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Abstract. Cognitive effort can be detected through psychophysiological signals
such as PPG, EDA, and EEG. This work explores two approaches: feature engi-
neering with SVM, KNN, and GBDT, and end-to-end learning with CNN, FCN,
LSTM, and ResNet. Using data from three volunteers, we evaluated model ge-
neralization. Results show that commercial wearables like the Samsung Galaxy
Watch 4 can match clinical devices such as the Empatica E4 in cognitive effort
detection (73% accuracy, AUC 0.698 vs. 74.3% and 0.696). These findings
support the use of low-cost devices for mental state monitoring and emotion
detection.

Resumo. O esforco cognitivo pode ser identificado por meio de sinais psicofi-
siologicos como PPG, EDA e EEG. Este trabalho aplica duas abordagens: en-
genharia de caracteristicas com SVM, KNN e GBDT, e aprendizado de ponta a
ponta com CNN, FCN, LSTM e ResNet. Os modelos foram avaliados com dados
de trés voluntdrios para verificar sua capacidade de generalizacdo. Os resul-
tados mostram que dispositivos vestiveis comerciais, como o Samsung Galaxy
Watch 4, podem obter desempenho semelhante ao de equipamentos clinicos,
como o Empatica E4 (acurdcia de 73% e AUC de 0,698 vs. 74,3% e 0,696). Es-
ses achados reforcam o potencial de dispositivos acessiveis no monitoramento
mental e na detec¢do de emogoes.

1. Introducao

Também referenciado como esforco ou carga mental, o esfor¢o cognitivo € definido como
uma construcdo multidimensional, a qual representa a carga de uma tarefa imposta ao



sistema cognitivo de um individuo [Longo et al. 2022]. Atualmente, existem quatro for-
mas principais para estimar o esfor¢o cognitivo, sendo elas: Avaliacdo subjetiva; Per-
formance da tarefa; Comportamento; e Métricas psicofisiolégicas [Paas et al. 2003]. No
entanto, conforme relatado por [Fleming et al. 2023], grande parte da pesquisa sobre es-
tes métodos de mensuracdo do esforco cognitivo, até o presente momento, dedicou-se
a formas que dependem da realizacdo de alguma tarefa especifica ou profissionais qua-
lificados, algo invidvel para realizagdo em escala ou de modo automaético por qualquer
individuo. Como solugdo para este problema, e devido a maior disponibilidade compu-
tacional, métricas psicolégicas ganham for¢a no uso em detec¢iao de esforco cognitivo.
Estas métricas consistem em mudancas inconscientes no individuo, como movimento
dos olhos, dilatacao da pupila, resposta galvanica da pele, medidas de eletromiografia e
eletroencefalografia, variacao de batimentos cardiacos entre outros para identificacao do
esfor¢o cognitivo [Cinaz 2013].

Neste cendrio, o presente trabalho propdem um sistema capaz de utilizar dados de
sensores instalados em dispositivos vestiveis de qualidade comercial, responsaveis pela
coleta de métricas psicofisiologicas, para a inferéncia do estado mental do individuo em
esfor¢o cognitivo ou ndo. Para realizar essa identificacdo, sdo utilizadas tecnologias de
inteligéncia artificial, tanto com algoritmos tradicionais de classificacdo quanto com mo-
delos de aprendizado profundo, os quais permitem formar um vinculo entre medidas fi-
sioldgicas do usudrio e o esfor¢co cognitivo, para classificar se no presente momento o su-
jeito executa alguma tarefa mentalmente exigente. Desta forma, as principais contribui¢ao
do trabalho sdo:

* Desenvolvimento de modelos para detec¢ao de esfor¢o cognitvo usando disposi-
tivos vestiveis comerciais.

* Proposicdo de um framework aplicdvel a outras dreas, como classifica¢do de esta-
dos emocionais e processamento de sinais psicofisioldgicos.

O artigo esta dividido em seis se¢Oes principais. Na Secdo 2, sdo discutidos os
trabalhos relacionados. A Sec@o 3 descreve os materiais € métodos. Na Secdo 4, sdo
apresentados os resultados e a discussdo. Finalmente, a Secdo 5 destaca as principais
conclusdes e orientagdes para trabalhos futuros.

2. Trabalhos Relacionados

Historicamente, a identificagdo do esfor¢co cognitivo baseava-se em avaliacdes subjeti-
vas. Com os avancos tecnoldgicos, o uso de sinais psicofisiolégicos — como frequéncia
cardiaca, condutividade da pele e EEG — passou a ser explorado.

Em [Shu et al. 2020], 25 voluntarios assistiram a videos curtos com diferentes
emocodes, enquanto sinais de PPG eram coletados por um bracelete. Usaram normalizagao
e algoritmos tradicionais (com LOQ), destacando-se os baseados em arvores.

[Borisov et al. 2021] propuseram um sistema vencedor da competicao Cogl.oad @ UbiComp
2020, usando PPG de bracelete para classificar esforco cognitivo binario em 23 voluntarios.
Aplicaram extracdo de estatisticas simples e usaram GBDT em uma validacdo k-fold.

Ja [Ding et al. 2020] utilizaram dispositivos de alta precisdao para capturar EDA,
EMG e ECG de 18 voluntérios realizando tarefas mentais, aplicando filtros, transformadas
wavelet e validagdo cruzada com diversos algoritmos.



Embora tragam contribuicdes importantes, os estudos possuem limita¢des: auséncia
de foco direto no esforgo cognitivo ([Shu et al. 2020]), tamanho reduzido e baixa taxa de
amostragem dos dados ([Borisov et al. 2021]), e uso de sensores clinicos caros e inviaveis
para aplicacdes cotidianas ([Ding et al. 2020]). Esses fatores comprometem a generalizacao,
escalabilidade e aplicabilidade dos modelos propostos.

3. Materiais e Métodos

O desenvolvimento do modelo de inteligéncia artificial para detec¢do de esfor¢o cogni-
tivo envolve quatro etapas principais, apresentadas na Figura 1. Inicialmente, define-se
o conjunto de dados, incluindo os dispositivos e sensores utilizados, garantindo com-
patibilidade com dispositivos vestiveis amplamente disponiveis. Em seguida, os sinais
coletados sdo processados em dois fluxos distintos: um que aplica engenharia de carac-
teristicas para extracdo de informagdes relevantes e reducao de ruidos, e outro que utiliza
aprendizado de maquina de ponta a ponta, empregando redes neurais diretamente nos
sinais brutos. Na fase de treinamento, o primeiro fluxo utiliza algoritmos tradicionais
support vector machine (SVM), k-nearest neighbors (KNN) e gradient boosting deci-
sion tree (GBDT), enquanto o segundo adota redes neurais do tipo convolutional neural
network (CNN), long-Short term memory (LSTM), Residual Network (ResNet) e fully
convolutional network (FCN), selecionadas por sua eficicia na classificacdo de estados
mentais. Ambos os fluxos passam por validacdo leave-one-subject-out cross validation
(LOSOCYV) e sdo avaliados com as métricas de desempenho F1-score, precisao, sensibi-
lidade, acurécia e Area sob a curva (AUC). O diagrama na Figura 1 demonstra as etapas
executas em sequéncia.
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Figura 1. Visao da estrutura elaborada

3.1. Dataset

O conjunto de dados CogWear, desenvolvido por [Grzeszczyk et al. 2023], visa avaliar
a viabilidade de sensores vestiveis comerciais na deteccao de esforco cognitivo. Ele é



composto por dois grupos: um piloto, utilizado para testes iniciais de coleta com 11 vo-
luntérios durante o teste de Stroop, e um principal, onde 13 participantes realizaram o
mesmo teste antes de responder questiondrios gamificados para analisar o impacto da
gamificacdo no esforco cognitivo. Os dados foram coletados simultaneamente por trés
dispositivos: Empatica E4 (clinico, para controle), Muse S EEG headband e Samsung
Galaxy Watch4. Tendo em vista que o objetivo € elaborar um modelo capaz de detec-
tar esfor¢o cognitivo em dados comuns, os quais podem facilmente ser obtidos através
de algum dispositivo popular, o foco deste trabalho foi no aparelho Galaxy Watch4, por
tratar-se do cendrio mais comum de dispositivo vestivel disponivel. Mas todos os apare-
lhos serdo utilizados a fim de comparacao.

3.2. Indicadores coletados

Os sensores em cada dispositivo captaram sinais psicofisiologicos diferentes, mas que
podem ser utilizados para derivar as mesmas métricas a fim de comparagdo ou indica-
dores diferentes. O Empatica E4 mediu valores de volume de pulso sanguineo (BVP),
do qual podem ser derivados valores para variabilidade de variabilidade do ritmo cardiaco
(HRV) e intervalo entre batimentos (IBI). Também possui sensor para temperatura da pele
(TEMP), um para atividade elétrica cutanea (EDA) e por ultimo aceleracdao (ACC) em trés
eixos, mas este ultimo nao foi disponibilizado para uso no conjunto de dados. A taxa de
coleta para BVP foi de 64 Hz através de um sensor fotopletismografia (PPG), 4 Hz para o
EDA e TEMP também com 4 Hz, no entanto, a informacao de temperatura nao foi utili-
zada. O dispositivo Galaxy Watch4 da Samsung coletou sinal de PPG verde, semelhante
ao dispositivo da Empatica, a uma taxa de 25 Hz. Finalmente, o sinal coletado pelo Muse
S EEG headband foi um eletroencefalograma (EEG) através de eletrodos localizados nas
regides pré-frontal e temporal, com uma taxa de coleta de 256 Hz e possuem contato seco
com a pele. Ademais, este aparelho também possui uma informacao de giroscopio, que
poderia ser utilizada para um processo avangado de remog¢ao de artefatos de movimento,
mas nao caberd no escopo deste trabalho.

3.3. Pré-processamento

Nesta etapa, os dados passardo por uma andlise exploratdria, que visa buscar um me-

lhor entendimento das informagdes a fim de tomar decisdes mais assertivas sobre as
transformacoes que serdo imposta aos dados. De forma andloga ao descrito por [Tukey et al. 1977],
o préprio conjunto de dados foi utilizado para responder perguntas relevantes no processo

de identificagdo de quais caracteristicas contribuem para observagdo de esfor¢o cognitivo

com auxilio de gréficos para identificar padroes. Ademais, andlises quantitativas também

podem ser empregadas em momentos que os recursos visuais nao fornecam uma tendéncia

clara [Buja et al. 2009].

O pré-processamento pode ser dividido em trés fases, a primeira delas busca re-
duzir a presenca de artefatos causados por movimento ou interferéncias e ruidos nos
sinais de sensores que possam ter sido causados por outros dispositivos ou o proprio
mecanismo interno do aparelho. Para este objetivo, foram utilizadas técnicas de filtros
passa-faixa e transformadas wavelet, uma vez que tanto trabalhos relacionados costumam
utilizd-las, quanto por estas demonstrarem eficicia comprovada no tratamento de sinais
[Joseph et al. 2014].



A partir do sinal limpo, com quantidade de ruidos reduzida, o processo de extracao
de caracteristicas, o qual busca inferir o maior nimero possivel de informacdes a partir do
sinal psicofisioldgico coletado. Entre as caracteristicas buscadas, estdo aquelas relatadas
na Tabela 1, quanto valores psicofisiolégicos como HRV, IBI, ritmo cardiaco (HR) e BVP.

Tabela 1. Caracteristicas por dominio

Dominio Caracteristica

Miéximo, minimo, média, mediana, moda, desvio padrio,
Tempo Hjorth (atividade, mobilidade, complexidade), entropia,
High-Order Crossing (HOC), comprimento de onda (WL)

Frequéncia Andlise de faixas espectro de densidade de energia (PSD)

Eficiéncia de energia recursiva, energia de transformadas

Tempo-frequéncia . .
P q wavelet discretas, espectrograma, espectro de Hilbert-Huang

Especificamente, todos os sinais foram divididos em janelas de 30 segundos, equi-
librando a eficiéncia computacional com a capacidade de capturar informagdes relevan-
tes. Estudos indicam que janelas de 90 segundos poderiam fornecer melhor predi¢do do
esfor¢o cognitivo [Ferreira et al. 2014], mas a duracao reduzida das coletas inviabilizou
esse tamanho, levando a escolha da janela de 30 segundos como compromisso entre qua-
lidade e disponibilidade de dados.

O pré-processamento do sinal de EDA foi realizado com a biblioteca NeuroKit2.
O sinal bruto passou por filtragem e foi convertido em onze colunas representando di-
ferentes componentes da resposta galvanica da pele. As estatisticas minima, maxima,
média, mediana e desvio padrdo foram extraidas e normalizadas entre zero e um. Para
EEG, também foi utilizada a NeuroKit2, que gerou duas colunas: dissimilaridade global
e campo de poténcia global. Com base nos dados brutos de 20 canais, foram calcula-
das estatisticas minima, maxima, média, mediana e desvio padrao, além da normalizacdo
entre zero e um.

O pré-processamento do PPG exigiu etapas adicionais devido a variabilidade na
qualidade do sinal, especialmente do Samsung Galaxy Watch4 e Empatica E4. Inici-
almente, realizou-se a winsoriza¢do dos 1% extremos dos dados para remover leituras
atipicas, seguida da aplicacao de um filtro passa-faixa Butterworth com limites de 0.1Hz
a 9Hz para minimizar distor¢des. Em seguida, os picos do sinal foram identificados com o
SciPy, utilizando ajustes para melhorar a precis@o na deteccdo. Apos essa etapa, foram ex-
traidas caracteristicas do sinal com o uso da biblioteca HeartPy, incluindo intervalos RR,
andlise no dominio da frequéncia e filtragem de anomalias. Dessa forma, foram geradas as
métricas batimentos por minuto (BPM), IBI e PSD. Por fim, todas as colunas resultantes
foram normalizadas e submetidas a estatisticas descritivas para garantir a padroniza¢ao
dos dados e viabilizar sua utilizacao nos modelos de aprendizado de miquina.

Com o conjunto de caracteristicas disponivel, técnicas para selecionar as carac-
teristicas mais relevantes e independentes entre si serdo utilizadas. A reducido do nimero
de caracteristicas permitird maior agilidade no treinamento de diferentes modelos, mi-
nimizando a perca de informacdes, uma vez que apenas caracteristicas com maior grau
de redundancia ou baixa correlagdo com esfor¢o cognitivo serdo removidas. Este pro-



cesso de selecdo de caracteristicas apenas foi realizado através de métodos embutidos nos
algoritmos de classificacdo, caso aplicavel.

3.4. Treinamento

Neste trabalho, foram explorados dois paradigmas distintos para a deteccdo de esforco
cognitivo a partir de dados psicofisiologicos. O primeiro paradigma envolveu a engenha-
ria de caracteristicas, onde os sinais coletados foram processados para remover ruidos e
interferéncias, derivando assim informagdes representativas do estado fisico dos partici-
pantes. Esses dados foram entdo utilizados como entrada para trés algoritmos tradicionais
de aprendizado de maquina. O segundo paradigma aplicou aprendizado profundo por
meio de quatro modelos distintos, os quais operaram diretamente sobre os dados brutos,
sem pré-processamento para limpeza ou extracdo de caracteristicas.

Os algoritmos de aprendizado de médquina tradicional foram treinados utilizando
os dados processados conforme descrito na Se¢do 3.3. Foram empregados trés mode-
los: Support Vector Machine (SVM) e K-Nearest Neighbors (KNN) e o (GBDT). En-
quanto para o aprendizado profundo, quatro arquiteturas voltadas para a classifica¢io de
dados temporais foram utilizadas, todas previamente adotadas em estudos relacionados a
deteccao de esforco cognitivo. O primeiro, € o time-CNN (CNN) [Ismail Fawaz et al. 2019],
este modelo é composto por duas camadas convolucionais seguidas de camadas de poo-
ling médio, com filtros em multiplos de seis e 12, e tamanhos de filtro multiplos de sete.
As camadas de pooling possuem tamanho trés. A saida é combinada em uma camada
densa com ativagdo sigmoide. O segundo modelo utilizado foi a FCN [Ismail Fawaz et al. 2019].
Esse modelo mantém o tamanho da série temporal inalterado, devido a auséncia de ca-
madas de pooling. Ele é composto por trés blocos de convolucio, normalizacdo em lote
e ativacdo ReLLU, com filtros configurados em muiltiplos de (128, 8), (256, 5) e (128, 3).
A ultima camada antes da saida € uma Global Average Pooling (GAP), conectada a uma
camada densa com ativacdo sigmoide.

Enquanto isso, o terceiro modelo foi o ResNet [Ismail Fawaz et al. 2019]. Ori-
ginalmente, essa arquitetura possuia trés blocos convolucionais, mas a quantidade foi
tratada como hiperparametro. Um diferencial desse modelo € a conexdo residual, que
permite que a entrada de um bloco seja somada diretamente a sua saida, reduzindo o risco
de dissipacdo do gradiente em redes profundas. Cada bloco contém trés camadas con-
volucionais, normaliza¢do em lote e ativagao ReLLU, com filtros fixos em 64 e tamanhos
multiplos de oito, cinco e trés. O atalho residual é composto por uma convolugao de ta-
manho um e normalizacdo em lote. Apds o dltimo bloco, a saida passa por uma camada
GAP antes da densa final com ativacao sigmoide.

O tultimo modelo foi o0 CNN-LSTM [Kanjo et al. 2019]. Esse modelo combina
redes convolucionais com redes recorrentes do tipo LSTM. Foram realizadas adaptagdes
devido a restri¢cdes computacionais, reduzindo a quantidade de filtros e aumentando seu
tamanho. O modelo incorpora mecanismos de controle de memoria, permitindo capturar
relacdes de longo prazo nos dados. A arquitetura do CNN-LSTM inclui duas camadas
convolucionais, com filtros em multiplos de quatro e oito, seguidas por pooling maximo
de tamanho dois. Diferentemente dos demais modelos, os canais individuais sdo conca-
tenados antes de passar por uma camada densa € um bloco LSTM, cuja quantidade de
células de memoria foi tratada como hiperpardmetro. A saida final é processada por uma
camada densa com ativagao sigmoide.



Os dados foram divididos em um conjunto de treinamento, composto por 10 vo-
luntarios, e um conjunto de testes, com os 3 voluntdrios restantes, que foi utilizado ex-
clusivamente para avaliacdo final. No treinamento, aplicou-se a técnica LOSOCYV, onde o
modelo foi validado em um voluntério enquanto era treinado nos outros nove, repetindo
o processo dez vezes. Esse método visa maximizar a capacidade de generalizacdo dos
modelos para novos individuos.

Por fim, para cada conjunto de modelo e sensor foi realizada a busca de hiper-
parametros, que sdao variaveis de cada algoritmo prévias ao processo de aprendizado e
que podem influenciar a performance do modelo. Para este cendrio, foi utilizado um
algoritmo tree-structured Parzen Estimator (TPE) de busca Bayesiana.

4. Resultados e Discussao

Todos os modelos foram treinados a partir dos dados de 10 voluntarios e avaliados nos
dados de outros trés, com métricas para os melhores modelos agrupados por sensor dis-
poniveis na Tabela 2. As métricas exibidas sdo uma média da performance de cada modelo
entre todos os participantes de teste.

Pode-se observar que, em média, os modelos tradicionais tiveram melhor desem-
penho na classificacdo correta de valores, independentemente de qual era o estado cog-
nitivo, enquanto os modelos de aprendizado profundo apresentaram um viés a favor de
esforco cognitivo, por isso tendo, em média, um valor de F1 mais elevado. Isto ocorre
pelo fato de existir mais informacao disponivel para esfor¢o cognitivo, de modo que um
modelo o qual sempre resulte em uma classificacao positiva para uma janela, tenha um
valor de precisdo mediano e sensibilidade igual a um, resultando em uma boa métrica
para F1.

Para exemplificar a magnitude de variacdes entre voluntérios, na Figura 2a € exi-
bido a classificacao para o modelo FCN de melhor performance para o sinal EEG ao testar
o primeiro voluntario do conjunto de testes. Nesta imagem, a linha azul representa os va-
lores reais do conjunto de dados, onde zero equivale ao estado normal e um a esforco
cognitivo, enquanto os pontos vermelhos representam o estado inferido pelo modelo.

Enquanto que na Figura 2b, € exibido o teste do mesmo modelo mas para o se-
gundo participante do grupo de testes. Embora que na primeira imagem o modelo te-
nha classificado todas as janelas como esforco cognitivo, para o segundo participante a
classificacdo foi perfeita. Este exemplo repete-se para outros modelos e para outros sinais.

Outro ponto importante € a comparacao da performance dos sinais coletados por
dispositivos comercias em relagdo ao dispositivo clinico. O melhor valor absoluto ob-
servado foi obtido pelo sinal EDA coletado pelo Empatica E4, enquanto que o valor de
PPG coletado pelo mesmo dispositivo apresentou performance inferior aos dados vindos
do Samsung Galaxy Watch4. Contudo, a selecdo de caracteristicas para PPG foi limi-
tada e baseada pelos dados vindos do dispositivo da Samsung, devido a baixa qualidade
do sinal, o que pode sugerir um viés nos dados obtidos no processo de engenharia de
caracteristicas. Mais um fator para corroborar esta tese do viés parte do fato de que a
performance dos modelos em aprendizado de ponta a ponta, onde ndo houve intervencao
nos dados coletados, foi melhor para o dispositivo de qualidade clinica, da Empatica.



Tabela 2. Resumo dos resultados

Modelo Acuracia Precisao Sensibilidade F1  AUC
CNN 0.619 0.626 0.929 0.748 0.534
E FCN 0.682 0.671 0.966 0.789 0.608
9;0 LSTM 0.608 0.608 1.0 0.756 0.5
g RESNET 0.714 0.686 1.0 0.812 0.639
E KNN 0.695 0.718 0.808 0.756 0.666
g SVM 0.653 0.643 0.95 0.767 0.579
XGB 0.73 0.754 0.844 0.791 0.698
CNN 0.595 0.589 0.667 0.609 0.603
o FCN 0.667 0.658 1.0 0.768 0.681
= LSTM 0.412 0.629 0.309 0.308 0.464
% RESNET 0.533 0.53 0.979 0.682 0.515
2  KNN 0.602 0.601 0.754 0.662 0.603
= SVM 0.524 0.524 1.0 0.684 0.5
XGB 0.571 0.558 0.922 0.688 0.56
CNN 0.55 0.64 0.6 0.618 0.536
%2 FCN 0.696 0.705 0.912 0.792 0.637
t LSTM 0.548 0.597 0.808 0.686 0.473
2 RESNET 0.642 0.7 0.826 0.746 0.594
8 KNN 0.636 0.686 0.746 0.714 0.602
5 SVM 0.709 0.74 0.842 0.78 0.661
XGB 0.614 0.614 1.0 0.761 0.5
CNN 0.602 0.609 0.983 0.752 0.492
S FCN 0.613  0.613 1.0 0.76 0.5
f LSTM 0.537 0.575 0.842 0.677 0.449
.2 RESNET 0.613 0.613 1.0 0.76 0.5
S8 KNN 0.688 0.733 0.799 0.758 0.658
5 SVM 0.711 0.711 0.917 0.8 0.644
XGB 0.743 0.75 0.885 0.812 0.696
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Figura 2. Comparacao dos resultados FCN EEG para dois participantes de teste

5. Conclusao

Neste trabalho, discutiu-se a viabilidade do uso de inteligéncia artificial aplicada a dados
de dispositivos vestiveis populares para detectar janelas de esfor¢o cognitivo. A adogdo
dessa abordagem possibilita a criacdo de um sistema continuo e independente de monito-
ramento, eliminando a necessidade de equipamentos clinicos de alto custo, o que favorece
a democratizacdo do acesso a esse tipo de tecnologia. Além das implicacdes para a drea
da saude, a possibilidade de monitoramento em tempo real de estados psicoldgicos abre
novas perspectivas para pesquisas sobre a efetividade de medicamentos para transtornos
de atencdo, bem como para o acompanhamento do desempenho cognitivo no ambiente
de trabalho. Esse tipo de tecnologia pode oferecer insights relevantes sobre a relacdo en-
tre carga cognitiva e transtornos mentais, incluindo depressao, ansiedade e sindrome de
burnout.

Apesar dos avangos apresentados, algumas limitacdes devem ser destacadas. O
conjunto de dados utilizado foi relativamente pequeno, com poucos participantes € um
periodo curto de coleta, o que pode restringir a capacidade de generalizacdao dos mode-
los. Além disso, a auséncia de informagdes adicionais sobre os voluntarios, como faixa
etaria e condicodes individuais, pode influenciar nos indicadores psicofisiologicos ana-
lisados. Outra limitacdo refere-se ao uso de apenas um sensor, enquanto dispositivos
vestiveis mais modernos frequentemente incorporam multiplos sensores, como PPG e
EDA, que poderiam fornecer uma andlise mais robusta. Além disso, a qualidade dos sen-
sores comerciais implica uma relagdo sinal-ruido inferior, exigindo estratégias avancadas
de pré-processamento. Por fim, o treinamento dos modelos foi realizado em um cendario
controlado, sem exposicdo a dados obtidos em um ambiente real, o que pode impactar a
aplicabilidade prética da solucao.

Como trabalhos futuros, propde-se a expansao da base de dados, a inclusdo de
multiplos sensores para aprimorar a precisao dos modelos e a realizacdo de coletas em
contextos reais, permitindo uma avaliacdo mais abrangente da robustez e aplicabilidade
das solucdes propostas.
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