Explorando a Program Structure Interface (PSI):
Fundamentos da Construcao de Plugins no IntelliJ

Reinaldo Wendt', Ana Carolina Rodrigues', Elder Rodrigues’

!Laboratory of Empirical Studies in Software Engineering (LESSE)
Universidade Federal do Pampa (UNIPAMPA) — Alegrete — RS — Brasil

{reinaldowendt, anapoltronieri}.aluno@unipampa.edu.br,
elderrodrigues@unipampa.edu.br

Abstract. This paper explores the Program Structure Interface (PSI) as a basis
for plugin development in IntelliJ. Adopting a Design Science Research appro-
ach, two artifacts were implemented.: the Editor Context Info, which correlates
the cursor position with the hierarchy of the code, and the PSI Tree Genera-
tor, which generates visualizations of the PSI tree for source files. The results
demonstrate the applicability of PSI in real-time code analysis and manipula-
tion, highlighting its potential as a resource to support programmers and as a
platform for innovation in IDEs, in comparison to the AST.

Resumo. Este artigo explora a Program Structure Interface (PSI) como base
para o desenvolvimento de plugins no IntelliJ. Adotando a abordagem de Design
Science Research, foram implementados dois artefatos: o Editor Context Info,
que correlaciona a posigcdo do cursor com a hierarquia do codigo, e o PSI Tree
Generator, que gera visualizacoes da drvore PSI de arquivos. Os resultados
demonstram a aplicabilidade da PSI na andlise e manipulagcdo de cédigo em
tempo real, destacando seu potencial como recurso de apoio ao programador e
como plataforma para inovagdo em IDEs, em comparagdo a AST.

1. Introducao

O desenvolvimento de software moderno demanda ferramentas que vao além da sim-
ples edicdo de texto [Leite et al. 2019]. Ambientes de Desenvolvimento Integrado
(IDEs) tornaram-se pecas centrais no ciclo de vida das aplicacdes, oferecendo re-
cursos como refatoracdo automadtica, verificacdes estdticas e sugestdes inteligentes
[Golubev et al. 2021]. Para viabilizar tais funcionalidades, é necessario que o cddigo-
fonte seja representado de maneira estruturada, de modo que a IDE consiga compreender
sua organizacao sintatica e semantica [Fowler 2019]. Nesse contexto, destaca-se o Pro-
gram Structure Interface, um mecanismo presente na plataforma IntelliJ que possibilita a
interacdo direta com representagdes estruturais do codigo [JetBrains 2025f].

O IntelliJ, em particular, disponibiliza uma arquitetura extensivel baseada em plu-
gins, permitindo que desenvolvedores explorem abstra¢cdes como a PSI para criar novas
funcionalidades. Essa possibilidade motiva o presente estudo, uma vez que compreender
e utilizar a PSI ndo apenas amplia a eficiéncia no desenvolvimento de solu¢des para a
propria IDE, como também serve de exemplo prético sobre como abstracdes de codigo
podem ser empregadas em tarefas de apoio ao programador [JetBrains 2025b].

Diante do exposto, o objetivo central deste artigo € investigar o potencial da PSI no
desenvolvimento de plugins para o IntelliJ. A metodologia serd baseada na implementagao
de artefatos que exemplificam como essa interface pode ser explorada para criar funcio-
nalidades de andlise e manipulacdo de cédigo. Dessa forma, o trabalho busca oferecer
evidéncias da aplicabilidade da PSI em cenarios de apoio inteligente a programacao.

Além desta introducdo, o artigo estd organizado da seguinte forma: a Segdo 2
apresenta a fundamentacao tedrica, discutindo representagdes estruturais de codigo, a im-
portancia de abstragdes em IDEs e a definicao da PSI. A Sec¢ao 3 descreve a metodologia
adotada. Na sequéncia, a Secdo 4 detalha os plugins construidos e seus aspectos técnicos.
A Secdo 5 apresenta a andlise dos resultados e das contribui¢des. Por fim, a Se¢do 6 traz
as consideragdes finais, destacando limitagdes e perspectivas de trabalhos futuros.

2. Fundamentacao Teorica

Esta sec@o apresenta os conceitos necessarios para compreender o uso da PSI no desen-
volvimento de extensdes para o IntelliJ. Sdo abordadas as representacdes estruturais de
codigo-fonte, o papel das IDEs como ambientes que exigem abstracOes avangadas, a im-
portancia da extensibilidade por meio de plugins e, por fim, a defini¢do da PSI.

2.1. Representacao Estrutural de Codigo-Fonte

O codigo-fonte de um programa, em sua forma textual, ndo € suficiente para permitir
andlises complexas ou transformacgdes automatizadas. Para que ferramentas possam com-
preender a organizacdo e os significados do cddigo, sdo necessdrias representagcdes es-
truturais que expressem de maneira hierarquica e formal os elementos que o compdem.
Entre essas representacdes, destacam-se as arvores sintdticas, tradicionalmente classifica-
das como Concrete Syntax Tree (CST) e Abstract Syntax Tree (AST) [Aho et al. 2013].

A CST, também chamada de parse tree, corresponde a uma arvore que repre-
senta a estrutura completa do cédigo, preservando todos os elementos sintaticos. Essa
forma detalhada € util em contextos que exigem a andlise literal do texto do programa,
como verificacdes de conformidade com gramaticas ou transformagdes de baixo nivel
[Aho et al. 2013]. Ja a AST € uma versao mais abstrata, que omite detalhes superficiais da
sintaxe e privilegia a estrutura logica e semantica do codigo [Cooper and Torczon 2012].
Por exemplo, em uma atribuicdo, a AST armazena a relagdo entre varidvel e expressao,
sem necessariamente manter todos os simbolos utilizados para expressar a operagao no
codigo original. A titulo de exemplo, as Figuras 1 e 2 representam, respectivamente, a
CST e a AST para a expressdo while (x<10) :x=x+1.

sfatement

B
assign

| expression | . ‘ expression | | expression | = expression
[Sresir] [Spresion] [+]

[x] 1o (+] [
H 1]

Y

Figura 1. CST Figura 2. AST

Como pode ser visto nas Figuras 1 e 2, a CST preserva todos os elementos
sintaticos da expressdo, incluindo parénteses, dois-pontos e simbolos de operagdo, re-
sultando em uma estrutura mais detalhada. Em contraste, a AST abstrai esses detalhes
superficiais, mantendo apenas a estrutura 16gica essencial: o lago while com sua condi¢ao
(x<10) e o corpo de atribui¢do (x=x+1), criando uma representacao mais enxuta.

Essas representacoes estruturais s@o fundamentais em diversas atividades de En-
genharia de Software. Ferramentas de compilacdo utilizam ASTs como base para
verificacdo semantica e geracdo de cddigo intermedidrio [Mogensen 2009]. Ambientes
de desenvolvimento fazem uso dessas estruturas para oferecer recursos de navegacao,
inspecOes estaticas, refatoracdes automatizadas e geracdo de sugestdes inteligentes
[Murphy et al. 2006]. No contexto deste estudo, as arvores sintaticas fornecem o ponto
de partida conceitual para compreender a PSI. Embora a PSI ndo seja equivalente a uma
AST tradicional, ela compartilha a mesma motivacdo: oferecer uma estrutura hierarquica
que permita a exploracao, andlise e transformacdo do cédigo-fonte.

2.2. Extensoes em Ambientes de Programacao

Ambientes de desenvolvimento modernos sao projetados para atender a uma ampla varie-
dade de linguagens, paradigmas e fluxos de trabalho [Harmanen and Mikkonen 2016].
Dada a diversidade de necessidades dos desenvolvedores, torna-se invidvel que uma
IDE ofereca de forma nativa todas as funcionalidades desejadas em diferentes contextos
[Kurbatova et al. 2021]. Por isso, muitas plataformas de desenvolvimento adotam arqui-
teturas extensiveis, nas quais recursos adicionais podem ser incorporados por meio de
plugins. Essa abordagem possibilita que a comunidade de usudrios contribua com fun-
cionalidades especificas para as mais distintas necessidades, tais como integragdo com
sistemas de controle de versdo, temas graficos, emuladores de dispositivos, etc.

O modelo baseado em extensdes traz beneficios tanto para os desenvolvedores
quanto para os fabricantes de IDEs. Para os usudrios, a principal vantagem é a possibili-
dade de personalizar o ambiente de acordo com as necessidades do projeto, sem depender
exclusivamente da equipe mantenedora da ferramenta. Ja para as plataformas, a extensi-
bilidade cria um ecossistema colaborativo, em que a evolu¢do das funcionalidades ocorre
de forma distribuida. Exemplos reconhecidos incluem o Eclipse!, que consolidou sua
relevancia por meio de um ecossistema de plugins, e o Visual Studio Code?, que popula-
rizou a adogdo de extensOes para suportar linguagens e frameworks.

2.3. IntelliJ e a Program Structure Interface

O IntelliJ IDEA, desenvolvido pela JetBrains, € uma das IDEs mais consolidadas para
o desenvolvimento em Java [StackOverflow 2024]. Apresenta um conjunto abrangente
de funcionalidades, como refatoracdes, inspecdes de cddigo em tempo real, geracdo au-
tomatica de trechos [JetBrains 2025a]. Além disso, a plataforma foi concebida desde
suas primeiras versdes como uma base extensivel, permitindo a criagdo de plugins que
expandem suas capacidades para atender a cendrios especificos de desenvolvimento.

No ntcleo dessa extensibilidade encontra-se a Program Structure Interface, uma
abstracao que representa o codigo-fonte em uma estrutura hierarquica manipuldvel. A PSI

'nttps://marketplace.eclipse.org/listings/category/ide
’https://code.visualstudio.com/docs/configure/extensions/
extension-marketplace

pode ser entendida como uma camada acima da Abstract Syntax Tree do Java, oferecendo
nao apenas a estrutura sintatica do programa, mas também elementos adicionais que fa-
cilitam sua manipulacdo em um ambiente de edicdo. Dessa forma, ela atua como a ponte
entre a representacdo sintatica bruta do cédigo e as operacdes de alto nivel realizadas
pela IDE, como navegacao, inspecao e transformacgao [JetBrains 2025f]. A PSI organiza
o cddigo em entidades chamadas PSIElement, que correspondem a nds individuais da
arvore estrutural, como classes, métodos, expressoes ou varidveis [JetBrains 2025d]. Es-
ses elementos sdo agregados em estruturas maiores, sendo o PSIF1ile aunidade de nivel
superior que representa um arquivo-fonte completo [JetBrains 2025¢e]. Além disso, a PSI
permite explorar essas estruturas por meio de navegac¢ao hierdrquica, podendo seguir uma
abordagem fop-down, partindo do arquivo até os elementos mais internos, ou bottom-up,
subindo a partir de um no6 especifico até seus elementos ancestrais [JetBrains 2025c¢]. Essa
flexibilidade a torna uma ferramenta adequada para implementar andlises e manipulacdes
precisas do cédigo dentro de plugins.

3. Metodologia

A pesquisa adotou a abordagem de Design Science Research (DSR), que tem como
objetivo principal a construcdo de artefatos capazes de solucionar problemas reais
[Peffers et al. 2007]. Conforme descrito por [Hevner et al. 2004], a DSR propde um
equilibrio entre teoria e relevancia prética, favorecendo a criacio de solugdes cientifica-
mente embasadas e, a0 mesmo tempo, aplicaveis no ambiente em que sao implementadas.

A DSR ¢ estruturado em trés ciclos: o ciclo de relevancia, que garante que o
artefato atenda as demandas do contexto prético; o ciclo de rigor, que assegura que o
desenvolvimento esteja fundamentado em conhecimento consolidado e literatura perti-
nente; e o ciclo de design, que envolve a construgdo e refinamento continuo do artefato.
A interac@o desses ciclos possibilita que os resultados obtidos sejam simultaneamente
Uteis para a pratica e consistentes do ponto de vista cientifico [Horita et al. 2018].

Neste estudo, a aplicagdo da DSR iniciou pelo planejamento e defini¢cao dos requi-
sitos dos artefatos, e posterior desenvolvimento dos plugins. O trabalho se comprometeu
com cada ciclo da DSR da seguinte forma: no (I) ciclo de relevancia, o problema foi
mapeado a partir das lacunas identificadas no uso de abstracdes estruturais em IDEs; no
(II) ciclo de rigor, foram considerados fundamentos tedricos sobre ASTs, CSTs, PSI e
extensibilidade de IDEs, garantindo que o desenvolvimento fosse consistente com a litera-
tura; e no (III) ciclo de design, os artefatos foram projetados, implementados e avaliados
iterativamente, permitindo ajustes até a obtencdo de solugdes funcionais.

4. Desenvolvimento dos Artefatos

Nesta secdo sdo apresentados os plugins desenvolvidos como prova de conceito, ilus-
trando a aplicagdo prética da PSI no IntelliJ por meio de exemplos que exploram diferen-
tes formas de andlise e manipulagdo do codigo-fonte.

4.1. Editor Context Info

O plugin foi desenvolvido com o objetivo de exibir informacgdes contextuais sobre a
posicdo atual do cursor no editor. E um exemplo conceitual cujo objetivo é fornecer
ao desenvolvedor, detalhes como o nome do arquivo, a linha e a coluna em que o cursor
estd localizado, bem como os métodos e classes que envolvem o ponto de edicao.

A execucdo do plugin ocorre em quatro etapas: (I) inicialmente, a partir do objeto
AnActionEvent, é realizada a recuperacdo do contexto, obtendo-se a instincia do pro-
jeto e o editor ativo; (II) em seguida, com o uso da API de edi¢do (CaretModel),
identifica-se o posicionamento do cursor, determinando o deslocamento no texto e a
posicao légica (linha e coluna); (III) na sequéncia, ocorre a exploracdao da PSI, em que o
documento € associado a um objeto PsiF ile, permitindo navegar na estrutura do c6digo
e, a partir da posicao do cursor, identificar o elemento correspondente (PsiElement) e
seus ancestrais, como PsiMethodePsiClass pormeiodo PsiTreeUtil; (IV) por
fim, as informagdes coletadas sdo organizadas em uma mensagem e exibidas ao usudrio
em uma janela de didlogo, consolidando a integrac@o entre a posicao textual e a estrutura.

PsiElement elementAtCursor = psiFile.findElementAt (offset);
if (elementAtCursor != null) {
PsiMethod method = PsiTreeUtil.getParentOfType (elementAtCursor, PsiMethod.class);
PsiClass psiClass = PsiTreeUtil.getParentOfType (elementAtCursor, PsiClass.class);
if (method != null) {
methodName = method.getName () ;
}
if (psiClass != null) {

className = psiClass.getName () ;

}

Figura 3. Trecho do codigo-fonte do EditorContextInfo

O fragmento de coédigo-fonte contido na Figura 3 ilustra como a
PSI permite navegar hierarquicamente na estrutura do cdédigo. Primeiro,
findElementAt (offset) localiza o elemento PSI exato na posicdo do cursor.
Em seguida, PsiTreeUtil.getParentOfType () percorre os ancestrais desse
elemento, buscando especificamente por PsiMethod e PsiClass. Essa navegagao
ascendente permite identificar o contexto (método e classe) que envolve o ponto de
edi¢do, independentemente da profundidade na hierarquia.

public class Main {
public static void main(String[] args) {
System.out.printf("Hello and welcome!");

@ Cursorinfd k= 5; i++) {

ntln("i = " + i);

oK

public String 0 {
return "1 == 1";

].

Figura 4. Aplicacao pratica do EditorContextInfo

A Figura 4 demonstra o plugin Editor Context Info em funcionamento. O cursor
estd posicionado na linha 11, coluna 25, dentro do método test () da classe Main. O
didlogo exibe informacdes contextuais extraidas pela PSI: o arquivo, posicdo exata do

cursor (linha/coluna) e hierarquia estrutural (método e classe). Isso exemplifica como a
PSI correlaciona a posi¢do textual com a estrutura semantica do cddigo.

4.2. PSI Tree Generator

O plugin foi desenvolvido com o objetivo de gerar uma visualizagao textual da arvore de
elementos PSI de um arquivo em edi¢do. Ele permite que o desenvolvedor compreenda a
organizacao hierdrquica do codigo-fonte conforme representada pela Program Structure
Interface, exibindo informacdes como o tipo dos elementos, seus nos sintaticos e trechos
de texto associados. Essa visualiza¢do pode ser especialmente util para fins de depuracao
ou analise, oferecendo uma visao detalhada das estruturas internas.

A execucdo do plugin ocorre em quatro etapas: (I) inicialmente, a partir do objeto
AnActionEvent, é realizada a recuperacio do contexto, obtendo-se a instincia do pro-
jeto e o editor ativo; (II) em seguida, o documento € associado a um objeto PsiFile, que
contém a representacdo PSI do arquivo; (III) a partir desse objeto, é percorrida recursi-
vamente toda a drvore de elementos por meio do método buildPsiTree, que constrdi
uma saida textual com indentacao hierdrquica e informacdes como classe do elemento,
tipo do né e texto associado; (IV) por fim, a drvore gerada € apresentada em uma janela
de didlogo personalizada, permitindo rolagem e navegacao pelo contetido exibido.

private void buildPsiTree (PsiElement element, StringBuilder builder, String prefix, boolean isLast) {
// Adiciona os conectores
builder.append (prefix);
builder.append(isLast 2 "|_" : "|-");
builder.append (element.getClass () .getSimpleName()) ;
// ... Implementacao omitida ...
// Processa os elementos filhos recursivamente
PsiElement[] children = element.getChildren();
for (int i = 0; i < children.length; i++) {
boolean isLastChild = (i == children.length - 1);
"

String childPrefix = prefix + (isLast ? " v g 7) g
buildPsiTree (children[i], builder, childPrefix, isLastChild);

Figura 5. Trecho do codigo-fonte do PSITree

O fragmento de codigo-fonte contido na Figura 5 ilustra como o método
buildPsiTree implementa um algoritmo recursivo de travessia em profundidade
para gerar uma representacdo textual hierdrquica da drvore PSI. A funcdo recebe qua-
tro parametros: o elemento PSI atual, um StringBuilder para construir a saida,
um prefixo de indentacdo e um booleano indicando se € o dltimo elemento no nivel.
Inicialmente, adiciona conectores visuais seguidos do nome da classe do elemento
via getClass () .getSimpleName (). A recursdo processa todos os elementos fi-
lhos através de element .getChildren (), calculando dinamicamente o prefixo de
indentagdo para cada nivel: adiciona espacos em branco quando o elemento pai € o Gltimo
ou uma barra vertical com espagos quando hd mais elementos no mesmo nivel. Essa
l6gica garante que a visualizagdo reflita corretamente a hierarquia da arvore PSI, criando
uma saida legivel que permite compreender a organizacdo completa do cédigo-fonte.

A Figura 6 apresenta a saida do plugin PSI Tree Generator aplicado ao arquivo
Main. java. A visualizacdo revela a estrutura hierarquica completa do codigo, desde
o elemento raiz PsiJavaFileImpl até os componentes mais granulares como tokens

e identificadores. Vale ressaltar que a figura ndo estd mostrando a estrutura completa da
arvore que foi gerada, como evidenciado pela barra de rolagem.

PSI Tree - Main.java

[LPARENTH] -
[PA TER] -

Figura 6. Aplicacao pratica do PSITree

5. Discussao

Os dois plugins desenvolvidos demonstraram, de maneira pratica, a aplicabilidade da PSI
como abstragdo para manipulacdo e andlise do cédigo-fonte dentro do IntelliJ. O Editor
Context Info evidenciou a possibilidade de correlacionar a posi¢do do cursor no editor
com a hierarquia estrutural do c6digo, extraindo informacdes relevantes sobre classes e
métodos. Ja o PSI Tree Generator apresentou a capacidade de percorrer e visualizar toda a
arvore estrutural de um arquivo, tornando explicitas as relacdes entre elementos sintaticos
e seus respectivos conteidos. Ambos alcancaram os objetivos propostos, confirmando
que a PSI pode ser utilizada tanto em casos pontuais quanto em analises completas.

Ademais, embora a PSI compartilhe semelhangas com a AST, principalmente no
que se refere a representacao hierarquica do cédigo, o desenvolvimento dos plugins reve-
lou que ha diferencas relevantes que justificam seu uso especifico na IntelliJ IDEA.

A Tabela 1 evidencia diferencas relevantes entre AST e PSI. Enquanto a AST
representa a estrutura légica do cédigo e € tradicionalmente usada em compiladores para
andlise semantica, a PSI foi projetada para o contexto das IDEs, incorporando metadados
e recursos que possibilitam navegacdo, inspecdes e refatoracoes em tempo real. Essa
distingdo justifica o uso da PSI como base para o desenvolvimento de plugins, pois oferece
suporte direto a operacdes interativas que ampliam a produtividade do programador.

Tabela 1. Comparativo entre AST e PSI

Aspecto AST PSI
Origem Derivada diretamente da gramdtica da | Construida a partir da AST, mas enrique-
linguagem. cida com elementos adicionais da IDE.
Detalhamento | Representa a estrutura logica e | Inclui, além da estrutura légica,
semantica do programa, omitindo | informacgdes Ttteis ao editor, como
detalhes supérfluos da sintaxe. referéncias de navegacdo e manipulagdo.
Uso tipico Compiladores € analisadores | IDEs, andlise estatica, refatoracdes e su-
semanticos. porte a navegacao de cédigo.
Manipulacdo | Estritamente ligada ao processo de | Projetada para permitir interatividade em
compilacdo e interpretacao. tempo real no ambiente de edicdo.

6. Consideracoes Finais

O estudo evidenciou o papel da Program Structure Interface como uma abstracdo fun-
damental para a construcio de funcionalidades avancadas no IntelliJ. A implementagdo
dos plugins desenvolvidos demonstrou, de maneira pratica, como a PSI possibilita tanto
a exploracdo de informagdes contextuais quanto a visualizag¢do hierdrquica detalhada do
codigo, reforcando sua utilidade em apoio ao programador. Apesar dos resultados po-
sitivos, algumas limitacdes devem ser destacadas. O escopo do trabalho restringiu-se a
dois artefatos conceituais, o que limita a generalizacdo. Além disso, ndo foram realizadas
avaliagOes quantitativas de desempenho ou usabilidade, o que poderia fornecer uma visao
mais robusta sobre a eficicia das solugoes.

Como trabalhos futuros, sugere-se a criacdo de plugins mais complexos, a
ampliacdo dos testes em projetos reais de maior escala e a comparacdo com outras aborda-
gens de representacdo estrutural em diferentes ambientes de programagdao. Um exemplo
concreto seria o desenvolvimento de uma ferramenta de model-based programming para
Java no IntelliJ que possibilitasse tanto a representacao grafica do codigo-fonte quanto o
rastreamento de mudancas realizadas no modelo, tendo como indispensdvel o subsidio do
modelo de dados do cédigo-fonte provido pela PSI.

7. Disponibilidade de Dados

Nos comprometemos a promover a transparéncia e a reprodutibilidade na pesquisa. Ali-
nhados com esse principio, disponibilizamos abertamente o cédigo-fonte dos plugins
desenvolvidos em nosso estudo no repositério Zenodo em https://doi.org/10.
5281/zenodo.17220255.

Referéncias

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2013). Compilers: Pearson new
international edition. Pearson Education, 2 edition.

Cooper, K. D. and Torczon, L. (2012).
Compiler. Elsevier.

Overview of compilation. In Engineering a

Fowler, M. (2019). Refactoring: Improving the Design of Existing Code. Addison Wesley,
2 edition.

Golubeyv, Y., Kurbatova, Z., AlOmar, E. A., Bryksin, T., and Mkaouer, M. W. (2021). One
thousand and one stories: a large-scale survey of software refactoring. In Proceedings
of the 29th ACM Joint Meeting on ESEC/FSE 2021. ACM.

Harmanen, J. and Mikkonen, T. (2016). On Polyglot Programming in the Web. 1GI Global.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science in information
systems research. MIS Quarterly.

Horita, F., Graciano Neto, V., and dos Santos, R. (2018). Design Science Research em
Sistemas de Informacdo e Engenharia de Software: Conceitos, Aplicacoes e Trabalhos
Futuros.

JetBrains (2025a). Intellij IDEA. https://www.jetbrains.com/pt-br/
idea/.

JetBrains (2025b). Intellij Plugins. https://plugins. jetbrains.com/docs/
intellij/developing—-plugins.html.

JetBrains (2025c¢). Navigating the PSI. https://plugins. jetbrains.com/
docs/intellij/navigating—psi.html.

JetBrains (2025d). PSI Elements. https://plugins. jetbrains.com/docs/
intellij/psi-elements.html.

JetBrains (2025¢). PSI Files. https://plugins. jetbrains.com/docs/
intellij/psi-files.html.

JetBrains (2025f). What is the PSI? https://plugins. jetbrains.com/docs/
intellij/psi.html.

Kurbatova, Z., Golubev, Y., Kovalenko, V., and Bryksin, T. (2021). The intellij plat-
form: A framework for building plugins and mining software data. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering Workshops
(ASEW). IEEE.

Leite, L., Rocha, C., Kon, F., Milojicic, D., and Meirelles, P. (2019). A survey of devops
concepts and challenges. ACM Computing Surveys.

Mogensen, T. &£. (2009). Basics of compiler design.

Murphy, G., Kersten, M., and Findlater, L. (2006). How are java software developers
using the eclipse ide? IEEE Software.

Peffers, K., Tuunanen, T., Rothenberger, M., and Chatterjee, S. (2007). A design science
research methodology for information systems research. J. Manage. Inf. Syst.

StackOverflow (2024). Most popular technologies report.
https://survey.stackoverflow.co/2024/technology#
most-popular—-technologies—new—collab-tools.

