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Abstract. This paper explores the Program Structure Interface (PSI) as a basis
for plugin development in IntelliJ. Adopting a Design Science Research appro-
ach, two artifacts were implemented: the Editor Context Info, which correlates
the cursor position with the hierarchy of the code, and the PSI Tree Genera-
tor, which generates visualizations of the PSI tree for source files. The results
demonstrate the applicability of PSI in real-time code analysis and manipula-
tion, highlighting its potential as a resource to support programmers and as a
platform for innovation in IDEs, in comparison to the AST.

Resumo. Este artigo explora a Program Structure Interface (PSI) como base
para o desenvolvimento de plugins no IntelliJ. Adotando a abordagem de Design
Science Research, foram implementados dois artefatos: o Editor Context Info,
que correlaciona a posição do cursor com a hierarquia do código, e o PSI Tree
Generator, que gera visualizações da árvore PSI de arquivos. Os resultados
demonstram a aplicabilidade da PSI na análise e manipulação de código em
tempo real, destacando seu potencial como recurso de apoio ao programador e
como plataforma para inovação em IDEs, em comparação à AST.

1. Introdução

O desenvolvimento de software moderno demanda ferramentas que vão além da sim-
ples edição de texto [Leite et al. 2019]. Ambientes de Desenvolvimento Integrado
(IDEs) tornaram-se peças centrais no ciclo de vida das aplicações, oferecendo re-
cursos como refatoração automática, verificações estáticas e sugestões inteligentes
[Golubev et al. 2021]. Para viabilizar tais funcionalidades, é necessário que o código-
fonte seja representado de maneira estruturada, de modo que a IDE consiga compreender
sua organização sintática e semântica [Fowler 2019]. Nesse contexto, destaca-se o Pro-
gram Structure Interface, um mecanismo presente na plataforma IntelliJ que possibilita a
interação direta com representações estruturais do código [JetBrains 2025f].

O IntelliJ, em particular, disponibiliza uma arquitetura extensı́vel baseada em plu-
gins, permitindo que desenvolvedores explorem abstrações como a PSI para criar novas
funcionalidades. Essa possibilidade motiva o presente estudo, uma vez que compreender
e utilizar a PSI não apenas amplia a eficiência no desenvolvimento de soluções para a
própria IDE, como também serve de exemplo prático sobre como abstrações de código
podem ser empregadas em tarefas de apoio ao programador [JetBrains 2025b].



Diante do exposto, o objetivo central deste artigo é investigar o potencial da PSI no
desenvolvimento de plugins para o IntelliJ. A metodologia será baseada na implementação
de artefatos que exemplificam como essa interface pode ser explorada para criar funcio-
nalidades de análise e manipulação de código. Dessa forma, o trabalho busca oferecer
evidências da aplicabilidade da PSI em cenários de apoio inteligente à programação.

Além desta introdução, o artigo está organizado da seguinte forma: a Seção 2
apresenta a fundamentação teórica, discutindo representações estruturais de código, a im-
portância de abstrações em IDEs e a definição da PSI. A Seção 3 descreve a metodologia
adotada. Na sequência, a Seção 4 detalha os plugins construı́dos e seus aspectos técnicos.
A Seção 5 apresenta a análise dos resultados e das contribuições. Por fim, a Seção 6 traz
as considerações finais, destacando limitações e perspectivas de trabalhos futuros.

2. Fundamentação Teórica
Esta seção apresenta os conceitos necessários para compreender o uso da PSI no desen-
volvimento de extensões para o IntelliJ. São abordadas as representações estruturais de
código-fonte, o papel das IDEs como ambientes que exigem abstrações avançadas, a im-
portância da extensibilidade por meio de plugins e, por fim, a definição da PSI.

2.1. Representação Estrutural de Código-Fonte

O código-fonte de um programa, em sua forma textual, não é suficiente para permitir
análises complexas ou transformações automatizadas. Para que ferramentas possam com-
preender a organização e os significados do código, são necessárias representações es-
truturais que expressem de maneira hierárquica e formal os elementos que o compõem.
Entre essas representações, destacam-se as árvores sintáticas, tradicionalmente classifica-
das como Concrete Syntax Tree (CST) e Abstract Syntax Tree (AST) [Aho et al. 2013].

A CST, também chamada de parse tree, corresponde a uma árvore que repre-
senta a estrutura completa do código, preservando todos os elementos sintáticos. Essa
forma detalhada é útil em contextos que exigem a análise literal do texto do programa,
como verificações de conformidade com gramáticas ou transformações de baixo nı́vel
[Aho et al. 2013]. Já a AST é uma versão mais abstrata, que omite detalhes superficiais da
sintaxe e privilegia a estrutura lógica e semântica do código [Cooper and Torczon 2012].
Por exemplo, em uma atribuição, a AST armazena a relação entre variável e expressão,
sem necessariamente manter todos os sı́mbolos utilizados para expressar a operação no
código original. A tı́tulo de exemplo, as Figuras 1 e 2 representam, respectivamente, a
CST e a AST para a expressão while(x<10):x=x+1.

Figura 1. CST Figura 2. AST



Como pode ser visto nas Figuras 1 e 2, a CST preserva todos os elementos
sintáticos da expressão, incluindo parênteses, dois-pontos e sı́mbolos de operação, re-
sultando em uma estrutura mais detalhada. Em contraste, a AST abstrai esses detalhes
superficiais, mantendo apenas a estrutura lógica essencial: o laço while com sua condição
(x<10) e o corpo de atribuição (x=x+1), criando uma representação mais enxuta.

Essas representações estruturais são fundamentais em diversas atividades de En-
genharia de Software. Ferramentas de compilação utilizam ASTs como base para
verificação semântica e geração de código intermediário [Mogensen 2009]. Ambientes
de desenvolvimento fazem uso dessas estruturas para oferecer recursos de navegação,
inspeções estáticas, refatorações automatizadas e geração de sugestões inteligentes
[Murphy et al. 2006]. No contexto deste estudo, as árvores sintáticas fornecem o ponto
de partida conceitual para compreender a PSI. Embora a PSI não seja equivalente a uma
AST tradicional, ela compartilha a mesma motivação: oferecer uma estrutura hierárquica
que permita a exploração, análise e transformação do código-fonte.

2.2. Extensões em Ambientes de Programação
Ambientes de desenvolvimento modernos são projetados para atender a uma ampla varie-
dade de linguagens, paradigmas e fluxos de trabalho [Harmanen and Mikkonen 2016].
Dada a diversidade de necessidades dos desenvolvedores, torna-se inviável que uma
IDE ofereça de forma nativa todas as funcionalidades desejadas em diferentes contextos
[Kurbatova et al. 2021]. Por isso, muitas plataformas de desenvolvimento adotam arqui-
teturas extensı́veis, nas quais recursos adicionais podem ser incorporados por meio de
plugins. Essa abordagem possibilita que a comunidade de usuários contribua com fun-
cionalidades especı́ficas para as mais distintas necessidades, tais como integração com
sistemas de controle de versão, temas gráficos, emuladores de dispositivos, etc.

O modelo baseado em extensões traz benefı́cios tanto para os desenvolvedores
quanto para os fabricantes de IDEs. Para os usuários, a principal vantagem é a possibili-
dade de personalizar o ambiente de acordo com as necessidades do projeto, sem depender
exclusivamente da equipe mantenedora da ferramenta. Já para as plataformas, a extensi-
bilidade cria um ecossistema colaborativo, em que a evolução das funcionalidades ocorre
de forma distribuı́da. Exemplos reconhecidos incluem o Eclipse1, que consolidou sua
relevância por meio de um ecossistema de plugins, e o Visual Studio Code2, que popula-
rizou a adoção de extensões para suportar linguagens e frameworks.

2.3. IntelliJ e a Program Structure Interface
O IntelliJ IDEA, desenvolvido pela JetBrains, é uma das IDEs mais consolidadas para
o desenvolvimento em Java [StackOverflow 2024]. Apresenta um conjunto abrangente
de funcionalidades, como refatorações, inspeções de código em tempo real, geração au-
tomática de trechos [JetBrains 2025a]. Além disso, a plataforma foi concebida desde
suas primeiras versões como uma base extensı́vel, permitindo a criação de plugins que
expandem suas capacidades para atender a cenários especı́ficos de desenvolvimento.

No núcleo dessa extensibilidade encontra-se a Program Structure Interface, uma
abstração que representa o código-fonte em uma estrutura hierárquica manipulável. A PSI

1https://marketplace.eclipse.org/listings/category/ide
2https://code.visualstudio.com/docs/configure/extensions/

extension-marketplace



pode ser entendida como uma camada acima da Abstract Syntax Tree do Java, oferecendo
não apenas a estrutura sintática do programa, mas também elementos adicionais que fa-
cilitam sua manipulação em um ambiente de edição. Dessa forma, ela atua como a ponte
entre a representação sintática bruta do código e as operações de alto nı́vel realizadas
pela IDE, como navegação, inspeção e transformação [JetBrains 2025f]. A PSI organiza
o código em entidades chamadas PSIElement, que correspondem a nós individuais da
árvore estrutural, como classes, métodos, expressões ou variáveis [JetBrains 2025d]. Es-
ses elementos são agregados em estruturas maiores, sendo o PSIFile a unidade de nı́vel
superior que representa um arquivo-fonte completo [JetBrains 2025e]. Além disso, a PSI
permite explorar essas estruturas por meio de navegação hierárquica, podendo seguir uma
abordagem top-down, partindo do arquivo até os elementos mais internos, ou bottom-up,
subindo a partir de um nó especı́fico até seus elementos ancestrais [JetBrains 2025c]. Essa
flexibilidade a torna uma ferramenta adequada para implementar análises e manipulações
precisas do código dentro de plugins.

3. Metodologia
A pesquisa adotou a abordagem de Design Science Research (DSR), que tem como
objetivo principal a construção de artefatos capazes de solucionar problemas reais
[Peffers et al. 2007]. Conforme descrito por [Hevner et al. 2004], a DSR propõe um
equilı́brio entre teoria e relevância prática, favorecendo a criação de soluções cientifica-
mente embasadas e, ao mesmo tempo, aplicáveis no ambiente em que são implementadas.

A DSR é estruturado em três ciclos: o ciclo de relevância, que garante que o
artefato atenda às demandas do contexto prático; o ciclo de rigor, que assegura que o
desenvolvimento esteja fundamentado em conhecimento consolidado e literatura perti-
nente; e o ciclo de design, que envolve a construção e refinamento contı́nuo do artefato.
A interação desses ciclos possibilita que os resultados obtidos sejam simultaneamente
úteis para a prática e consistentes do ponto de vista cientı́fico [Horita et al. 2018].

Neste estudo, a aplicação da DSR iniciou pelo planejamento e definição dos requi-
sitos dos artefatos, e posterior desenvolvimento dos plugins. O trabalho se comprometeu
com cada ciclo da DSR da seguinte forma: no (I) ciclo de relevância, o problema foi
mapeado a partir das lacunas identificadas no uso de abstrações estruturais em IDEs; no
(II) ciclo de rigor, foram considerados fundamentos teóricos sobre ASTs, CSTs, PSI e
extensibilidade de IDEs, garantindo que o desenvolvimento fosse consistente com a litera-
tura; e no (III) ciclo de design, os artefatos foram projetados, implementados e avaliados
iterativamente, permitindo ajustes até a obtenção de soluções funcionais.

4. Desenvolvimento dos Artefatos
Nesta seção são apresentados os plugins desenvolvidos como prova de conceito, ilus-
trando a aplicação prática da PSI no IntelliJ por meio de exemplos que exploram diferen-
tes formas de análise e manipulação do código-fonte.

4.1. Editor Context Info
O plugin foi desenvolvido com o objetivo de exibir informações contextuais sobre a
posição atual do cursor no editor. É um exemplo conceitual cujo objetivo é fornecer
ao desenvolvedor, detalhes como o nome do arquivo, a linha e a coluna em que o cursor
está localizado, bem como os métodos e classes que envolvem o ponto de edição.



A execução do plugin ocorre em quatro etapas: (I) inicialmente, a partir do objeto
AnActionEvent, é realizada a recuperação do contexto, obtendo-se a instância do pro-
jeto e o editor ativo; (II) em seguida, com o uso da API de edição (CaretModel),
identifica-se o posicionamento do cursor, determinando o deslocamento no texto e a
posição lógica (linha e coluna); (III) na sequência, ocorre a exploração da PSI, em que o
documento é associado a um objeto PsiFile, permitindo navegar na estrutura do código
e, a partir da posição do cursor, identificar o elemento correspondente (PsiElement) e
seus ancestrais, como PsiMethod e PsiClass por meio do PsiTreeUtil; (IV) por
fim, as informações coletadas são organizadas em uma mensagem e exibidas ao usuário
em uma janela de diálogo, consolidando a integração entre a posição textual e a estrutura.

1 PsiElement elementAtCursor = psiFile.findElementAt(offset);
2 if (elementAtCursor != null) {
3 PsiMethod method = PsiTreeUtil.getParentOfType(elementAtCursor, PsiMethod.class);
4 PsiClass psiClass = PsiTreeUtil.getParentOfType(elementAtCursor, PsiClass.class);
5
6 if (method != null) {
7 methodName = method.getName();
8 }
9

10 if (psiClass != null) {
11 className = psiClass.getName();
12 }
13 }

Figura 3. Trecho do código-fonte do EditorContextInfo

O fragmento de código-fonte contido na Figura 3 ilustra como a
PSI permite navegar hierarquicamente na estrutura do código. Primeiro,
findElementAt(offset) localiza o elemento PSI exato na posição do cursor.
Em seguida, PsiTreeUtil.getParentOfType() percorre os ancestrais desse
elemento, buscando especificamente por PsiMethod e PsiClass. Essa navegação
ascendente permite identificar o contexto (método e classe) que envolve o ponto de
edição, independentemente da profundidade na hierarquia.

Figura 4. Aplicação prática do EditorContextInfo

A Figura 4 demonstra o plugin Editor Context Info em funcionamento. O cursor
está posicionado na linha 11, coluna 25, dentro do método test() da classe Main. O
diálogo exibe informações contextuais extraı́das pela PSI: o arquivo, posição exata do



cursor (linha/coluna) e hierarquia estrutural (método e classe). Isso exemplifica como a
PSI correlaciona a posição textual com a estrutura semântica do código.

4.2. PSI Tree Generator

O plugin foi desenvolvido com o objetivo de gerar uma visualização textual da árvore de
elementos PSI de um arquivo em edição. Ele permite que o desenvolvedor compreenda a
organização hierárquica do código-fonte conforme representada pela Program Structure
Interface, exibindo informações como o tipo dos elementos, seus nós sintáticos e trechos
de texto associados. Essa visualização pode ser especialmente útil para fins de depuração
ou análise, oferecendo uma visão detalhada das estruturas internas.

A execução do plugin ocorre em quatro etapas: (I) inicialmente, a partir do objeto
AnActionEvent, é realizada a recuperação do contexto, obtendo-se a instância do pro-
jeto e o editor ativo; (II) em seguida, o documento é associado a um objeto PsiFile, que
contém a representação PSI do arquivo; (III) a partir desse objeto, é percorrida recursi-
vamente toda a árvore de elementos por meio do método buildPsiTree, que constrói
uma saı́da textual com indentação hierárquica e informações como classe do elemento,
tipo do nó e texto associado; (IV) por fim, a árvore gerada é apresentada em uma janela
de diálogo personalizada, permitindo rolagem e navegação pelo conteúdo exibido.

1 private void buildPsiTree(PsiElement element, StringBuilder builder, String prefix, boolean isLast) {
2 // Adiciona os conectores
3 builder.append(prefix);
4 builder.append(isLast ? "|_" : "|-");
5
6 builder.append(element.getClass().getSimpleName());
7
8 // ... Implementacao omitida ...
9

10 // Processa os elementos filhos recursivamente
11 PsiElement[] children = element.getChildren();
12 for (int i = 0; i < children.length; i++) {
13 boolean isLastChild = (i == children.length - 1);
14 String childPrefix = prefix + (isLast ? " " : "| ");
15 buildPsiTree(children[i], builder, childPrefix, isLastChild);
16 }
17 }

Figura 5. Trecho do código-fonte do PSITree

O fragmento de código-fonte contido na Figura 5 ilustra como o método
buildPsiTree implementa um algoritmo recursivo de travessia em profundidade
para gerar uma representação textual hierárquica da árvore PSI. A função recebe qua-
tro parâmetros: o elemento PSI atual, um StringBuilder para construir a saı́da,
um prefixo de indentação e um booleano indicando se é o último elemento no nı́vel.
Inicialmente, adiciona conectores visuais seguidos do nome da classe do elemento
via getClass().getSimpleName(). A recursão processa todos os elementos fi-
lhos através de element.getChildren(), calculando dinamicamente o prefixo de
indentação para cada nı́vel: adiciona espaços em branco quando o elemento pai é o último
ou uma barra vertical com espaços quando há mais elementos no mesmo nı́vel. Essa
lógica garante que a visualização reflita corretamente a hierarquia da árvore PSI, criando
uma saı́da legı́vel que permite compreender a organização completa do código-fonte.

A Figura 6 apresenta a saı́da do plugin PSI Tree Generator aplicado ao arquivo
Main.java. A visualização revela a estrutura hierárquica completa do código, desde
o elemento raiz PsiJavaFileImpl até os componentes mais granulares como tokens



e identificadores. Vale ressaltar que a figura não está mostrando a estrutura completa da
árvore que foi gerada, como evidenciado pela barra de rolagem.

Figura 6. Aplicação prática do PSITree

5. Discussão

Os dois plugins desenvolvidos demonstraram, de maneira prática, a aplicabilidade da PSI
como abstração para manipulação e análise do código-fonte dentro do IntelliJ. O Editor
Context Info evidenciou a possibilidade de correlacionar a posição do cursor no editor
com a hierarquia estrutural do código, extraindo informações relevantes sobre classes e
métodos. Já o PSI Tree Generator apresentou a capacidade de percorrer e visualizar toda a
árvore estrutural de um arquivo, tornando explı́citas as relações entre elementos sintáticos
e seus respectivos conteúdos. Ambos alcançaram os objetivos propostos, confirmando
que a PSI pode ser utilizada tanto em casos pontuais quanto em análises completas.

Ademais, embora a PSI compartilhe semelhanças com a AST, principalmente no
que se refere à representação hierárquica do código, o desenvolvimento dos plugins reve-
lou que há diferenças relevantes que justificam seu uso especı́fico na IntelliJ IDEA.

A Tabela 1 evidencia diferenças relevantes entre AST e PSI. Enquanto a AST
representa a estrutura lógica do código e é tradicionalmente usada em compiladores para
análise semântica, a PSI foi projetada para o contexto das IDEs, incorporando metadados
e recursos que possibilitam navegação, inspeções e refatorações em tempo real. Essa
distinção justifica o uso da PSI como base para o desenvolvimento de plugins, pois oferece
suporte direto a operações interativas que ampliam a produtividade do programador.



Tabela 1. Comparativo entre AST e PSI
Aspecto AST PSI
Origem Derivada diretamente da gramática da

linguagem.
Construı́da a partir da AST, mas enrique-
cida com elementos adicionais da IDE.

Detalhamento Representa a estrutura lógica e
semântica do programa, omitindo
detalhes supérfluos da sintaxe.

Inclui, além da estrutura lógica,
informações úteis ao editor, como
referências de navegação e manipulação.

Uso tı́pico Compiladores e analisadores
semânticos.

IDEs, análise estática, refatorações e su-
porte à navegação de código.

Manipulação Estritamente ligada ao processo de
compilação e interpretação.

Projetada para permitir interatividade em
tempo real no ambiente de edição.

6. Considerações Finais

O estudo evidenciou o papel da Program Structure Interface como uma abstração fun-
damental para a construção de funcionalidades avançadas no IntelliJ. A implementação
dos plugins desenvolvidos demonstrou, de maneira prática, como a PSI possibilita tanto
a exploração de informações contextuais quanto a visualização hierárquica detalhada do
código, reforçando sua utilidade em apoio ao programador. Apesar dos resultados po-
sitivos, algumas limitações devem ser destacadas. O escopo do trabalho restringiu-se a
dois artefatos conceituais, o que limita a generalização. Além disso, não foram realizadas
avaliações quantitativas de desempenho ou usabilidade, o que poderia fornecer uma visão
mais robusta sobre a eficácia das soluções.

Como trabalhos futuros, sugere-se a criação de plugins mais complexos, a
ampliação dos testes em projetos reais de maior escala e a comparação com outras aborda-
gens de representação estrutural em diferentes ambientes de programação. Um exemplo
concreto seria o desenvolvimento de uma ferramenta de model-based programming para
Java no IntelliJ que possibilitasse tanto a representação gráfica do código-fonte quanto o
rastreamento de mudanças realizadas no modelo, tendo como indispensável o subsı́dio do
modelo de dados do código-fonte provido pela PSI.

7. Disponibilidade de Dados

Nos comprometemos a promover a transparência e a reprodutibilidade na pesquisa. Ali-
nhados com esse princı́pio, disponibilizamos abertamente o código-fonte dos plugins
desenvolvidos em nosso estudo no repositório Zenodo em https://doi.org/10.
5281/zenodo.17220255.
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