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Abstract. Cognitive effort can be detected through psychophysiological signals
such as PPG, EDA, and EEG. This work explores two approaches: feature engi-
neering with SVM, KNN, and GBDT, and end-to-end learning with CNN, FCN,
LSTM, and ResNet. Using data from three volunteers, we evaluated model ge-
neralization. Results show that commercial wearables like the Samsung Galaxy
Watch 4 can match clinical devices such as the Empatica E4 in cognitive effort
detection (73% accuracy, AUC 0.698 vs. 74.3% and 0.696). These findings
support the use of low-cost devices for mental state monitoring and emotion
detection.

Resumo. O esforço cognitivo pode ser identificado por meio de sinais psicofi-
siológicos como PPG, EDA e EEG. Este trabalho aplica duas abordagens: en-
genharia de caracterı́sticas com SVM, KNN e GBDT, e aprendizado de ponta a
ponta com CNN, FCN, LSTM e ResNet. Os modelos foram avaliados com dados
de três voluntários para verificar sua capacidade de generalização. Os resul-
tados mostram que dispositivos vestı́veis comerciais, como o Samsung Galaxy
Watch 4, podem obter desempenho semelhante ao de equipamentos clı́nicos,
como o Empatica E4 (acurácia de 73% e AUC de 0,698 vs. 74,3% e 0,696). Es-
ses achados reforçam o potencial de dispositivos acessı́veis no monitoramento
mental e na detecção de emoções.

1. Introdução

Também referenciado como esforço ou carga mental, o esforço cognitivo é definido como
uma construção multidimensional, a qual representa a carga de uma tarefa imposta ao



sistema cognitivo de um indivı́duo [Longo et al. 2022]. Atualmente, existem quatro for-
mas principais para estimar o esforço cognitivo, sendo elas: Avaliação subjetiva; Per-
formance da tarefa; Comportamento; e Métricas psicofisiológicas [Paas et al. 2003]. No
entanto, conforme relatado por [Fleming et al. 2023], grande parte da pesquisa sobre es-
tes métodos de mensuração do esforço cognitivo, até o presente momento, dedicou-se
a formas que dependem da realização de alguma tarefa especı́fica ou profissionais qua-
lificados, algo inviável para realização em escala ou de modo automático por qualquer
indivı́duo. Como solução para este problema, e devido a maior disponibilidade compu-
tacional, métricas psicológicas ganham força no uso em detecção de esforço cognitivo.
Estas métricas consistem em mudanças inconscientes no indivı́duo, como movimento
dos olhos, dilatação da pupila, resposta galvânica da pele, medidas de eletromiografia e
eletroencefalografia, variação de batimentos cardı́acos entre outros para identificação do
esforço cognitivo [Cinaz 2013].

Neste cenário, o presente trabalho propõem um sistema capaz de utilizar dados de
sensores instalados em dispositivos vestı́veis de qualidade comercial, responsáveis pela
coleta de métricas psicofisiológicas, para a inferência do estado mental do indivı́duo em
esforço cognitivo ou não. Para realizar essa identificação, são utilizadas tecnologias de
inteligência artificial, tanto com algoritmos tradicionais de classificação quanto com mo-
delos de aprendizado profundo, os quais permitem formar um vı́nculo entre medidas fi-
siológicas do usuário e o esforço cognitivo, para classificar se no presente momento o su-
jeito executa alguma tarefa mentalmente exigente. Desta forma, as principais contribuição
do trabalho são:

• Desenvolvimento de modelos para detecção de esforço cognitvo usando disposi-
tivos vestı́veis comerciais.

• Proposição de um framework aplicável a outras áreas, como classificação de esta-
dos emocionais e processamento de sinais psicofisiológicos.

O artigo está dividido em seis seções principais. Na Seção 2, são discutidos os
trabalhos relacionados. A Seção 3 descreve os materiais e métodos. Na Seção 4, são
apresentados os resultados e a discussão. Finalmente, a Seção 5 destaca as principais
conclusões e orientações para trabalhos futuros.

2. Trabalhos Relacionados
Historicamente, a identificação do esforço cognitivo baseava-se em avaliações subjeti-
vas. Com os avanços tecnológicos, o uso de sinais psicofisiológicos — como frequência
cardı́aca, condutividade da pele e EEG — passou a ser explorado.

Em [Shu et al. 2020], 25 voluntários assistiram a vı́deos curtos com diferentes
emoções, enquanto sinais de PPG eram coletados por um bracelete. Usaram normalização
e algoritmos tradicionais (com LOO), destacando-se os baseados em árvores.

[Borisov et al. 2021] propuseram um sistema vencedor da competição CogLoad@UbiComp
2020, usando PPG de bracelete para classificar esforço cognitivo binário em 23 voluntários.
Aplicaram extração de estatı́sticas simples e usaram GBDT em uma validação k-fold.

Já [Ding et al. 2020] utilizaram dispositivos de alta precisão para capturar EDA,
EMG e ECG de 18 voluntários realizando tarefas mentais, aplicando filtros, transformadas
wavelet e validação cruzada com diversos algoritmos.



Embora tragam contribuições importantes, os estudos possuem limitações: ausência
de foco direto no esforço cognitivo ([Shu et al. 2020]), tamanho reduzido e baixa taxa de
amostragem dos dados ([Borisov et al. 2021]), e uso de sensores clı́nicos caros e inviáveis
para aplicações cotidianas ([Ding et al. 2020]). Esses fatores comprometem a generalização,
escalabilidade e aplicabilidade dos modelos propostos.

3. Materiais e Métodos
O desenvolvimento do modelo de inteligência artificial para detecção de esforço cogni-
tivo envolve quatro etapas principais, apresentadas na Figura 1. Inicialmente, define-se
o conjunto de dados, incluindo os dispositivos e sensores utilizados, garantindo com-
patibilidade com dispositivos vestı́veis amplamente disponı́veis. Em seguida, os sinais
coletados são processados em dois fluxos distintos: um que aplica engenharia de carac-
terı́sticas para extração de informações relevantes e redução de ruı́dos, e outro que utiliza
aprendizado de máquina de ponta a ponta, empregando redes neurais diretamente nos
sinais brutos. Na fase de treinamento, o primeiro fluxo utiliza algoritmos tradicionais
support vector machine (SVM), k-nearest neighbors (KNN) e gradient boosting deci-
sion tree (GBDT), enquanto o segundo adota redes neurais do tipo convolutional neural
network (CNN), long-Short term memory (LSTM), Residual Network (ResNet) e fully
convolutional network (FCN), selecionadas por sua eficácia na classificação de estados
mentais. Ambos os fluxos passam por validação leave-one-subject-out cross validation
(LOSOCV) e são avaliados com as métricas de desempenho F1-score, precisão, sensibi-
lidade, acurácia e Área sob a curva (AUC). O diagrama na Figura 1 demonstra as etapas
executas em sequência.

Figura 1. Visão da estrutura elaborada

3.1. Dataset

O conjunto de dados CogWear, desenvolvido por [Grzeszczyk et al. 2023], visa avaliar
a viabilidade de sensores vestı́veis comerciais na detecção de esforço cognitivo. Ele é



composto por dois grupos: um piloto, utilizado para testes iniciais de coleta com 11 vo-
luntários durante o teste de Stroop, e um principal, onde 13 participantes realizaram o
mesmo teste antes de responder questionários gamificados para analisar o impacto da
gamificação no esforço cognitivo. Os dados foram coletados simultaneamente por três
dispositivos: Empatica E4 (clı́nico, para controle), Muse S EEG headband e Samsung
Galaxy Watch4. Tendo em vista que o objetivo é elaborar um modelo capaz de detec-
tar esforço cognitivo em dados comuns, os quais podem facilmente ser obtidos através
de algum dispositivo popular, o foco deste trabalho foi no aparelho Galaxy Watch4, por
tratar-se do cenário mais comum de dispositivo vestı́vel disponı́vel. Mas todos os apare-
lhos serão utilizados a fim de comparação.

3.2. Indicadores coletados

Os sensores em cada dispositivo captaram sinais psicofisiológicos diferentes, mas que
podem ser utilizados para derivar as mesmas métricas a fim de comparação ou indica-
dores diferentes. O Empatica E4 mediu valores de volume de pulso sanguı́neo (BVP),
do qual podem ser derivados valores para variabilidade de variabilidade do ritmo cardı́aco
(HRV) e intervalo entre batimentos (IBI). Também possui sensor para temperatura da pele
(TEMP), um para atividade elétrica cutânea (EDA) e por ultimo aceleração (ACC) em três
eixos, mas este último não foi disponibilizado para uso no conjunto de dados. A taxa de
coleta para BVP foi de 64 Hz através de um sensor fotopletismografia (PPG), 4 Hz para o
EDA e TEMP também com 4 Hz, no entanto, a informação de temperatura não foi utili-
zada. O dispositivo Galaxy Watch4 da Samsung coletou sinal de PPG verde, semelhante
ao dispositivo da Empatica, a uma taxa de 25 Hz. Finalmente, o sinal coletado pelo Muse
S EEG headband foi um eletroencefalograma (EEG) através de eletrodos localizados nas
regiões pré-frontal e temporal, com uma taxa de coleta de 256 Hz e possuem contato seco
com a pele. Ademais, este aparelho também possui uma informação de giroscópio, que
poderia ser utilizada para um processo avançado de remoção de artefatos de movimento,
mas não caberá no escopo deste trabalho.

3.3. Pré-processamento

Nesta etapa, os dados passarão por uma análise exploratória, que visa buscar um me-
lhor entendimento das informações a fim de tomar decisões mais assertivas sobre as
transformações que serão imposta aos dados. De forma análoga ao descrito por [Tukey et al. 1977],
o próprio conjunto de dados foi utilizado para responder perguntas relevantes no processo
de identificação de quais caracterı́sticas contribuem para observação de esforço cognitivo
com auxı́lio de gráficos para identificar padrões. Ademais, análises quantitativas também
podem ser empregadas em momentos que os recursos visuais não forneçam uma tendência
clara [Buja et al. 2009].

O pré-processamento pode ser dividido em três fases, a primeira delas busca re-
duzir a presença de artefatos causados por movimento ou interferências e ruı́dos nos
sinais de sensores que possam ter sido causados por outros dispositivos ou o próprio
mecanismo interno do aparelho. Para este objetivo, foram utilizadas técnicas de filtros
passa-faixa e transformadas wavelet, uma vez que tanto trabalhos relacionados costumam
utilizá-las, quanto por estas demonstrarem eficácia comprovada no tratamento de sinais
[Joseph et al. 2014].



A partir do sinal limpo, com quantidade de ruı́dos reduzida, o processo de extração
de caracterı́sticas, o qual busca inferir o maior número possı́vel de informações a partir do
sinal psicofisiológico coletado. Entre as caracterı́sticas buscadas, estão aquelas relatadas
na Tabela 1, quanto valores psicofisiológicos como HRV, IBI, ritmo cardı́aco (HR) e BVP.

Tabela 1. Caracterı́sticas por domı́nio

Domı́nio Caracterı́stica

Tempo
Máximo, mı́nimo, média, mediana, moda, desvio padrão,
Hjorth (atividade, mobilidade, complexidade), entropia,

High-Order Crossing (HOC), comprimento de onda (WL)

Frequência Análise de faixas espectro de densidade de energia (PSD)

Tempo-frequência
Eficiência de energia recursiva, energia de transformadas

wavelet discretas, espectrograma, espectro de Hilbert-Huang

Especificamente, todos os sinais foram divididos em janelas de 30 segundos, equi-
librando a eficiência computacional com a capacidade de capturar informações relevan-
tes. Estudos indicam que janelas de 90 segundos poderiam fornecer melhor predição do
esforço cognitivo [Ferreira et al. 2014], mas a duração reduzida das coletas inviabilizou
esse tamanho, levando à escolha da janela de 30 segundos como compromisso entre qua-
lidade e disponibilidade de dados.

O pré-processamento do sinal de EDA foi realizado com a biblioteca NeuroKit2.
O sinal bruto passou por filtragem e foi convertido em onze colunas representando di-
ferentes componentes da resposta galvânica da pele. As estatı́sticas mı́nima, máxima,
média, mediana e desvio padrão foram extraı́das e normalizadas entre zero e um. Para
EEG, também foi utilizada a NeuroKit2, que gerou duas colunas: dissimilaridade global
e campo de potência global. Com base nos dados brutos de 20 canais, foram calcula-
das estatı́sticas mı́nima, máxima, média, mediana e desvio padrão, além da normalização
entre zero e um.

O pré-processamento do PPG exigiu etapas adicionais devido à variabilidade na
qualidade do sinal, especialmente do Samsung Galaxy Watch4 e Empatica E4. Inici-
almente, realizou-se a winsorização dos 1% extremos dos dados para remover leituras
atı́picas, seguida da aplicação de um filtro passa-faixa Butterworth com limites de 0.1Hz
a 9Hz para minimizar distorções. Em seguida, os picos do sinal foram identificados com o
SciPy, utilizando ajustes para melhorar a precisão na detecção. Após essa etapa, foram ex-
traı́das caracterı́sticas do sinal com o uso da biblioteca HeartPy, incluindo intervalos RR,
análise no domı́nio da frequência e filtragem de anomalias. Dessa forma, foram geradas as
métricas batimentos por minuto (BPM), IBI e PSD. Por fim, todas as colunas resultantes
foram normalizadas e submetidas a estatı́sticas descritivas para garantir a padronização
dos dados e viabilizar sua utilização nos modelos de aprendizado de máquina.

Com o conjunto de caracterı́sticas disponı́vel, técnicas para selecionar as carac-
terı́sticas mais relevantes e independentes entre si serão utilizadas. A redução do número
de caracterı́sticas permitirá maior agilidade no treinamento de diferentes modelos, mi-
nimizando a perca de informações, uma vez que apenas caracterı́sticas com maior grau
de redundância ou baixa correlação com esforço cognitivo serão removidas. Este pro-



cesso de seleção de caracterı́sticas apenas foi realizado através de métodos embutidos nos
algoritmos de classificação, caso aplicável.

3.4. Treinamento
Neste trabalho, foram explorados dois paradigmas distintos para a detecção de esforço
cognitivo a partir de dados psicofisiológicos. O primeiro paradigma envolveu a engenha-
ria de caracterı́sticas, onde os sinais coletados foram processados para remover ruı́dos e
interferências, derivando assim informações representativas do estado fı́sico dos partici-
pantes. Esses dados foram então utilizados como entrada para três algoritmos tradicionais
de aprendizado de máquina. O segundo paradigma aplicou aprendizado profundo por
meio de quatro modelos distintos, os quais operaram diretamente sobre os dados brutos,
sem pré-processamento para limpeza ou extração de caracterı́sticas.

Os algoritmos de aprendizado de máquina tradicional foram treinados utilizando
os dados processados conforme descrito na Seção 3.3. Foram empregados três mode-
los: Support Vector Machine (SVM) e K-Nearest Neighbors (KNN) e o (GBDT). En-
quanto para o aprendizado profundo, quatro arquiteturas voltadas para a classificação de
dados temporais foram utilizadas, todas previamente adotadas em estudos relacionados à
detecção de esforço cognitivo. O primeiro, é o time-CNN (CNN) [Ismail Fawaz et al. 2019],
este modelo é composto por duas camadas convolucionais seguidas de camadas de poo-
ling médio, com filtros em múltiplos de seis e 12, e tamanhos de filtro múltiplos de sete.
As camadas de pooling possuem tamanho três. A saı́da é combinada em uma camada
densa com ativação sigmoide. O segundo modelo utilizado foi a FCN [Ismail Fawaz et al. 2019].
Esse modelo mantém o tamanho da série temporal inalterado, devido à ausência de ca-
madas de pooling. Ele é composto por três blocos de convolução, normalização em lote
e ativação ReLU, com filtros configurados em múltiplos de (128, 8), (256, 5) e (128, 3).
A última camada antes da saı́da é uma Global Average Pooling (GAP), conectada a uma
camada densa com ativação sigmoide.

Enquanto isso, o terceiro modelo foi o ResNet [Ismail Fawaz et al. 2019]. Ori-
ginalmente, essa arquitetura possuı́a três blocos convolucionais, mas a quantidade foi
tratada como hiperparâmetro. Um diferencial desse modelo é a conexão residual, que
permite que a entrada de um bloco seja somada diretamente à sua saı́da, reduzindo o risco
de dissipação do gradiente em redes profundas. Cada bloco contém três camadas con-
volucionais, normalização em lote e ativação ReLU, com filtros fixos em 64 e tamanhos
múltiplos de oito, cinco e três. O atalho residual é composto por uma convolução de ta-
manho um e normalização em lote. Após o último bloco, a saı́da passa por uma camada
GAP antes da densa final com ativação sigmoide.

O último modelo foi o CNN-LSTM [Kanjo et al. 2019]. Esse modelo combina
redes convolucionais com redes recorrentes do tipo LSTM. Foram realizadas adaptações
devido a restrições computacionais, reduzindo a quantidade de filtros e aumentando seu
tamanho. O modelo incorpora mecanismos de controle de memória, permitindo capturar
relações de longo prazo nos dados. A arquitetura do CNN-LSTM inclui duas camadas
convolucionais, com filtros em múltiplos de quatro e oito, seguidas por pooling máximo
de tamanho dois. Diferentemente dos demais modelos, os canais individuais são conca-
tenados antes de passar por uma camada densa e um bloco LSTM, cuja quantidade de
células de memória foi tratada como hiperparâmetro. A saı́da final é processada por uma
camada densa com ativação sigmoide.



Os dados foram divididos em um conjunto de treinamento, composto por 10 vo-
luntários, e um conjunto de testes, com os 3 voluntários restantes, que foi utilizado ex-
clusivamente para avaliação final. No treinamento, aplicou-se a técnica LOSOCV, onde o
modelo foi validado em um voluntário enquanto era treinado nos outros nove, repetindo
o processo dez vezes. Esse método visa maximizar a capacidade de generalização dos
modelos para novos indivı́duos.

Por fim, para cada conjunto de modelo e sensor foi realizada a busca de hiper-
parâmetros, que são variáveis de cada algoritmo prévias ao processo de aprendizado e
que podem influenciar a performance do modelo. Para este cenário, foi utilizado um
algoritmo tree-structured Parzen Estimator (TPE) de busca Bayesiana.

4. Resultados e Discussão

Todos os modelos foram treinados a partir dos dados de 10 voluntários e avaliados nos
dados de outros três, com métricas para os melhores modelos agrupados por sensor dis-
ponı́veis na Tabela 2. As métricas exibidas são uma média da performance de cada modelo
entre todos os participantes de teste.

Pode-se observar que, em média, os modelos tradicionais tiveram melhor desem-
penho na classificação correta de valores, independentemente de qual era o estado cog-
nitivo, enquanto os modelos de aprendizado profundo apresentaram um viés a favor de
esforço cognitivo, por isso tendo, em média, um valor de F1 mais elevado. Isto ocorre
pelo fato de existir mais informação disponı́vel para esforço cognitivo, de modo que um
modelo o qual sempre resulte em uma classificação positiva para uma janela, tenha um
valor de precisão mediano e sensibilidade igual a um, resultando em uma boa métrica
para F1.

Para exemplificar a magnitude de variações entre voluntários, na Figura 2a é exi-
bido a classificação para o modelo FCN de melhor performance para o sinal EEG ao testar
o primeiro voluntário do conjunto de testes. Nesta imagem, a linha azul representa os va-
lores reais do conjunto de dados, onde zero equivale ao estado normal e um a esforço
cognitivo, enquanto os pontos vermelhos representam o estado inferido pelo modelo.

Enquanto que na Figura 2b, é exibido o teste do mesmo modelo mas para o se-
gundo participante do grupo de testes. Embora que na primeira imagem o modelo te-
nha classificado todas as janelas como esforço cognitivo, para o segundo participante a
classificação foi perfeita. Este exemplo repete-se para outros modelos e para outros sinais.

Outro ponto importante é a comparação da performance dos sinais coletados por
dispositivos comercias em relação ao dispositivo clı́nico. O melhor valor absoluto ob-
servado foi obtido pelo sinal EDA coletado pelo Empatica E4, enquanto que o valor de
PPG coletado pelo mesmo dispositivo apresentou performance inferior aos dados vindos
do Samsung Galaxy Watch4. Contudo, a seleção de caracterı́sticas para PPG foi limi-
tada e baseada pelos dados vindos do dispositivo da Samsung, devido a baixa qualidade
do sinal, o que pode sugerir um viés nos dados obtidos no processo de engenharia de
caracterı́sticas. Mais um fator para corroborar esta tese do viés parte do fato de que a
performance dos modelos em aprendizado de ponta a ponta, onde não houve intervenção
nos dados coletados, foi melhor para o dispositivo de qualidade clı́nica, da Empatica.



Tabela 2. Resumo dos resultados

Modelo Acurácia Precisão Sensibilidade F1 AUC

Sa
m

su
ng

PP
G

CNN 0.619 0.626 0.929 0.748 0.534
FCN 0.682 0.671 0.966 0.789 0.608

LSTM 0.608 0.608 1.0 0.756 0.5
RESNET 0.714 0.686 1.0 0.812 0.639

KNN 0.695 0.718 0.808 0.756 0.666
SVM 0.653 0.643 0.95 0.767 0.579
XGB 0.73 0.754 0.844 0.791 0.698

M
us

e
E

E
G

CNN 0.595 0.589 0.667 0.609 0.603
FCN 0.667 0.658 1.0 0.768 0.681

LSTM 0.412 0.629 0.309 0.308 0.464
RESNET 0.533 0.53 0.979 0.682 0.515

KNN 0.602 0.601 0.754 0.662 0.603
SVM 0.524 0.524 1.0 0.684 0.5
XGB 0.571 0.558 0.922 0.688 0.56

E
m

pa
tic

a
PP

G

CNN 0.55 0.64 0.6 0.618 0.536
FCN 0.696 0.705 0.912 0.792 0.637

LSTM 0.548 0.597 0.808 0.686 0.473
RESNET 0.642 0.7 0.826 0.746 0.594

KNN 0.636 0.686 0.746 0.714 0.602
SVM 0.709 0.74 0.842 0.78 0.661
XGB 0.614 0.614 1.0 0.761 0.5

E
m

pa
tic

a
E

D
A

CNN 0.602 0.609 0.983 0.752 0.492
FCN 0.613 0.613 1.0 0.76 0.5

LSTM 0.537 0.575 0.842 0.677 0.449
RESNET 0.613 0.613 1.0 0.76 0.5

KNN 0.688 0.733 0.799 0.758 0.658
SVM 0.711 0.711 0.917 0.8 0.644
XGB 0.743 0.75 0.885 0.812 0.696



(a) Resultado FCN EEG para
primeiro participante de
teste

(b) Resultado FCN EEG para se-
gundo participante de
teste

Figura 2. Comparação dos resultados FCN EEG para dois participantes de teste

5. Conclusão

Neste trabalho, discutiu-se a viabilidade do uso de inteligência artificial aplicada a dados
de dispositivos vestı́veis populares para detectar janelas de esforço cognitivo. A adoção
dessa abordagem possibilita a criação de um sistema contı́nuo e independente de monito-
ramento, eliminando a necessidade de equipamentos clı́nicos de alto custo, o que favorece
a democratização do acesso a esse tipo de tecnologia. Além das implicações para a área
da saúde, a possibilidade de monitoramento em tempo real de estados psicológicos abre
novas perspectivas para pesquisas sobre a efetividade de medicamentos para transtornos
de atenção, bem como para o acompanhamento do desempenho cognitivo no ambiente
de trabalho. Esse tipo de tecnologia pode oferecer insights relevantes sobre a relação en-
tre carga cognitiva e transtornos mentais, incluindo depressão, ansiedade e sı́ndrome de
burnout.

Apesar dos avanços apresentados, algumas limitações devem ser destacadas. O
conjunto de dados utilizado foi relativamente pequeno, com poucos participantes e um
perı́odo curto de coleta, o que pode restringir a capacidade de generalização dos mode-
los. Além disso, a ausência de informações adicionais sobre os voluntários, como faixa
etária e condições individuais, pode influenciar nos indicadores psicofisiológicos ana-
lisados. Outra limitação refere-se ao uso de apenas um sensor, enquanto dispositivos
vestı́veis mais modernos frequentemente incorporam múltiplos sensores, como PPG e
EDA, que poderiam fornecer uma análise mais robusta. Além disso, a qualidade dos sen-
sores comerciais implica uma relação sinal-ruı́do inferior, exigindo estratégias avançadas
de pré-processamento. Por fim, o treinamento dos modelos foi realizado em um cenário
controlado, sem exposição a dados obtidos em um ambiente real, o que pode impactar a
aplicabilidade prática da solução.

Como trabalhos futuros, propõe-se a expansão da base de dados, a inclusão de
múltiplos sensores para aprimorar a precisão dos modelos e a realização de coletas em
contextos reais, permitindo uma avaliação mais abrangente da robustez e aplicabilidade
das soluções propostas.
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