa-
zendo o uso de Redes Neurais e algoritmos de Processamento de Linguagem Natural
avangado, conforme demonstrado por Hourani et al.(2019). Empresas como Meta e
Google exploram possibilidades dos LLMs desenvolvendo aplicacdes, como uma fer-
ramenta para melhoria de testes unitdrios desenvolvidos originalmente por humanos
[ALSHAHWAN et al. 2024]. Hourani, t al. (2019) preveem que, nos préximos 4 a 8
anos, a [A substituird engenheiros de QA (Quality Assurance). Zhao (2021) revela que
a qualidade € essencial para o software, pois software de baixa qualidade pode causar
consequéncias variadas e graves. Portanto, nesse contexto, € importante entender como
as [As afetam a qualidade de software, ndo apenas em termos de testes, mas também em
outros aspectos de qualidade como a manutenibilidade.

O objetivo geral deste trabalho € avaliar a qualidade de cédigo Java gerada por
LLMs. Destacam-se os seguintes objetivos especificos: (i) avaliar métricas de qualidade
como Complexidade Ciclomatica, Complexidade Cognitiva e Code Smells na geracao de
codigo por LLMs; (ii) realizar comparagdo entre diferentes LLMs, avaliando critérios
como assertividade dos LLMs e tempo de execucdo dos algoritmos, e (iii) examinar o
desempenho dos LLMs em tarefas de codificacdo de diferentes niveis de dificuldade.

Como resultado deste estudo, espera-se obter a comparagao de como as [As afetam
a qualidade do software. Dessa forma, o estudo pretende fornecer uma base para futuras
pesquisas e aplicacOes praticas, auxiliando desenvolvedores e organizacdes a tomarem
decisdes conscientes sobre o uso de IA em seus projetos de software.

Este artigo é organizado da seguinte forma: a Secdo 2 apresenta os Trabalhos
Relacionados; a Secao 3 evidencia os Materiais e Métodos utilizados para este estudo; a
Secdo 4 apresenta a Caracterizacao do Conjunto de Dados; a Secdo 5 aborda a Discussao
dos Resultados, e por fim, a Sec@o 6 apresenta a Conclusdo e Trabalhos Futuros.

2. Trabalhos Relacionados

Nesta se¢do, sdo apresentados os trabalhos relacionados que abordam o uso de LLMs na
geragdo e na qualidade de cédigo.

Coignion et al. (2024) realizaram um estudo aprofundado sobre a eficiéncia dos
LLMs na geracdo de cédigo. O dataset foi composto de 204 problemas extraidos do
LeetCode!, distribuidos em trés niveis de dificuldade: 56 faceis, 104 médios e 44 dificeis.
O estudo comparou 18 LLMs para a resolu¢do dos problemas. Os resultados indicaram
que, em média, os LLMs foram capazes de gerar solu¢cdes com desempenho compardvel
as solucdes humanas, sendo que alguns modelos produziram cédigo mais eficiente em

hitps:/fleetcode.com/

termos de tempo de execugdo. O presente estudo tem semelhangas com Coignion et al.,
como a origem do dataset, mas este trabalho utiliza outros LLMs e métodos de medigao
de qualidade diferentes, como SonarQube.

Merkel e Dorpinghaus (2025) realizaram um estudo quantitativo para avaliar a
qualidade do cédigo gerado por LLM em comparacdo com solugdes desenvolvidas por
humanos na plataforma LeetCode. Para isso, utilizaram o modelo GPT-40 e problemas
extraidas do proprio LeetCode. O SonarQube e a correcao do LeetCode foram escolhi-
dos para obtencdo de métricas. Os resultados indicaram que as solugdes geradas pelo
GPT-4o apresentaram uma menor incidéncia de Code Smells e uma menor Complexidade
Cognitiva em comparac¢do com o cédigo humano. Ambos os estudos t€ém semelhancas,
como o uso do SonarQube?, mas o presente estudo nio utiliza solugdes desenvolvidas por
humanos.

Mayer et al. (2024) realizaram um estudo comparativo para avaliar a performance
de diferentes LLMs na geracdo de codigo a partir de texto. Foram analisados cinco mo-
delos: ChatGPT, BingChat, Bard, Llama2 e Code Llama, considerando trés métricas
principais: corretude, tempo de execucdo e uso de memoria. Os experimentos indicaram
que o ChatGPT superou os demais modelos, resolvendo corretamente mais de 50% das
tarefas, enquanto modelos como Llama?2 e Code Llama tiveram um desempenho inferior,
com menos de 10% de acertos. Ambos os estudos tém como foco LLMs, entretanto o pre-
sente estudo utiliza métricas diferentes, como Complexidade Cognitiva, e avalia também
0 DeepSecek.

Niu et al. (2024) avaliaram a eficiéncia do c6digo gerado por LLMs, investigando
sua execucao em diferentes benchmarks. Para medir a eficiéncia dos codigos gerados, o0s
autores utilizaram um ambiente de execugdo controlado, analisando métricas como tempo
de execucdo e taxa de aceitagdo. O estudo destacou que a engenharia de prompts pode
melhorar a eficiéncia do cédigo gerado, especialmente ao adotar abordagens baseadas em
chain-of-thought. Diferentemente do presente estudo, que utiliza ferramentas de métricas
como SonarQube, a pesquisa de Niu et al. foca na utiliza¢do de benchmarks.

3. Materiais e Métodos

Nesta pesquisa, foi adotada uma abordagem quantitativa, voltada a andlise do impacto
de modelos de LLLMs na qualidade do software Java. Dado o escopo do estudo e com
base nos objetivos especificos, foram elaboradas trés questdes de pesquisa (QP), cada
uma acompanhada de suas respectivas hipoteses: a hipotese nula (HO), que considera
a inexisténcia de diferenca estatisticamente significativa entre os atributos avaliados dos
codigos produzidos pelas LLMs, e a hipdtese alternativa (H1), que pressupde a existéncia
de tal diferenga para pelo menos um dos modelos analisados.

* (QP1) Existe diferenca significativa na assertividade entre os cédigos gerados pe-
las distintas LLMs?

* (QP2) Existe diferenga significativa na Complexidade Ciclomdtica dos cddigos
gerados pelas distintas LLMs?

* (QP3) Existe diferenca significativa na Complexidade Cognitiva dos codigos ge-
rados pelas distintas LLMs?

2https://www.sonarsource.com/

Na QPI, avalia-se a taxa de solucdes corretas, considerando o percentual de res-
postas marcadas como Accepted pela plataforma LeetCode. Para validar essa métrica, é
necessdrio que o codigo-fonte sugerido seja aprovado em todos os casos de teste disponi-
bilizados.

Na QP2, investiga-se a qualidade estrutural dos cédigos por meio da Complexi-
dade Ciclomatica. Por dltimo, na QP3, analisa-se a legibilidade do cédigo-fonte gerado
pelas LLMs, utilizando a métrica de Complexidade Cognitiva.

A Complexidade Ciclomatica ¢ uma métrica que quantifica o nimero de caminhos
independentes em um programa, onde valores menores sugerem codigo mais simples e
menos custoso de testar e manter [NGUYEN and NADI 2022]. Ja a Complexidade Cog-
nitiva avalia a dificuldade de compreensdo do codigo-fonte, considerando a quantidade
de conceitos e estruturas que um programador precisa assimilar, onde valores mais baixos
indicam maior legibilidade e facilidade de manutencdo [NGUYEN and NADI 2022].

Para uma validacdo estatistica consolidada emprega-se o teste de normalidade de
Shapiro—Wilk e o teste ndo paramétrico de Mann—Whitney U [BARBETTA et al. 2010].

3.1. Arranjo Experimental

Para tanto, selecionou-se um conjunto de 204 problemas de cédigo extraidos da plata-
forma LeetCode. O LeetCode é um ambiente online que possui uma vasta gama de pro-
blemas abordando codificacao de algoritmos. Foram selecionados aleatoriamente: 56 pro-
blemas classificados como faceis, 104 como médios e 44 como dificeis. Essa abordagem
permitiu isolar varidveis especificas, como a dificuldade dos problemas e a performance
dos LLMs, para determinar com maior precisao sua influéncia na qualidade do software.

Para a extracdo dos problemas do LeetCode, foi desenvolvido um script em
Python versdao 3.13.2, assim como todos os scripts utilizados para este estudo. Com
1Ss0, automatizou-se a captura dos seguintes atributos relacionados a cada problema: 1D,
Titulo, Nivel de dificuldade, Link, Descri¢cao, Codigo base em J ava’. Esse script utilizou
GraphQL* para a captura de forma aleatéria dos problemas e geracio de arquivo CSV,
contendo as informacdes estruturadas dos problemas.

Posteriormente, foram criados scripts para a leitura do arquivo CSV e submissao
dos problemas nas LLMs. A linguagem de programacdo adotada foi Java. Como ferra-
mentas, foram utilizados os LLMs ChatGPT?, DeepSeek® e Gemini’. Os scripts foram si-
milares, apresentando algumas diferencas como o nome do modelo usado e configuragdes
especificas de cada empresa. Em sintese, a descri¢ao e o cddigo base em Java eram inse-
ridos dinamicamente no prompt. Foi instruido a retornar apenas o c6digo com a resolucao
do problema. O cédigo fonte gerado pela LLM entao foi inserido em um novo CSV con-
tendo os seguintes campos: ID, Titulo, Dificuldade, Link, Descri¢ao, Cédigo Resolvido
por LLM em Java, nome da LLM. Todo esse processo foi repetido para cada um dos 204
problemas. A ferramenta de avaliacdo de qualidade escolhida, além do LeetCode, foi o
SonarQube.

3Cédigo previamente fornecido pelo LeetCode com nomes, tipos de fungdes e pardmetros ja definidos
*https://graphgl.org/

Shttps://openai.com/chatgpt/overview/

Ohttps://www.deepseek.com/

" https://gemini.google.com/

A plataforma utilizada para o uso dos LLMs foi o GitHub Models®, porém alguns
modelos utilizados apresentavam uma limitacdo didria de uso na plataforma. Para lidar
com iss0, nos scripts que utilizam esta plataforma, foi criado um arquivo para o controle
da quantidade de execugOes realizadas e restantes para a totalidade dos problemas. Para
cada um dos 204 problemas, foi gerada uma tnica solu¢do por LLM, utilizando a primeira
resposta obtida, sem qualquer tipo de realimentagdo para refinar o resultado.

ApOs a geragdo das solugdes, cada codigo foi submetido a plataforma LeetCode
para verificacdo automatica dos resultados, a fim de confirmar se a implementagcao dos
LLMs atingiu a funcionalidade esperada para cada problema. Para realizacdo das sub-
missoes, foi implementado um script em Python e Selenium para realizar o login no Leet-
Code, efetuar a submissdo dos problemas resolvidos por LLMs e extracdo dos resultados.

Em seguida, os cddigos foram analisados por meio do SonarQube, ferramenta res-
ponsavel por coletar métricas de qualidade, tais como Complexidade Ciclomética, Com-
plexidade Cognitiva e Code Smells’

Dessa forma, os métodos adotados neste estudo possibilitaram andlises entre as
solucoes geradas pelos diferentes LLMs, permitindo identificar padroes e diferencas na
qualidade do cédigo produzido. A utilizacdo de um conjunto padronizado de problemas
e de métricas quantitativas contribui para uma anélise imparcial do impacto dos LLLMs no
desenvolvimento de software.

Tratando dos ambientes em que os codigos foram executados, foi escolhido o
PyCharm 2024.3.2 para Windows. Os cddigos foram executados em duas médquinas dis-
tintas: (1) Windows 11 Home 24H2, RAM de 16 GB, Armazenamento de 512 GB, Proces-
sador 11th Gen Intel i7-11390H 3.40GHz 2.92 GHz, Placa de Video NVIDIA GeForce
MX450 1GB; (2) Windows 10, RAM de 16 GB, 1 terabyte NVME, Processador Ryzen 7
5800 x 8 - Core, Placa de Video RTX 3060.

Os artefatos deste estudo se encontram em https://zenodo.org/records/15742458.

4. Caracterizacao dos Dados

O presente estudo utilizou-se de 204 problemas do LeetCode, entre eles 56 faceis, 104
médios e 44 dificeis. Esses problemas foram resolvidos na linguagem Java pelos seguin-
tes modelos de linguagem: DeepSeek V3, DeepSeek V3 0325, ChatGPT 40, ChatGPT
40-mini, Gemini 2.0 Flash e Gemini 2.5 Pro. A temperature adotada para os modelos
DeepSeek e Gemini foi a padrdo para gerar os codigos. No modelo ChatGPT foi testado
a temperature padrao e a temperature = (.1, sendo a dltima escolhida para geracao dos
codigos. O GPT-40, DeepSeek V3 e DeepSeek V3 0325 levaram 5 dias para gerar todos
os codigos, ja o GPT-40-mini levou 2 dias para gerar os c6digos. O Gemini 2.5 levou 6
dias para gerar todos os codigos, ja o Gemini 2.0 Flash levou 1 dia para gerar todos os
codigos.

A Figura 1 apresenta os histogramas que descrevem a distribuicao do percentual
de acerto obtido pelos 204 problemas. Para todos os casos adotou-se largura de classe
de 10 p.p. (0-10%, 10-20%, ..., 90-100%). Convém frisar que o ultimo intervalo do

8 https.//github.com/marketplace ?type=models
9Code Smells sdo um sinal de alerta em um cédigo-fonte que indica um problema mais profundo, embora
ndo seja um erro que impeca a execugdo do programa para a avaliagdo da qualidade do cédigo gerado.

histograma (90 — 100 p.p.) agrupa todas as submissdes cujo percentual de acertos se en-
contra nessa faixa, isto €, contabiliza simultaneamente os problemas resolvidos de forma
completa (100%) e aqueles com taxas de sucesso ligeiramente inferiores.

DeepSeek V3 DeepSeek V3 0325

o
3
=
5]
S

2 2 2 x
3 8 3 3
=3 @
3 3

2
[}

w
&
Quantidade de Problemas

Quantidade de Problemas

5}
N
S

5

o
o

0 20 40 60 80 100 [20 40 60 80 100
Percentual de Acerto (%) Percentual de Acerto (%)

ChatGPT 4o ChatGPT 4o-mini

o
3

=

3

@
3

=)

3

@
3
@
3

s
8
IS
[}

w
&
w
&

S

Quantidade de Problemas
N
S

Quantidade de Problemas

5
=
5

o
o

0 20 40 60 80 100 0 20 40 60 80 100
Percentual de Acerto (%) Percentual de Acerto (%)

Gemini 2.0 Flash Gemini 2.5 Pro

o o 5
3 8 8

s
8
Quantidade de Problemas

Quantidade de Problemas

5}

—
0 20 40 60 80 100 20 40 60 80 100
Percentual de Acerto (%) Percentual de Acerto (%)

°

Figura 1. Histograma de percentual de acertos por modelo.

DeepSeek V3 0325 solucionou integralmente 77 problemas (37,75 % do con-
junto), configurando o segundo maior indice de acertos completos; o DeepSeek V3 obteve
61 Accepted (29,90 %) com perfil semelhante a0 Gemini 2.0 Flash, com a mesma quanti-
dade e percentual de acertos; o ChatGPT 4o registrou 53 aprovagdes (25,98 %), ao passo
que sua variante GPT 40-mini obteve os mesmos valores de assertividade; por fim, o Ge-
mini 2.5 Pro destacou-se com 168 Accepted (82,35 %). Quando a andlise se restringe
apenas as submissoes Accepted, observa-se uma reducdo geral dos valores extremos em
comparacao ao conjunto completo, embora a hierarquia relativa entre os modelos se man-
tenha.

Se tratando de Complexidade Ciclomatica, a Figura 2 mostra que o Gemini 2.5
Pro preserva a mediana mais elevada (= 8) e o maior intervalo interquartil (= 6, 3),
alcancando maxima de 26. Isso indica que, mesmo nas solugdes corretas, o0 modelo in-
troduz fluxos de controle mais densos. O Gemini 2.0 Flash permanece em segundo lugar
(mediana ~ 7, méximo = 21), seguido pelo DeepSeek V3 0325 (mediana ~ 6, maximo =
23). Ja os modelos ChatGPT 4o e 40-mini concentram suas medianas em torno de 4 pon-
tos, com valores maximos nao ultrapassando 10 pontos, sugerindo implementagdes mais
concisas € homogéneas. O DeepSeek V3 mantém a mediana em cinco e limite superior

de 14 pontos, reforcando o carater estruturalmente simples das suas respostas aprovadas.
Os modelos que ndo apresentaram outliers foram os modelos ChatGPT 40 e 40-mini.

Distribuicao de Complexidade Ciclomatica

254

I
°©
o
0000 O

00

]

TTTL

0 W 0 ©
P o R o o

-
o

=
5}

Complexidade Ciclomatica

w

04

o
2% £
ozz\’ Qgez‘*

o
o

Modelo

Figura 2. Boxplot da Complexidade Ciclomatica por LLMs

O padrao também se replica na métrica de Complexidade Cognitiva. E evidenci-
ado na Figura 3 que o Gemini 2.5 Pro, apresentando maior quantidade de amostras aceitas
no LeetCode, exibe a maior mediana (= 10) e atinge valores mdximos de 90 pontos, reve-
lando aninhamentos e encadeamentos que podem dificultar a leitura. O Gemini 2.0 Flash
segue-lhe (mediana ~ 8, miximo = 26), enquanto o DeepSeek V3 0325 oscila na faixa
entre 7 pontos de mediana e 90 pontos de maxima. Por outro lado, ChatGPT 40 e 40-mini
mantém medianas de 5 a 6 e limites superiores de 20 pontos, registrando a menor carga
cognitiva. O DeepSeek V3 situa-se no meio-termo (mediana ~ 6, maximo = 25). O tnico
modelo que ndo apresentou outliers foi o Gemini 2.0 Flash.

Distribuigdo de Complexidade Cognitiva

80 4

@
3
oo

Complexidade Cognitiva
5
5
D

- -
%Q
-
-
i =
L

Modelo

Figura 3. Boxplot da Complexidade Cognitiva por LLMs

Para os Code Smells, o Gemini 2.5 Pro mantém a maior mediana (= 5) e a cauda
superior mais extensa (até 28 smells). Gemini 2.0 Flash e DeepSeek V3 0325 alinham-se
em mediana 4, sendo suas maximas de 17 e 14 pontos (incluindo seus outliers), respec-
tivamente. J4 o DeepSeek V3 reduz a mediana para 4 e registra o limite superior de 9

pontos. As variantes ChatGPT 40 e 40-mini confirmam o melhor perfil qualitativo, com
mediana de 3 smells, sendo suas miximas valores de 8 e 9 pontos (incluindo seus outliers),
respectivamente. Todos os modelos apresentaram outliers.

Em sintese, os modelos com maior taxa de acertos, notadamente o Gemini 2.5
Pro, tendem a gerar solucdes mais complexas, enquanto ChatGPT 40/40-mini se destacam
pela concisdo estrutural e limpeza de cddigo, ainda que resolvam menos problemas. Os
outliers evidenciam que alguns problemas especificos sdo particularmente desafiadores
para as LLMs, expondo limites em termos de clareza ou estilo nas solu¢des geradas.

5. Discussao dos Resultados

Esta secdo discute criticamente os resultados obtidos, relacionando-os as trés questdes de
pesquisa e as hipdteses respectivas.

Para atender a QP1, verificou-se a existéncia de diferencas nas taxas de Accepted
entre as seis LLMs ao transformar a quantidade de acertos em percentuais. Cada modelo
submeteu 204 problemas ao LeetCode, obtendo as seguintes taxas de acerto: ChatGPT
40 (25,98 %), ChatGPT 40-mini (25,98%), DeepSeek V3 (29,90 %), DeepSeek V3 0325
(37,75 %), Gemini 2.0 Flash (29,90 %) e Gemini 2.5 Pro (82,35 %). Com base nesses
valores, procedeu-se inicialmente ao teste de normalidade de Shapiro—Wilk sobre os ve-
tores bindrios de aceitacdo (1 = Accepted; 0 = Not Accepted) referentes a cada LLM.
Os resultados indicaram p-valores inferiores a 0,05 para todas as seis LL.Ms, indicando
clara violag@o do pressuposto de normalidade. Em face desse resultado, adotou-se o teste
nao paramétrico de Mann—Whitney U em comparacdes pareadas, com alternativa uni-
lateral (“Gemini 2.5 Pro > outro modelo”), a fim de verificar se 0 modelo Gemini 2.5
Pro apresentava proporcao de Accepted estatisticamente superior as demais. Observou-se
diferenca significativa em todas as comparacdes envolvendo Gemini 2.5 Pro (por exem-
plo: Gemini 2.5 Pro vs. ChatGPT 40: p = 1,82x1073%; Gemini 2.5 Pro vs. DeepSeek V3
0325: p = 2,03 x 1072°; Gemini 2.5 Pro vs. Gemini 2.0 Flash: p = 7,71 x 107%7). Em
virtude de todos os p-values serem inferiores ao nivel de significancia de 0,05, rejeita-
se a hipétese nula H, de igualdade de percentual de assertividade e acolhe-se H;, de
que existe pelo menos uma diferencga estatisticamente significativa na assertividade das
solugdes produzidas pelas LLMs analisadas. Conclui-se, portanto, que Gemini 2.5 Pro
exibe superioridade estatisticamente significativa em termos de assertividade em relagdo
aos demais modelos.

Com base nos dados das distribui¢cdes da Complexidade Ciclomatica foi realizado
o teste de normalidade de Shapiro-Wilk apontou p-valor inferior a 0,05 para todas as seis
LLMs, indicando violagdo do pressuposto de normalidade das distribui¢des de Complexi-
dade Ciclomaética. Dessa forma, procedeu-se ao teste nao paramétrico de Mann-Whitney
U em comparacgdes pareadas entre os seis grupos. Verificou-se diferenca estatisticamente
significativa (por exemplo, DeepSeek V3 vs. DeepSeek V3 0325: p = 0,0486; ChatGPT
40 vs. Gemini 2.0 Flash: p = 0,00099; Gemini 2.0 Flash vs. Gemini 2.5 Pro: p = 0,0368),
enquanto apenas quatro pares nao apresentaram diferenca significativas (por ex., Deep-
Seek V3 vs. ChatGPT 4o0: p = 0,189). Em face destas evidéncias, rejeita-se a hipdtese
nula H, de igualdade de Complexidade Ciclomética entre as LLLMs, acolhendo-se
de que existe pelo menos uma diferenca estatisticamente significativa na Complexidade
Ciclomatica dos cédigos produzidos pelas LLMs analisadas.

Para a questdao de pesquisa QP3, referente a existéncia de diferenca estatistica-
mente significativa na Complexidade Cognitiva dos codigos gerados pelas LLMs, aplicou-
se inicialmente o teste de normalidade de Shapiro-Wilk aos valores de Complexidade
Cognitiva das submissdes Accepted de cada modelo. Em todos os seis casos verificou-se
rejeicao do pressuposto de normalidade, o que motivou o uso de testes nao paramétricos
de Mann-Whitney U em comparagdes pareadas. Nove comparacdes apresentaram p-valor
inferior a @ = 0,05, destacando-se DeepSeek V3 vs. Gemini 2.5 Pro (p = 1,59 x 107°),
DeepSeek V3 vs. Gemini 2.0 Flash (p = 0,0253) e DeepSeek V3 0325 vs. ChatGPT 4o
(p = 0,0250), ao passo que pares como DeepSeek V3 vs. DeepSeek V3 0325 (p = 0,185)
e ChatGPT 4o vs. ChatGPT 40-mini (p = 0,734) ndo evidenciaram diferenga significativa.
Diante desses resultados, rejeita-se a hipétese nula Hj e acolhe-se a hipdtese alternativa
H, de que existe pelo menos uma diferencga estatisticamente significativa na Complexi-
dade Cognitiva dos cédigos produzidos pelas LLMs analisadas.

6. Conclusao

Este trabalho investigou o impacto de seis LLMs na qualidade do software gerado,
por meio de trés questdes de pesquisa: assertividade (QP1), Complexidade Ciclomatica
(QP2) e Complexidade Cognitiva (QP3). Os testes estatisticos aplicados (Shapiro—Wilk e
Mann—Whitney U) levaram a rejei¢ao de todas as Hj e ao acolhimento das H;.

Em termos de assertividade, o modelo Gemini 2.5 Pro superou os demais,
alcangando 82,35 % de solugdes Accepted, seguido pelo DeepSeek V3 0325, que ob-
teve a segunda melhor taxa de acertos entre as LLLMs avaliadas 38%. Contudo, o Gemini
2.5 Pro apresentou a maior Complexidade Ciclomatica e Cognitiva, bem como o maior
ndamero de Code Smells. Por outro lado, ChatGPT 40 e sua variante mini mostraram-se
os mais concisos, com valores medianos de complexidade significativamente menores,
ainda que com taxas de acerto mais modestas. Com isso, 0s objetivos do trabalho foram
respondidos.

Estes resultados sdo importantes para os desenvolvedores que usam ou preten-
dem utilizar essas LLLMs, pois fornecem dados sobre qual modelo é mais adequado para
diferentes objetivos. Com base nos resultados deste estudo, recomenda-se que os de-
senvolvedores considerem a utilizagdo do Gemini 2.5 Pro quando a assertividade for um
ponto prioritario. Por outro lado, caso a principal preocupacao esteja relacionada a Com-
plexidade Ciclomatica e/ou Cognitiva, sugere-se a utilizacdo do ChatGPT 4o ou de sua
variante mini que apresentaram resultados medianos de complexidade menores aos de-
mais modelos avaliados.

Para estudos futuros, é recomendado expandir a andlise, incluindo um maior
nimero de LLMs, como o Claude ou a LLaMA, bem como diferentes linguagens de
programacdo, como Python e C#. Por fim, seria interessante investigar o impacto dessas
LLMs em projetos e cendrios reais, além de avaliar a qualidade do cédigo produzido a
longo prazo.

Referéncias

ALSHAHWAN, N., CHHEDA, J., FINOGENOVA, A., GOKKAYA, B., HARMAN, M.,
HARPER, 1., MARGINEAN, A., SENGUPTA, S., and WANG, E. (2024). Automa-
ted unit test improvement using large language models at meta. In Companion Pro-

ceedings of the 32nd ACM International Conference on the Foundations of Software
Engineering, pages 185—-196.

BARBETTA, P. A., REIS, M. M., and BORNIA, A. C. (2010). Estatistica: para cursos
de engenharia e informdtica. Editora da UFSC.

BIBIANO, A. C. (2022). Completeness of composite refactorings for smell removal. In
Companhia Proceedings da 44“ Conferéncia Internacional IEEE/ACM sobre Enge-
nharia de Software (ICSE-Companion), pages 264-268, Pittsburgh, PA, EUA.

COIGNION, T., QUINTON, C., and Rouvoy, R. (2024). A performance study of llm-
generated code on leetcode. In Proceedings of the 28th International Conference on
Evaluation and Assessment in Software Engineering, pages 79-89.

HOURANI, H., HAMMAD, A., and LAFI, M. (2019). The impact of artificial intelli-
gence on software testing. pages 565-570.

IMAL S. (2022). Is github copilot a substitute for human pair-programming? an empirical
study. In 2022 IEEE/ACM 44th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pages 319-321.

LU, Y, LI C., WANG, S., LIU, Y., and DAI, J. (2022). A quality evaluation method for
software testing about safety-critical software. pages 35-42.

LUO, X. and XIE, L. (2018). Research on artificial intelligence-based sharing education
in the era of internet+. In 2018 International Conference on Intelligent Transportation,
Big Data & Smart City (ICITBS), pages 335-338.

MAYER, L., HEUMANN, C., and ABenmacher, M. (2024). Can opensource beat
chatgpt?—a comparative study of large language models for text-to-code generation.
arXiv preprint arXiv:2409.04164.

MERKEL, M. and Dérpinghaus, J. (2025). A case study on the transformative potential of
al in software engineering on leetcode and chatgpt. arXiv preprint arXiv:2501.03639.

NANADANI, H., SAAD, M., and SHARMA, T. (2023). Calibrating deep learning-based
code smell detection using human feedback. pages 37—48.

NGUYEN, N. and NADI, S. (2022). An empirical evaluation of github copilot’s code
suggestions. In 2022 IEEE/ACM 19th International Conference on Mining Software
Repositories (MSR), pages 1-5.

NIU, C., ZHANG, T, LI, C., LUO, B., and NG, V. (2024). On evaluating the effici-
ency of source code generated by llms. In Proceedings of the 2024 IEEE/ACM First

International Conference on Al Foundation Models and Software Engineering, pages
103-107.

TANG, H. and NADI, S. (2023). Evaluating software documentation quality. pages 67—
78.

ZHAO, Y., HU, Y., and GONG, J. (2021). Research on international standardization of
software quality and software testing. pages 56—62.

