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Abstract. This paper explores the Program Structure Interface (PSI) as a basis
for plugin development in IntelliJ. Adopting a Design Science Research appro-
ach, two artifacts were implemented.: the Editor Context Info, which correlates
the cursor position with the hierarchy of the code, and the PSI Tree Genera-
tor, which generates visualizations of the PSI tree for source files. The results
demonstrate the applicability of PSI in real-time code analysis and manipula-
tion, highlighting its potential as a resource to support programmers and as a
platform for innovation in IDEs, in comparison to the AST.

Resumo. Este artigo explora a Program Structure Interface (PSI) como base
para o desenvolvimento de plugins no IntelliJ. Adotando a abordagem de Design
Science Research, foram implementados dois artefatos: o Editor Context Info,
que correlaciona a posigcdo do cursor com a hierarquia do codigo, e o PSI Tree
Generator, que gera visualizacoes da drvore PSI de arquivos. Os resultados
demonstram a aplicabilidade da PSI na andlise e manipulagcdo de cédigo em
tempo real, destacando seu potencial como recurso de apoio ao programador e
como plataforma para inovagdo em IDEs, em comparagdo a AST.

1. Introducao

O desenvolvimento de software moderno demanda ferramentas que vao além da sim-
ples edicdo de texto [Leite et al. 2019]. Ambientes de Desenvolvimento Integrado
(IDEs) tornaram-se pecas centrais no ciclo de vida das aplicacdes, oferecendo re-
cursos como refatoracdo automadtica, verificacdes estdticas e sugestdes inteligentes
[Golubev et al. 2021]. Para viabilizar tais funcionalidades, é necessario que o cddigo-
fonte seja representado de maneira estruturada, de modo que a IDE consiga compreender
sua organizacao sintatica e semantica [Fowler 2019]. Nesse contexto, destaca-se o Pro-
gram Structure Interface, um mecanismo presente na plataforma IntelliJ que possibilita a
interacdo direta com representagdes estruturais do codigo [JetBrains 2025f].

O IntelliJ, em particular, disponibiliza uma arquitetura extensivel baseada em plu-
gins, permitindo que desenvolvedores explorem abstra¢cdes como a PSI para criar novas
funcionalidades. Essa possibilidade motiva o presente estudo, uma vez que compreender
e utilizar a PSI ndo apenas amplia a eficiéncia no desenvolvimento de solu¢des para a
propria IDE, como também serve de exemplo prético sobre como abstracdes de codigo
podem ser empregadas em tarefas de apoio ao programador [JetBrains 2025b].



Diante do exposto, o objetivo central deste artigo € investigar o potencial da PSI no
desenvolvimento de plugins para o IntelliJ. A metodologia serd baseada na implementagao
de artefatos que exemplificam como essa interface pode ser explorada para criar funcio-
nalidades de andlise e manipulacdo de cédigo. Dessa forma, o trabalho busca oferecer
evidéncias da aplicabilidade da PSI em cenarios de apoio inteligente a programacao.

Além desta introducdo, o artigo estd organizado da seguinte forma: a Segdo 2
apresenta a fundamentacao tedrica, discutindo representagdes estruturais de codigo, a im-
portancia de abstragdes em IDEs e a definicao da PSI. A Sec¢ao 3 descreve a metodologia
adotada. Na sequéncia, a Secdo 4 detalha os plugins construidos e seus aspectos técnicos.
A Secdo 5 apresenta a andlise dos resultados e das contribui¢des. Por fim, a Se¢do 6 traz
as consideragdes finais, destacando limitagdes e perspectivas de trabalhos futuros.

2. Fundamentacao Teorica

Esta sec@o apresenta os conceitos necessarios para compreender o uso da PSI no desen-
volvimento de extensdes para o IntelliJ. Sdo abordadas as representacdes estruturais de
codigo-fonte, o papel das IDEs como ambientes que exigem abstracOes avangadas, a im-
portancia da extensibilidade por meio de plugins e, por fim, a defini¢do da PSI.

2.1. Representacao Estrutural de Codigo-Fonte

O codigo-fonte de um programa, em sua forma textual, ndo € suficiente para permitir
andlises complexas ou transformacgdes automatizadas. Para que ferramentas possam com-
preender a organizacdo e os significados do cddigo, sdo necessdrias representagcdes es-
truturais que expressem de maneira hierarquica e formal os elementos que o compdem.
Entre essas representacdes, destacam-se as arvores sintdticas, tradicionalmente classifica-
das como Concrete Syntax Tree (CST) e Abstract Syntax Tree (AST) [Aho et al. 2013].

A CST, também chamada de parse tree, corresponde a uma arvore que repre-
senta a estrutura completa do cédigo, preservando todos os elementos sintaticos. Essa
forma detalhada € util em contextos que exigem a andlise literal do texto do programa,
como verificacdes de conformidade com gramaticas ou transformagdes de baixo nivel
[Aho et al. 2013]. Ja a AST € uma versao mais abstrata, que omite detalhes superficiais da
sintaxe e privilegia a estrutura logica e semantica do codigo [Cooper and Torczon 2012].
Por exemplo, em uma atribuicdo, a AST armazena a relagdo entre varidvel e expressao,
sem necessariamente manter todos os simbolos utilizados para expressar a operagao no
codigo original. A titulo de exemplo, as Figuras 1 e 2 representam, respectivamente, a
CST e a AST para a expressdo while (x<10) :x=x+1.
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Como pode ser visto nas Figuras 1 e 2, a CST preserva todos os elementos
sintaticos da expressdo, incluindo parénteses, dois-pontos e simbolos de operagdo, re-
sultando em uma estrutura mais detalhada. Em contraste, a AST abstrai esses detalhes
superficiais, mantendo apenas a estrutura 16gica essencial: o lago while com sua condi¢ao
(x<10) e o corpo de atribui¢do (x=x+1), criando uma representacao mais enxuta.

Essas representacoes estruturais s@o fundamentais em diversas atividades de En-
genharia de Software. Ferramentas de compilacdo utilizam ASTs como base para
verificacdo semantica e geracdo de cddigo intermedidrio [Mogensen 2009]. Ambientes
de desenvolvimento fazem uso dessas estruturas para oferecer recursos de navegacao,
inspecOes estaticas, refatoracdes automatizadas e geracdo de sugestdes inteligentes
[Murphy et al. 2006]. No contexto deste estudo, as arvores sintaticas fornecem o ponto
de partida conceitual para compreender a PSI. Embora a PSI ndo seja equivalente a uma
AST tradicional, ela compartilha a mesma motivacdo: oferecer uma estrutura hierarquica
que permita a exploracao, andlise e transformacdo do cédigo-fonte.

2.2. Extensoes em Ambientes de Programacao

Ambientes de desenvolvimento modernos sao projetados para atender a uma ampla varie-
dade de linguagens, paradigmas e fluxos de trabalho [Harmanen and Mikkonen 2016].
Dada a diversidade de necessidades dos desenvolvedores, torna-se invidvel que uma
IDE ofereca de forma nativa todas as funcionalidades desejadas em diferentes contextos
[Kurbatova et al. 2021]. Por isso, muitas plataformas de desenvolvimento adotam arqui-
teturas extensiveis, nas quais recursos adicionais podem ser incorporados por meio de
plugins. Essa abordagem possibilita que a comunidade de usudrios contribua com fun-
cionalidades especificas para as mais distintas necessidades, tais como integragdo com
sistemas de controle de versdo, temas graficos, emuladores de dispositivos, etc.

O modelo baseado em extensdes traz beneficios tanto para os desenvolvedores
quanto para os fabricantes de IDEs. Para os usudrios, a principal vantagem é a possibili-
dade de personalizar o ambiente de acordo com as necessidades do projeto, sem depender
exclusivamente da equipe mantenedora da ferramenta. Ja para as plataformas, a extensi-
bilidade cria um ecossistema colaborativo, em que a evolu¢do das funcionalidades ocorre
de forma distribuida. Exemplos reconhecidos incluem o Eclipse!, que consolidou sua
relevancia por meio de um ecossistema de plugins, e o Visual Studio Code?, que popula-
rizou a adogdo de extensOes para suportar linguagens e frameworks.

2.3. IntelliJ e a Program Structure Interface

O IntelliJ IDEA, desenvolvido pela JetBrains, € uma das IDEs mais consolidadas para
o desenvolvimento em Java [StackOverflow 2024]. Apresenta um conjunto abrangente
de funcionalidades, como refatoracdes, inspecdes de cddigo em tempo real, geracdo au-
tomatica de trechos [JetBrains 2025a]. Além disso, a plataforma foi concebida desde
suas primeiras versdes como uma base extensivel, permitindo a criagdo de plugins que
expandem suas capacidades para atender a cendrios especificos de desenvolvimento.

No ntcleo dessa extensibilidade encontra-se a Program Structure Interface, uma
abstracao que representa o codigo-fonte em uma estrutura hierarquica manipuldvel. A PSI

'nttps://marketplace.eclipse.org/listings/category/ide
’https://code.visualstudio.com/docs/configure/extensions/
extension-marketplace



pode ser entendida como uma camada acima da Abstract Syntax Tree do Java, oferecendo
nao apenas a estrutura sintatica do programa, mas também elementos adicionais que fa-
cilitam sua manipulacdo em um ambiente de edicdo. Dessa forma, ela atua como a ponte
entre a representacdo sintatica bruta do cédigo e as operacdes de alto nivel realizadas
pela IDE, como navegacao, inspecao e transformacgao [JetBrains 2025f]. A PSI organiza
o cddigo em entidades chamadas PSIElement, que correspondem a nds individuais da
arvore estrutural, como classes, métodos, expressoes ou varidveis [JetBrains 2025d]. Es-
ses elementos sdo agregados em estruturas maiores, sendo o PSIF1ile aunidade de nivel
superior que representa um arquivo-fonte completo [JetBrains 2025¢e]. Além disso, a PSI
permite explorar essas estruturas por meio de navegac¢ao hierdrquica, podendo seguir uma
abordagem fop-down, partindo do arquivo até os elementos mais internos, ou bottom-up,
subindo a partir de um no6 especifico até seus elementos ancestrais [JetBrains 2025c¢]. Essa
flexibilidade a torna uma ferramenta adequada para implementar andlises e manipulacdes
precisas do cédigo dentro de plugins.

3. Metodologia

A pesquisa adotou a abordagem de Design Science Research (DSR), que tem como
objetivo principal a construcdo de artefatos capazes de solucionar problemas reais
[Peffers et al. 2007]. Conforme descrito por [Hevner et al. 2004], a DSR propde um
equilibrio entre teoria e relevancia prética, favorecendo a criacio de solugdes cientifica-
mente embasadas e, a0 mesmo tempo, aplicaveis no ambiente em que sao implementadas.

A DSR ¢ estruturado em trés ciclos: o ciclo de relevancia, que garante que o
artefato atenda as demandas do contexto prético; o ciclo de rigor, que assegura que o
desenvolvimento esteja fundamentado em conhecimento consolidado e literatura perti-
nente; e o ciclo de design, que envolve a construgdo e refinamento continuo do artefato.
A interac@o desses ciclos possibilita que os resultados obtidos sejam simultaneamente
Uteis para a pratica e consistentes do ponto de vista cientifico [Horita et al. 2018].

Neste estudo, a aplicagdo da DSR iniciou pelo planejamento e defini¢cao dos requi-
sitos dos artefatos, e posterior desenvolvimento dos plugins. O trabalho se comprometeu
com cada ciclo da DSR da seguinte forma: no (I) ciclo de relevancia, o problema foi
mapeado a partir das lacunas identificadas no uso de abstracdes estruturais em IDEs; no
(II) ciclo de rigor, foram considerados fundamentos tedricos sobre ASTs, CSTs, PSI e
extensibilidade de IDEs, garantindo que o desenvolvimento fosse consistente com a litera-
tura; e no (III) ciclo de design, os artefatos foram projetados, implementados e avaliados
iterativamente, permitindo ajustes até a obtencdo de solugdes funcionais.

4. Desenvolvimento dos Artefatos

Nesta secdo sdo apresentados os plugins desenvolvidos como prova de conceito, ilus-
trando a aplicagdo prética da PSI no IntelliJ por meio de exemplos que exploram diferen-
tes formas de andlise e manipulagdo do codigo-fonte.

4.1. Editor Context Info

O plugin foi desenvolvido com o objetivo de exibir informacgdes contextuais sobre a
posicdo atual do cursor no editor. E um exemplo conceitual cujo objetivo é fornecer
ao desenvolvedor, detalhes como o nome do arquivo, a linha e a coluna em que o cursor
estd localizado, bem como os métodos e classes que envolvem o ponto de edicao.



A execucdo do plugin ocorre em quatro etapas: (I) inicialmente, a partir do objeto
AnActionEvent, é realizada a recuperacdo do contexto, obtendo-se a instincia do pro-
jeto e o editor ativo; (II) em seguida, com o uso da API de edi¢do (CaretModel),
identifica-se o posicionamento do cursor, determinando o deslocamento no texto e a
posicao légica (linha e coluna); (III) na sequéncia, ocorre a exploracdao da PSI, em que o
documento € associado a um objeto PsiF ile, permitindo navegar na estrutura do c6digo
e, a partir da posicao do cursor, identificar o elemento correspondente (PsiElement) e
seus ancestrais, como PsiMethodePsiClass pormeiodo PsiTreeUtil; (IV) por
fim, as informagdes coletadas sdo organizadas em uma mensagem e exibidas ao usudrio
em uma janela de didlogo, consolidando a integrac@o entre a posicao textual e a estrutura.

PsiElement elementAtCursor = psiFile.findElementAt (offset);
if (elementAtCursor != null) {
PsiMethod method = PsiTreeUtil.getParentOfType (elementAtCursor, PsiMethod.class);
PsiClass psiClass = PsiTreeUtil.getParentOfType (elementAtCursor, PsiClass.class);
if (method != null) {
methodName = method.getName () ;
}
if (psiClass != null) {

className = psiClass.getName () ;

}

Figura 3. Trecho do codigo-fonte do EditorContextInfo

O fragmento de coédigo-fonte contido na Figura 3 ilustra como a
PSI permite navegar hierarquicamente na estrutura do cdédigo. Primeiro,
findElementAt (offset) localiza o elemento PSI exato na posicdo do cursor.
Em seguida, PsiTreeUtil.getParentOfType () percorre os ancestrais desse
elemento, buscando especificamente por PsiMethod e PsiClass. Essa navegagao
ascendente permite identificar o contexto (método e classe) que envolve o ponto de
edi¢do, independentemente da profundidade na hierarquia.

public class Main {
public static void main(String[] args) {
System.out.printf("Hello and welcome!");

@ Cursorinfd k= 5; i++) {

ntln("i = " + i);

oK

public String 0 {
return "1 == 1";

].

Figura 4. Aplicacao pratica do EditorContextInfo

A Figura 4 demonstra o plugin Editor Context Info em funcionamento. O cursor
estd posicionado na linha 11, coluna 25, dentro do método test () da classe Main. O
didlogo exibe informacdes contextuais extraidas pela PSI: o arquivo, posicdo exata do



cursor (linha/coluna) e hierarquia estrutural (método e classe). Isso exemplifica como a
PSI correlaciona a posi¢do textual com a estrutura semantica do cddigo.

4.2. PSI Tree Generator

O plugin foi desenvolvido com o objetivo de gerar uma visualizagao textual da arvore de
elementos PSI de um arquivo em edi¢do. Ele permite que o desenvolvedor compreenda a
organizacao hierdrquica do codigo-fonte conforme representada pela Program Structure
Interface, exibindo informacdes como o tipo dos elementos, seus nos sintaticos e trechos
de texto associados. Essa visualiza¢do pode ser especialmente util para fins de depuracao
ou analise, oferecendo uma visao detalhada das estruturas internas.

A execucdo do plugin ocorre em quatro etapas: (I) inicialmente, a partir do objeto
AnActionEvent, é realizada a recuperacio do contexto, obtendo-se a instincia do pro-
jeto e o editor ativo; (II) em seguida, o documento € associado a um objeto PsiFile, que
contém a representacdo PSI do arquivo; (III) a partir desse objeto, é percorrida recursi-
vamente toda a drvore de elementos por meio do método buildPsiTree, que constrdi
uma saida textual com indentacao hierdrquica e informacdes como classe do elemento,
tipo do né e texto associado; (IV) por fim, a drvore gerada € apresentada em uma janela
de didlogo personalizada, permitindo rolagem e navegacao pelo contetido exibido.

private void buildPsiTree (PsiElement element, StringBuilder builder, String prefix, boolean isLast) {
// Adiciona os conectores
builder.append (prefix);
builder.append(isLast 2 "|_" : "|-");
builder.append (element.getClass () .getSimpleName()) ;
// ... Implementacao omitida ...
// Processa os elementos filhos recursivamente
PsiElement[] children = element.getChildren();
for (int i = 0; i < children.length; i++) {
boolean isLastChild = (i == children.length - 1);
"

String childPrefix = prefix + (isLast ? " v g 7 ) g
buildPsiTree (children[i], builder, childPrefix, isLastChild);

Figura 5. Trecho do codigo-fonte do PSITree

O fragmento de codigo-fonte contido na Figura 5 ilustra como o método
buildPsiTree implementa um algoritmo recursivo de travessia em profundidade
para gerar uma representacdo textual hierdrquica da drvore PSI. A funcdo recebe qua-
tro parametros: o elemento PSI atual, um StringBuilder para construir a saida,
um prefixo de indentacdo e um booleano indicando se € o dltimo elemento no nivel.
Inicialmente, adiciona conectores visuais seguidos do nome da classe do elemento
via getClass () .getSimpleName (). A recursdo processa todos os elementos fi-
lhos através de element .getChildren (), calculando dinamicamente o prefixo de
indentagdo para cada nivel: adiciona espacos em branco quando o elemento pai € o Gltimo
ou uma barra vertical com espagos quando hd mais elementos no mesmo nivel. Essa
l6gica garante que a visualizagdo reflita corretamente a hierarquia da arvore PSI, criando
uma saida legivel que permite compreender a organizacdo completa do cédigo-fonte.

A Figura 6 apresenta a saida do plugin PSI Tree Generator aplicado ao arquivo
Main. java. A visualizacdo revela a estrutura hierarquica completa do codigo, desde
o elemento raiz PsiJavaFileImpl até os componentes mais granulares como tokens



e identificadores. Vale ressaltar que a figura ndo estd mostrando a estrutura completa da
arvore que foi gerada, como evidenciado pela barra de rolagem.

PSI Tree - Main.java

[LPARENTH] -
[PA TER] -

Figura 6. Aplicacao pratica do PSITree

5. Discussao

Os dois plugins desenvolvidos demonstraram, de maneira pratica, a aplicabilidade da PSI
como abstragdo para manipulacdo e andlise do cédigo-fonte dentro do IntelliJ. O Editor
Context Info evidenciou a possibilidade de correlacionar a posi¢do do cursor no editor
com a hierarquia estrutural do c6digo, extraindo informacdes relevantes sobre classes e
métodos. Ja o PSI Tree Generator apresentou a capacidade de percorrer e visualizar toda a
arvore estrutural de um arquivo, tornando explicitas as relacdes entre elementos sintaticos
e seus respectivos conteidos. Ambos alcancaram os objetivos propostos, confirmando
que a PSI pode ser utilizada tanto em casos pontuais quanto em analises completas.

Ademais, embora a PSI compartilhe semelhangas com a AST, principalmente no
que se refere a representacao hierarquica do cédigo, o desenvolvimento dos plugins reve-
lou que ha diferencas relevantes que justificam seu uso especifico na IntelliJ IDEA.

A Tabela 1 evidencia diferencas relevantes entre AST e PSI. Enquanto a AST
representa a estrutura légica do cédigo e € tradicionalmente usada em compiladores para
andlise semantica, a PSI foi projetada para o contexto das IDEs, incorporando metadados
e recursos que possibilitam navegacdo, inspecdes e refatoracoes em tempo real. Essa
distingdo justifica o uso da PSI como base para o desenvolvimento de plugins, pois oferece
suporte direto a operacdes interativas que ampliam a produtividade do programador.



Tabela 1. Comparativo entre AST e PSI

Aspecto AST PSI
Origem Derivada diretamente da gramdtica da | Construida a partir da AST, mas enrique-
linguagem. cida com elementos adicionais da IDE.
Detalhamento | Representa a estrutura logica e | Inclui, além da estrutura légica,
semantica do programa, omitindo | informacgdes Ttteis ao editor, como
detalhes supérfluos da sintaxe. referéncias de navegacdo e manipulagdo.
Uso tipico Compiladores € analisadores | IDEs, andlise estatica, refatoracdes e su-
semanticos. porte a navegacao de cédigo.
Manipulacdo | Estritamente ligada ao processo de | Projetada para permitir interatividade em
compilacdo e interpretacao. tempo real no ambiente de edicdo.

6. Consideracoes Finais

O estudo evidenciou o papel da Program Structure Interface como uma abstracdo fun-
damental para a construcio de funcionalidades avancadas no IntelliJ. A implementagdo
dos plugins desenvolvidos demonstrou, de maneira pratica, como a PSI possibilita tanto
a exploracdo de informagdes contextuais quanto a visualizag¢do hierdrquica detalhada do
codigo, reforcando sua utilidade em apoio ao programador. Apesar dos resultados po-
sitivos, algumas limitacdes devem ser destacadas. O escopo do trabalho restringiu-se a
dois artefatos conceituais, o que limita a generalizacdo. Além disso, ndo foram realizadas
avaliagOes quantitativas de desempenho ou usabilidade, o que poderia fornecer uma visao
mais robusta sobre a eficicia das solugoes.

Como trabalhos futuros, sugere-se a criacdo de plugins mais complexos, a
ampliacdo dos testes em projetos reais de maior escala e a comparacdo com outras aborda-
gens de representacdo estrutural em diferentes ambientes de programagdao. Um exemplo
concreto seria o desenvolvimento de uma ferramenta de model-based programming para
Java no IntelliJ que possibilitasse tanto a representacao grafica do codigo-fonte quanto o
rastreamento de mudancas realizadas no modelo, tendo como indispensdvel o subsidio do
modelo de dados do cédigo-fonte provido pela PSI.

7. Disponibilidade de Dados

Nos comprometemos a promover a transparéncia e a reprodutibilidade na pesquisa. Ali-
nhados com esse principio, disponibilizamos abertamente o cédigo-fonte dos plugins
desenvolvidos em nosso estudo no repositério Zenodo em https://doi.org/10.
5281/zenodo.17220255.
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