
Explorando a Program Structure Interface (PSI):
Fundamentos da Construção de Plugins no IntelliJ

Reinaldo Wendt1, Ana Carolina Rodrigues1, Elder Rodrigues1

1Laboratory of Empirical Studies in Software Engineering (LESSE)
Universidade Federal do Pampa (UNIPAMPA) – Alegrete – RS – Brasil

{reinaldowendt,anapoltronieri}.aluno@unipampa.edu.br,
elderrodrigues@unipampa.edu.br

Abstract. This paper explores the Program Structure Interface (PSI) as a basis
for plugin development in IntelliJ. Adopting a Design Science Research appro-
ach, two artifacts were implemented: the Editor Context Info, which correlates
the cursor position with the hierarchy of the code, and the PSI Tree Genera-
tor, which generates visualizations of the PSI tree for source files. The results
demonstrate the applicability of PSI in real-time code analysis and manipula-
tion, highlighting its potential as a resource to support programmers and as a
platform for innovation in IDEs, in comparison to the AST.

Resumo. Este artigo explora a Program Structure Interface (PSI) como base
para o desenvolvimento de plugins no IntelliJ. Adotando a abordagem de Design
Science Research, foram implementados dois artefatos: o Editor Context Info,
que correlaciona a posição do cursor com a hierarquia do código, e o PSI Tree
Generator, que gera visualizações da árvore PSI de arquivos. Os resultados
demonstram a aplicabilidade da PSI na análise e manipulação de código em
tempo real, destacando seu potencial como recurso de apoio ao programador e
como plataforma para inovação em IDEs, em comparação à AST.

1. Introdução

O desenvolvimento de software moderno demanda ferramentas que vão além da sim-
ples edição de texto [Leite et al. 2019]. Ambientes de Desenvolvimento Integrado
(IDEs) tornaram-se peças centrais no ciclo de vida das aplicações, oferecendo re-
cursos como refatoração automática, verificações estáticas e sugestões inteligentes
[Golubev et al. 2021]. Para viabilizar tais funcionalidades, é necessário que o código-
fonte seja representado de maneira estruturada, de modo que a IDE consiga compreender
sua organização sintática e semântica [Fowler 2019]. Nesse contexto, destaca-se o Pro-
gram Structure Interface, um mecanismo presente na plataforma IntelliJ que possibilita a
interação direta com representações estruturais do código [JetBrains 2025f].

O IntelliJ, em particular, disponibiliza uma arquitetura extensı́vel baseada em plu-
gins, permitindo que desenvolvedores explorem abstrações como a PSI para criar novas
funcionalidades. Essa possibilidade motiva o presente estudo, uma vez que compreender
e utilizar a PSI não apenas amplia a eficiência no desenvolvimento de soluções para a
própria IDE, como também serve de exemplo prático sobre como abstrações de código
podem ser empregadas em tarefas de apoio ao programador [JetBrains 2025b].

Diante do exposto, o objetivo central deste artigo é investigar o potencial da PSI no
desenvolvimento de plugins para o IntelliJ. A metodologia será baseada na implementação
de artefatos que exemplificam como essa interface pode ser explorada para criar funcio-
nalidades de análise e manipulação de código. Dessa forma, o trabalho busca oferecer
evidências da aplicabilidade da PSI em cenários de apoio inteligente à programação.

Além desta introdução, o artigo está organizado da seguinte forma: a Seção 2
apresenta a fundamentação teórica, discutindo representações estruturais de código, a im-
portância de abstrações em IDEs e a definição da PSI. A Seção 3 descreve a metodologia
adotada. Na sequência, a Seção 4 detalha os plugins construı́dos e seus aspectos técnicos.
A Seção 5 apresenta a análise dos resultados e das contribuições. Por fim, a Seção 6 traz
as considerações finais, destacando limitações e perspectivas de trabalhos futuros.

2. Fundamentação Teórica
Esta seção apresenta os conceitos necessários para compreender o uso da PSI no desen-
volvimento de extensões para o IntelliJ. São abordadas as representações estruturais de
código-fonte, o papel das IDEs como ambientes que exigem abstrações avançadas, a im-
portância da extensibilidade por meio de plugins e, por fim, a definição da PSI.

2.1. Representação Estrutural de Código-Fonte

O código-fonte de um programa, em sua forma textual, não é suficiente para permitir
análises complexas ou transformações automatizadas. Para que ferramentas possam com-
preender a organização e os significados do código, são necessárias representações es-
truturais que expressem de maneira hierárquica e formal os elementos que o compõem.
Entre essas representações, destacam-se as árvores sintáticas, tradicionalmente classifica-
das como Concrete Syntax Tree (CST) e Abstract Syntax Tree (AST) [Aho et al. 2013].

A CST, também chamada de parse tree, corresponde a uma árvore que repre-
senta a estrutura completa do código, preservando todos os elementos sintáticos. Essa
forma detalhada é útil em contextos que exigem a análise literal do texto do programa,
como verificações de conformidade com gramáticas ou transformações de baixo nı́vel
[Aho et al. 2013]. Já a AST é uma versão mais abstrata, que omite detalhes superficiais da
sintaxe e privilegia a estrutura lógica e semântica do código [Cooper and Torczon 2012].
Por exemplo, em uma atribuição, a AST armazena a relação entre variável e expressão,
sem necessariamente manter todos os sı́mbolos utilizados para expressar a operação no
código original. A tı́tulo de exemplo, as Figuras 1 e 2 representam, respectivamente, a
CST e a AST para a expressão while(x<10):x=x+1.

Figura 1. CST Figura 2. AST

Como pode ser visto nas Figuras 1 e 2, a CST preserva todos os elementos
sintáticos da expressão, incluindo parênteses, dois-pontos e sı́mbolos de operação, re-
sultando em uma estrutura mais detalhada. Em contraste, a AST abstrai esses detalhes
superficiais, mantendo apenas a estrutura lógica essencial: o laço while com sua condição
(x<10) e o corpo de atribuição (x=x+1), criando uma representação mais enxuta.

Essas representações estruturais são fundamentais em diversas atividades de En-
genharia de Software. Ferramentas de compilação utilizam ASTs como base para
verificação semântica e geração de código intermediário [Mogensen 2009]. Ambientes
de desenvolvimento fazem uso dessas estruturas para oferecer recursos de navegação,
inspeções estáticas, refatorações automatizadas e geração de sugestões inteligentes
[Murphy et al. 2006]. No contexto deste estudo, as árvores sintáticas fornecem o ponto
de partida conceitual para compreender a PSI. Embora a PSI não seja equivalente a uma
AST tradicional, ela compartilha a mesma motivação: oferecer uma estrutura hierárquica
que permita a exploração, análise e transformação do código-fonte.

2.2. Extensões em Ambientes de Programação
Ambientes de desenvolvimento modernos são projetados para atender a uma ampla varie-
dade de linguagens, paradigmas e fluxos de trabalho [Harmanen and Mikkonen 2016].
Dada a diversidade de necessidades dos desenvolvedores, torna-se inviável que uma
IDE ofereça de forma nativa todas as funcionalidades desejadas em diferentes contextos
[Kurbatova et al. 2021]. Por isso, muitas plataformas de desenvolvimento adotam arqui-
teturas extensı́veis, nas quais recursos adicionais podem ser incorporados por meio de
plugins. Essa abordagem possibilita que a comunidade de usuários contribua com fun-
cionalidades especı́ficas para as mais distintas necessidades, tais como integração com
sistemas de controle de versão, temas gráficos, emuladores de dispositivos, etc.

O modelo baseado em extensões traz benefı́cios tanto para os desenvolvedores
quanto para os fabricantes de IDEs. Para os usuários, a principal vantagem é a possibili-
dade de personalizar o ambiente de acordo com as necessidades do projeto, sem depender
exclusivamente da equipe mantenedora da ferramenta. Já para as plataformas, a extensi-
bilidade cria um ecossistema colaborativo, em que a evolução das funcionalidades ocorre
de forma distribuı́da. Exemplos reconhecidos incluem o Eclipse1, que consolidou sua
relevância por meio de um ecossistema de plugins, e o Visual Studio Code2, que popula-
rizou a adoção de extensões para suportar linguagens e frameworks.

2.3. IntelliJ e a Program Structure Interface
O IntelliJ IDEA, desenvolvido pela JetBrains, é uma das IDEs mais consolidadas para
o desenvolvimento em Java [StackOverflow 2024]. Apresenta um conjunto abrangente
de funcionalidades, como refatorações, inspeções de código em tempo real, geração au-
tomática de trechos [JetBrains 2025a]. Além disso, a plataforma foi concebida desde
suas primeiras versões como uma base extensı́vel, permitindo a criação de plugins que
expandem suas capacidades para atender a cenários especı́ficos de desenvolvimento.

No núcleo dessa extensibilidade encontra-se a Program Structure Interface, uma
abstração que representa o código-fonte em uma estrutura hierárquica manipulável. A PSI

1https://marketplace.eclipse.org/listings/category/ide
2https://code.visualstudio.com/docs/configure/extensions/

extension-marketplace

pode ser entendida como uma camada acima da Abstract Syntax Tree do Java, oferecendo
não apenas a estrutura sintática do programa, mas também elementos adicionais que fa-
cilitam sua manipulação em um ambiente de edição. Dessa forma, ela atua como a ponte
entre a representação sintática bruta do código e as operações de alto nı́vel realizadas
pela IDE, como navegação, inspeção e transformação [JetBrains 2025f]. A PSI organiza
o código em entidades chamadas PSIElement, que correspondem a nós individuais da
árvore estrutural, como classes, métodos, expressões ou variáveis [JetBrains 2025d]. Es-
ses elementos são agregados em estruturas maiores, sendo o PSIFile a unidade de nı́vel
superior que representa um arquivo-fonte completo [JetBrains 2025e]. Além disso, a PSI
permite explorar essas estruturas por meio de navegação hierárquica, podendo seguir uma
abordagem top-down, partindo do arquivo até os elementos mais internos, ou bottom-up,
subindo a partir de um nó especı́fico até seus elementos ancestrais [JetBrains 2025c]. Essa
flexibilidade a torna uma ferramenta adequada para implementar análises e manipulações
precisas do código dentro de plugins.

3. Metodologia
A pesquisa adotou a abordagem de Design Science Research (DSR), que tem como
objetivo principal a construção de artefatos capazes de solucionar problemas reais
[Peffers et al. 2007]. Conforme descrito por [Hevner et al. 2004], a DSR propõe um
equilı́brio entre teoria e relevância prática, favorecendo a criação de soluções cientifica-
mente embasadas e, ao mesmo tempo, aplicáveis no ambiente em que são implementadas.

A DSR é estruturado em três ciclos: o ciclo de relevância, que garante que o
artefato atenda às demandas do contexto prático; o ciclo de rigor, que assegura que o
desenvolvimento esteja fundamentado em conhecimento consolidado e literatura perti-
nente; e o ciclo de design, que envolve a construção e refinamento contı́nuo do artefato.
A interação desses ciclos possibilita que os resultados obtidos sejam simultaneamente
úteis para a prática e consistentes do ponto de vista cientı́fico [Horita et al. 2018].

Neste estudo, a aplicação da DSR iniciou pelo planejamento e definição dos requi-
sitos dos artefatos, e posterior desenvolvimento dos plugins. O trabalho se comprometeu
com cada ciclo da DSR da seguinte forma: no (I) ciclo de relevância, o problema foi
mapeado a partir das lacunas identificadas no uso de abstrações estruturais em IDEs; no
(II) ciclo de rigor, foram considerados fundamentos teóricos sobre ASTs, CSTs, PSI e
extensibilidade de IDEs, garantindo que o desenvolvimento fosse consistente com a litera-
tura; e no (III) ciclo de design, os artefatos foram projetados, implementados e avaliados
iterativamente, permitindo ajustes até a obtenção de soluções funcionais.

4. Desenvolvimento dos Artefatos
Nesta seção são apresentados os plugins desenvolvidos como prova de conceito, ilus-
trando a aplicação prática da PSI no IntelliJ por meio de exemplos que exploram diferen-
tes formas de análise e manipulação do código-fonte.

4.1. Editor Context Info
O plugin foi desenvolvido com o objetivo de exibir informações contextuais sobre a
posição atual do cursor no editor. É um exemplo conceitual cujo objetivo é fornecer
ao desenvolvedor, detalhes como o nome do arquivo, a linha e a coluna em que o cursor
está localizado, bem como os métodos e classes que envolvem o ponto de edição.

A execução do plugin ocorre em quatro etapas: (I) inicialmente, a partir do objeto
AnActionEvent, é realizada a recuperação do contexto, obtendo-se a instância do pro-
jeto e o editor ativo; (II) em seguida, com o uso da API de edição (CaretModel),
identifica-se o posicionamento do cursor, determinando o deslocamento no texto e a
posição lógica (linha e coluna); (III) na sequência, ocorre a exploração da PSI, em que o
documento é associado a um objeto PsiFile, permitindo navegar na estrutura do código
e, a partir da posição do cursor, identificar o elemento correspondente (PsiElement) e
seus ancestrais, como PsiMethod e PsiClass por meio do PsiTreeUtil; (IV) por
fim, as informações coletadas são organizadas em uma mensagem e exibidas ao usuário
em uma janela de diálogo, consolidando a integração entre a posição textual e a estrutura.

1 PsiElement elementAtCursor = psiFile.findElementAt(offset);
2 if (elementAtCursor != null) {
3 PsiMethod method = PsiTreeUtil.getParentOfType(elementAtCursor, PsiMethod.class);
4 PsiClass psiClass = PsiTreeUtil.getParentOfType(elementAtCursor, PsiClass.class);
5
6 if (method != null) {
7 methodName = method.getName();
8 }
9

10 if (psiClass != null) {
11 className = psiClass.getName();
12 }
13 }

Figura 3. Trecho do código-fonte do EditorContextInfo

O fragmento de código-fonte contido na Figura 3 ilustra como a
PSI permite navegar hierarquicamente na estrutura do código. Primeiro,
findElementAt(offset) localiza o elemento PSI exato na posição do cursor.
Em seguida, PsiTreeUtil.getParentOfType() percorre os ancestrais desse
elemento, buscando especificamente por PsiMethod e PsiClass. Essa navegação
ascendente permite identificar o contexto (método e classe) que envolve o ponto de
edição, independentemente da profundidade na hierarquia.

Figura 4. Aplicação prática do EditorContextInfo

A Figura 4 demonstra o plugin Editor Context Info em funcionamento. O cursor
está posicionado na linha 11, coluna 25, dentro do método test() da classe Main. O
diálogo exibe informações contextuais extraı́das pela PSI: o arquivo, posição exata do

cursor (linha/coluna) e hierarquia estrutural (método e classe). Isso exemplifica como a
PSI correlaciona a posição textual com a estrutura semântica do código.

4.2. PSI Tree Generator

O plugin foi desenvolvido com o objetivo de gerar uma visualização textual da árvore de
elementos PSI de um arquivo em edição. Ele permite que o desenvolvedor compreenda a
organização hierárquica do código-fonte conforme representada pela Program Structure
Interface, exibindo informações como o tipo dos elementos, seus nós sintáticos e trechos
de texto associados. Essa visualização pode ser especialmente útil para fins de depuração
ou análise, oferecendo uma visão detalhada das estruturas internas.

A execução do plugin ocorre em quatro etapas: (I) inicialmente, a partir do objeto
AnActionEvent, é realizada a recuperação do contexto, obtendo-se a instância do pro-
jeto e o editor ativo; (II) em seguida, o documento é associado a um objeto PsiFile, que
contém a representação PSI do arquivo; (III) a partir desse objeto, é percorrida recursi-
vamente toda a árvore de elementos por meio do método buildPsiTree, que constrói
uma saı́da textual com indentação hierárquica e informações como classe do elemento,
tipo do nó e texto associado; (IV) por fim, a árvore gerada é apresentada em uma janela
de diálogo personalizada, permitindo rolagem e navegação pelo conteúdo exibido.

1 private void buildPsiTree(PsiElement element, StringBuilder builder, String prefix, boolean isLast) {
2 // Adiciona os conectores
3 builder.append(prefix);
4 builder.append(isLast ? "|_" : "|-");
5
6 builder.append(element.getClass().getSimpleName());
7
8 // ... Implementacao omitida ...
9

10 // Processa os elementos filhos recursivamente
11 PsiElement[] children = element.getChildren();
12 for (int i = 0; i < children.length; i++) {
13 boolean isLastChild = (i == children.length - 1);
14 String childPrefix = prefix + (isLast ? " " : "| ");
15 buildPsiTree(children[i], builder, childPrefix, isLastChild);
16 }
17 }

Figura 5. Trecho do código-fonte do PSITree

O fragmento de código-fonte contido na Figura 5 ilustra como o método
buildPsiTree implementa um algoritmo recursivo de travessia em profundidade
para gerar uma representação textual hierárquica da árvore PSI. A função recebe qua-
tro parâmetros: o elemento PSI atual, um StringBuilder para construir a saı́da,
um prefixo de indentação e um booleano indicando se é o último elemento no nı́vel.
Inicialmente, adiciona conectores visuais seguidos do nome da classe do elemento
via getClass().getSimpleName(). A recursão processa todos os elementos fi-
lhos através de element.getChildren(), calculando dinamicamente o prefixo de
indentação para cada nı́vel: adiciona espaços em branco quando o elemento pai é o último
ou uma barra vertical com espaços quando há mais elementos no mesmo nı́vel. Essa
lógica garante que a visualização reflita corretamente a hierarquia da árvore PSI, criando
uma saı́da legı́vel que permite compreender a organização completa do código-fonte.

A Figura 6 apresenta a saı́da do plugin PSI Tree Generator aplicado ao arquivo
Main.java. A visualização revela a estrutura hierárquica completa do código, desde
o elemento raiz PsiJavaFileImpl até os componentes mais granulares como tokens

e identificadores. Vale ressaltar que a figura não está mostrando a estrutura completa da
árvore que foi gerada, como evidenciado pela barra de rolagem.

Figura 6. Aplicação prática do PSITree

5. Discussão

Os dois plugins desenvolvidos demonstraram, de maneira prática, a aplicabilidade da PSI
como abstração para manipulação e análise do código-fonte dentro do IntelliJ. O Editor
Context Info evidenciou a possibilidade de correlacionar a posição do cursor no editor
com a hierarquia estrutural do código, extraindo informações relevantes sobre classes e
métodos. Já o PSI Tree Generator apresentou a capacidade de percorrer e visualizar toda a
árvore estrutural de um arquivo, tornando explı́citas as relações entre elementos sintáticos
e seus respectivos conteúdos. Ambos alcançaram os objetivos propostos, confirmando
que a PSI pode ser utilizada tanto em casos pontuais quanto em análises completas.

Ademais, embora a PSI compartilhe semelhanças com a AST, principalmente no
que se refere à representação hierárquica do código, o desenvolvimento dos plugins reve-
lou que há diferenças relevantes que justificam seu uso especı́fico na IntelliJ IDEA.

A Tabela 1 evidencia diferenças relevantes entre AST e PSI. Enquanto a AST
representa a estrutura lógica do código e é tradicionalmente usada em compiladores para
análise semântica, a PSI foi projetada para o contexto das IDEs, incorporando metadados
e recursos que possibilitam navegação, inspeções e refatorações em tempo real. Essa
distinção justifica o uso da PSI como base para o desenvolvimento de plugins, pois oferece
suporte direto a operações interativas que ampliam a produtividade do programador.

Tabela 1. Comparativo entre AST e PSI
Aspecto AST PSI
Origem Derivada diretamente da gramática da

linguagem.
Construı́da a partir da AST, mas enrique-
cida com elementos adicionais da IDE.

Detalhamento Representa a estrutura lógica e
semântica do programa, omitindo
detalhes supérfluos da sintaxe.

Inclui, além da estrutura lógica,
informações úteis ao editor, como
referências de navegação e manipulação.

Uso tı́pico Compiladores e analisadores
semânticos.

IDEs, análise estática, refatorações e su-
porte à navegação de código.

Manipulação Estritamente ligada ao processo de
compilação e interpretação.

Projetada para permitir interatividade em
tempo real no ambiente de edição.

6. Considerações Finais

O estudo evidenciou o papel da Program Structure Interface como uma abstração fun-
damental para a construção de funcionalidades avançadas no IntelliJ. A implementação
dos plugins desenvolvidos demonstrou, de maneira prática, como a PSI possibilita tanto
a exploração de informações contextuais quanto a visualização hierárquica detalhada do
código, reforçando sua utilidade em apoio ao programador. Apesar dos resultados po-
sitivos, algumas limitações devem ser destacadas. O escopo do trabalho restringiu-se a
dois artefatos conceituais, o que limita a generalização. Além disso, não foram realizadas
avaliações quantitativas de desempenho ou usabilidade, o que poderia fornecer uma visão
mais robusta sobre a eficácia das soluções.

Como trabalhos futuros, sugere-se a criação de plugins mais complexos, a
ampliação dos testes em projetos reais de maior escala e a comparação com outras aborda-
gens de representação estrutural em diferentes ambientes de programação. Um exemplo
concreto seria o desenvolvimento de uma ferramenta de model-based programming para
Java no IntelliJ que possibilitasse tanto a representação gráfica do código-fonte quanto o
rastreamento de mudanças realizadas no modelo, tendo como indispensável o subsı́dio do
modelo de dados do código-fonte provido pela PSI.

7. Disponibilidade de Dados

Nos comprometemos a promover a transparência e a reprodutibilidade na pesquisa. Ali-
nhados com esse princı́pio, disponibilizamos abertamente o código-fonte dos plugins
desenvolvidos em nosso estudo no repositório Zenodo em https://doi.org/10.
5281/zenodo.17220255.

Referências

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2013). Compilers: Pearson new
international edition. Pearson Education, 2 edition.

Cooper, K. D. and Torczon, L. (2012). Overview of compilation. In Engineering a
Compiler. Elsevier.

Fowler, M. (2019). Refactoring: Improving the Design of Existing Code. Addison Wesley,
2 edition.

Golubev, Y., Kurbatova, Z., AlOmar, E. A., Bryksin, T., and Mkaouer, M. W. (2021). One
thousand and one stories: a large-scale survey of software refactoring. In Proceedings
of the 29th ACM Joint Meeting on ESEC/FSE 2021. ACM.

Harmanen, J. and Mikkonen, T. (2016). On Polyglot Programming in the Web. IGI Global.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science in information
systems research. MIS Quarterly.

Horita, F., Graciano Neto, V., and dos Santos, R. (2018). Design Science Research em
Sistemas de Informação e Engenharia de Software: Conceitos, Aplicações e Trabalhos
Futuros.

JetBrains (2025a). Intellij IDEA. https://www.jetbrains.com/pt-br/
idea/.

JetBrains (2025b). Intellij Plugins. https://plugins.jetbrains.com/docs/
intellij/developing-plugins.html.

JetBrains (2025c). Navigating the PSI. https://plugins.jetbrains.com/
docs/intellij/navigating-psi.html.

JetBrains (2025d). PSI Elements. https://plugins.jetbrains.com/docs/
intellij/psi-elements.html.

JetBrains (2025e). PSI Files. https://plugins.jetbrains.com/docs/
intellij/psi-files.html.

JetBrains (2025f). What is the PSI? https://plugins.jetbrains.com/docs/
intellij/psi.html.

Kurbatova, Z., Golubev, Y., Kovalenko, V., and Bryksin, T. (2021). The intellij plat-
form: A framework for building plugins and mining software data. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering Workshops
(ASEW). IEEE.

Leite, L., Rocha, C., Kon, F., Milojicic, D., and Meirelles, P. (2019). A survey of devops
concepts and challenges. ACM Computing Surveys.

Mogensen, T. Æ. (2009). Basics of compiler design.

Murphy, G., Kersten, M., and Findlater, L. (2006). How are java software developers
using the eclipse ide? IEEE Software.

Peffers, K., Tuunanen, T., Rothenberger, M., and Chatterjee, S. (2007). A design science
research methodology for information systems research. J. Manage. Inf. Syst.

StackOverflow (2024). Most popular technologies report.
https://survey.stackoverflow.co/2024/technology#
most-popular-technologies-new-collab-tools.

