
Padrões de Projeto no Desenvolvimento de Solução de
Software Full Stack: Um Relato de Experiência

Reinaldo Wendt1, Eduardo Tiadoro1, Miguel Muniz1, Maicon Bernardino1

1Laboratory of Empirical Studies in Software Engineering (LESSE)
Universidade Federal do Pampa (UNIPAMPA) – Alegrete – RS – Brasil

{reinaldowendt,eduardotiadoro,miguelmuniz}.aluno@unipampa.edu.br,
bernardino@acm.org

Abstract. This article presents an experience report on the use of design pat-
terns in the development of a full stack application aimed at the agribusiness
sector. The solution, conceived as a digital platform for renting agricultural
machinery, was built using a client-server architecture with Express.js, Svelte-
Kit, and Firebase. Patterns such as Repository, State, Builder, Command, and
Observer were applied to ensure modularity, architectural clarity, and easier
maintenance. The analysis highlighted benefits in code organization, reuse, and
readability, but also revealed challenges in adapting patterns to specific con-
texts. The study provides practical insights into the effectiveness of these pat-
terns in distributed solutions.

Resumo. Este artigo apresenta um relato de experiência sobre o uso de padrões
de projeto no desenvolvimento de uma aplicação full stack voltada ao setor
do agronegócio. A solução, concebida como uma plataforma digital para alu-
guel de máquinas agrı́colas, foi construı́da a partir de uma arquitetura cliente-
servidor, utilizando Express.js, SvelteKit e Firebase. Foram aplicados padrões
como Repository, State, Builder, Command e Observer, visando modularidade,
clareza arquitetural e manutenção facilitada. A análise evidenciou benefı́cios
em organização, reutilização e legibilidade do código, mas também desafios na
adaptação de padrões a contextos especı́ficos. O estudo contribui com reflexões
práticas sobre a efetividade desses padrões em soluções distribuı́das.

1. Introdução
A adoção de padrões de projeto (design patterns) tem se consolidado como uma
prática fundamental no desenvolvimento de software, oferecendo soluções reutilizáveis
para problemas recorrentes de estrutura e comportamento em sistemas computacionais
[Gamma et al. 1994]. Esses padrões não apenas promovem uma melhor organização in-
terna do código, mas também facilitam a comunicação entre desenvolvedores ao estabe-
lecer uma linguagem comum para o design de software. Quando aplicados em conjunto
com uma arquitetura bem definida, eles contribuem significativamente para a modulari-
dade, escalabilidade e manutenção dos sistemas.

No contexto atual do desenvolvimento de sistemas, aplicações full stack têm ga-
nhado relevância por integrarem tanto a camada de apresentação quanto a de persistência e
lógica de negócios em uma solução única e coesa. Nesse cenário, a utilização de padrões
de projeto torna-se especialmente pertinente, uma vez que a complexidade inerente à



integração entre cliente e servidor demanda mecanismos que favoreçam a reutilização, a
clareza arquitetural e a redução de acoplamentos indevidos.

Assim, o objetivo principal deste artigo é relatar a experiência de desenvolvimento
de uma aplicação com arquitetura cliente-servidor, destacando o papel dos padrões de
projeto no processo de construção e manutenção do sistema. Ao final, espera-se oferecer
uma reflexão crı́tica sobre os benefı́cios, limitações e aprendizados advindos da aplicação
desses padrões em um contexto prático, contribuindo para o avanço do conhecimento
sobre sua efetividade em arquiteturas distribuı́das.

Dessa forma, este artigo está organizado como segue. Na Seção 2 apresenta-
se a fundamentação teórica, discutindo conceitos e classificações dos padrões de pro-
jeto. A Seção 3 revisa iniciativas semelhantes encontradas na literatura. Em seguida,
a Seção 4 descreve os procedimentos adotados para o desenvolvimento da solução. A
caracterização da aplicação proposta é detalhada na Seção 5, enquanto a Seção 6 disserta
a discussão e análise sobre os padrões adotados no projeto. Por fim, a Seção 7 apresenta
as considerações finais, ressaltando os principais resultados e perspectivas futuras.

2. Padrões de Projeto
Os padrões de projeto são soluções reutilizáveis para problemas recorrentes que sur-
gem durante o desenvolvimento de software [Shalloway and Trott 2004]. Eles não são
algoritmos prontos, mas sim descrições ou modelos que orientam como estruturar e or-
ganizar o código para resolver um determinado problema de forma eficiente. O con-
ceito foi amplamente difundido na área de engenharia de software a partir da obra de
[Gamma et al. 1994], que define como “descrições de soluções recorrentes para proble-
mas que ocorrem com frequência no design de software orientado a objetos”.

Entre os principais benefı́cios do uso de padrões de projeto, destacam-se a me-
lhoria da comunicação entre equipes, a facilidade de manutenção e evolução do código
e o aumento da reutilização de soluções testadas [Martin 2008]. Além disso, eles contri-
buem para reduzir a complexidade de sistemas ao fornecer abstrações de alto nı́vel que
favorecem a legibilidade e a escalabilidade das aplicações [Ali and Elish 2013]. Assim, o
emprego de padrões assegura um desenvolvimento mais robusto e manutenı́vel, consoli-
dando princı́pios essenciais de qualidade de software.

2.1. Classificação dos Padrões
A literatura organiza os padrões de projeto em três categorias principais: criacionais, es-
truturais e comportamentais. Essa classificação tem como objetivo agrupar soluções con-
forme o tipo de problema que resolvem. Seguindo a definição de [Gamma et al. 1994]:

(i) Padrões Criacionais: São empregados para encapsular a lógica de criação de
objetos, evitando o acoplamento direto entre classes e promovendo maior flexibilidade.
Em sua obra, Gamma et al. apresentam 5 padrões criacionais, sendo eles: (1) Abstract
Factory, (2) Builder, (3) Factory, (4) Prototype, (5) Singleton. Eles são especialmente
úteis em cenários onde o processo de criação envolve múltiplas etapas ou quando diferen-
tes representações de um mesmo objeto precisam coexistir. Dessa forma, esses padrões
tornam o código mais adaptável a mudanças futuras e reduzem dependências rı́gidas.

(ii) Padrões Estruturais: Tange a forma como os objetos são organizados e com-
binados para formar estruturas de software. O objetivo é facilitar a modularidade, rea-



proveitamento de código e a separação clara de responsabilidades. São ao total 7, sendo
eles: (1) Adapter, (2) Bridge, (3) Composite, (4) Decorator, (5) Facade, (6) Flyweight,
(7) Proxy. Esses padrões são essenciais para criar arquiteturas mais reutilizáveis e ex-
pansı́veis, além de facilitarem a integração entre componentes heterogêneos no sistema.

(iii) Padrões Comportamentais: Tratam da comunicação e coordenação entre
objetos. Esses padrões buscam tornar os sistemas mais dinâmicos ao separar responsa-
bilidades. Ao todo são 11, sendo eles: (1) Chain of Responsibility, (2) Command, (3)
Interpreter, (4) Iterator, (5) Mediator, (6) Memento, (7) Observer, (8) State, (9) Stra-
tegy, (10) Template Method, (11) Visitor. Ao adotar esses padrões, os desenvolvedores
conseguem projetar sistemas mais claros e adaptáveis a novas regras de negócio.

3. Trabalhos Relacionados
Esta seção investiga estudos e iniciativas semelhantes já existentes na literatura. A análise
dessas obras tem como objetivo identificar abordagens e oportunidades de contribuição,
funcionando como um referencial para a proposta apresentada neste trabalho.

Em Do Amaral Santos et al. (2016), os autores investigaram o conhecimento, os
incentivos e as dificuldades de desenvolvedores de software sobre a utilização de padrões
de projeto na indústria. O objetivo do trabalho foi identificar os fatores que encorajam ou
desencorajam o uso de padrões, bem como a influência de aspectos organizacionais nesse
processo. A metodologia consistiu em uma pesquisa quantitativa, por meio da aplicação
de um questionário a 34 desenvolvedores de software atuantes no mercado. Os resul-
tados apontaram que a cultura da empresa e seus processos de desenvolvimento são os
principais influenciadores na adoção de padrões. Os maiores fatores que dificultam seu
uso, segundo os participantes, são os prazos curtos dos projetos e a falta de conhecimento
sobre os próprios padrões. O estudo concluiu que, apesar de os desenvolvedores reco-
nhecerem claramente os benefı́cios dos padrões, a sua aplicação prática é frequentemente
impedida por barreiras organizacionais e pressão por entregas rápidas.

Em Manik (2019), o autor avaliou o impacto do uso de padrões de projeto no de-
senvolvimento de um wrapper para uma API RESTful. O objetivo do estudo foi analisar
as mudanças nas métricas de software ao aplicar os padrões Builder, Observer e Factory.
A metodologia consistiu em gerar uma versão do código-fonte diretamente do modelo
e, em seguida, uma segunda versão após a aplicação manual dos padrões. O autor usou
análise estática para medir métricas de coesão, complexidade, acoplamento, herança e ta-
manho em ambas as versões. Os resultados mostraram que a implementação dos padrões
de projeto aumentou todas as métricas analisadas. Entretanto, não se pode afirmar se isso
é positivo ou negativo, pois tais aumentos podem representar um trade-off para melhorar
outros atributos de qualidade de software a longo prazo, como flexibilidade, manutenibi-
lidade e reusabilidade, que não foram medidos no estudo.

O trabalho de Tran et al. (2021) visou formalizar soluções para boas e más práticas
comuns de APIs REST no formato de padrões de projeto e antipadrões. O estudo usou
como metodologia o Design Science Research, e iniciou com uma revisão da literatura que
identificou 19 práticas, que foram divididas em 8 “técnicas” (solucionáveis via arquite-
tura) e 11 “não técnicas”. Para as práticas técnicas, os autores propuseram soluções adap-
tando padrões de projeto (como Factory, Visitor e Proxy) e fornecendo implementações
de exemplo em Java Spring e ASP.NET Core. A validação dessas soluções foi realizada



por meio de uma pesquisa e entrevistas com 55 desenvolvedores profissionais. Os resul-
tados mostraram alta aceitação para a maioria das soluções. O estudo concluiu que as
soluções propostas são relevantes e aplicáveis em ambientes de produção, oferecendo um
catálogo que pode servir como base para futuras implementações e pesquisas.

4. Metodologia

Nesta seção, será apresentado o arcabouço metodológico dos procedimentos adotado para
o desenvolvimento e avaliação dos artefatos produzidos durante o trabalho.

4.1. Design Science Research

A metodologia adotada neste trabalho é a Design Science Research (DSR), uma aborda-
gem para a condução de pesquisas que visam à construção e avaliação de artefatos vol-
tados à solução de problemas em contextos reais. Segundo [Hevner et al. 2004], a DSR
busca equilibrar rigor cientı́fico e relevância prática, permitindo que o desenvolvimento
de soluções seja fundamentado tanto em bases teóricas quanto nas necessidades do ambi-
ente em que serão aplicadas. Esse arcabouço se mostra adequado para investigações em
Engenharia de Software, uma vez que favorece a criação de artefatos que não apenas so-
lucionam problemas, mas também contribuem para o avanço do conhecimento cientı́fico.

A DSR estrutura o processo de pesquisa por meio da interação de três ciclos: ci-
clo da relevância, responsável por assegurar a conexão entre o problema investigado e
o contexto prático; ciclo do rigor, que integra conhecimentos da literatura e fundamen-
tos teóricos; e ciclo de design, que contempla a construção, avaliação e refinamento do
artefato desenvolvido. Essa organização sistemática garante que os artefatos resultantes
sejam simultaneamente úteis e cientificamente fundamentados [Horita et al. 2018].

4.2. Aplicação da Design Science Research no Estudo

A aplicação da metodologia neste estudo ocorreu de forma iterativa, abrangendo desde o
projeto até a consolidação da solução. Essa abordagem favoreceu a evolução contı́nua,
resultando em um artefato mais robusto e alinhado às necessidades do domı́nio.

Ciclo de Relevância: Este estudo foi guiado pelas demandas do agronegócio,
que motivaram a criação de uma plataforma digital voltada inicialmente à divulgação de
aluguéis de maquinários agrı́colas. A partir da análise dessas necessidades, apoiada em
uma revisão do estado da prática em aplicações semelhantes [Wendt et al. 2025], propôs-
se o desenvolvimento de uma solução para tal. Esse alinhamento entre problema e con-
texto prático assegurou que o artefato desenvolvido tivesse utilidade direta.

Ciclo de Rigor: Este estudo foi sustentado por uma base teórica consolidada em
literatura, garantindo que o desenvolvimento da solução não se limitasse a atender a uma
demanda prática imediata, mas também estivesse fundamentado em princı́pios sólidos
de Engenharia de Software. Para isso, foram considerados referenciais sobre o uso de
padrões de projeto como instrumentos para melhorar a manutenibilidade, extensibilidade
e qualidade de sistemas. Essa fundamentação proporcionou critérios objetivos para a
seleção dos padrões empregados evitando escolhas ad hoc.

Ciclo de Design: Este ciclo será explorado de forma detalhada na Seção 5, com
ênfase especial na Seção 5.3, em que são apresentados os padrões de projeto efetivamente



implementados na solução proposta. Nessa etapa são descritas as decisões de design
adotadas, sua justificativa e a forma como cada padrão contribuiu para a construção do
artefato, alinhando teoria e prática no desenvolvimento da aplicação.

5. Caracterização da Solução
A presente Seção descreve a solução desenvolvida no âmbito deste estudo. O objetivo
é apresentar de como a aplicação foi concebida e construı́da, evidenciando as decisões
arquiteturais e tecnológicas que nortearam o processo de desenvolvimento.

5.1. Contexto e Motivação

O artefato desenvolvido consiste em uma plataforma digital voltada à divulgação de
serviços de aluguel de maquinários agrı́colas. A escolha desse domı́nio justifica-se pela
relevância do setor do agronegócio no cenário econômico brasileiro e pela crescente de-
manda por soluções tecnológicas que promovam maior eficiência e acessibilidade. As
Figuras 1 e 2 representam, respectivamente, um exemplo da tela de listagem de anúncios
e outro da tela de negociação do sistema.

Figura 1. Tela de Anúncios Figura 2. Tela de Negociação

A plataforma busca aproximar fornecedores de maquinário de potenciais clientes,
oferecendo um ambiente centralizado para negociação de equipamentos, contribuindo as-
sim para a modernização de práticas de economia compartilhada no âmbito agrı́cola.

5.2. Visão Geral da Plataforma Desenvolvida

A plataforma desenvolvida adota uma arquitetura de software baseada no modelo cliente-
servidor, estruturada como uma aplicação web. O servidor foi implementado como
uma API REST, construı́do em Express.js com a linguagem JavaScript, res-
ponsável pelo processamento das requisições, pela aplicação das regras de negócio e pela
integração com a camada de persistência de dados. O armazenamento das informações é
realizado no Firebase Firestore Database, um banco de dados NoSQL orientado a docu-
mentos, que oferece escalabilidade e integração com aplicações baseadas em nuvem.

O cliente, por sua vez, corresponde à interface web acessada pelos usuários, de-
senvolvida em Svelte com o SvelteKit como framework. Complementado pelas
bibliotecas SkeletonUI e Tailwind CSS para construção de interfaces responsivas.
Essa combinação de tecnologias no front-end possibilitou a criação de uma experiência
de usuário fluida, alinhada a boas práticas de design e usabilidade.



A Figura 3 apresenta a visão arquitetural do software a partir de uma representação
baseada no C4 model, evidenciando os principais componentes da solução e suas
interações [Brown 2021]. Essa visão fornece uma abstração de alto nı́vel que facilita
o entendimento da plataforma, destacando a divisão entre as camadas cliente e servidor e
a forma como elas se conectam à base de dados.

Figura 3. Arquitetura do Software

5.3. Implementação de Padrões de Projeto
Esta seção apresenta os principais padrões de projeto aplicados, detalhando seu papel e a
forma como contribuı́ram para a organização e evolução do sistema.

5.3.1. Repository

O padrão Repository foi utilizado para organizar a camada de persistência de dados, pro-
movendo a separação entre a lógica de negócio e o acesso ao banco de dados, além de cen-
tralizar a manipulação das entidades do sistema. Foi implementada uma classe genérica
Repository, responsável por prover métodos básicos de manipulação de dados (como
create, read, update, delete). A partir dela, foram derivadas classes especı́ficas
que reutilizam os métodos principais e, quando necessário, definem métodos auxiliares
próprios para atender particularidades de cada entidade. Essa abordagem contribuiu para
reduzir redundâncias e facilitar futuras alterações na camada de persistência. A Figura 4
apresenta um diagrama de classes simplificado da implementação do padrão no sistema.

Figura 4. Diagrama de Classes da Implementação do Padrão Repository

5.3.2. State

O padrão State foi aplicado para modelar os diferentes estados do ciclo de vida de
uma negociação. A negociação pode evoluir por diferentes etapas: Solicitada →
Negociação→ Operação→ Avaliação→ Finalizada.



Cada estado foi representado por uma classe distinta, implementando uma inter-
face comum denominada State. Essa abordagem reduziu a complexidade do código
ao evitar condicionais extensos para tratar mudanças de estado, além de tornar o fluxo
da negociação mais legı́vel e manutenı́vel. A Figura 5 apresenta um diagrama de classes
simplificado da implementação do padrão State no sistema.

Figura 5. Diagrama de Classes da Implementação do Padrão State

5.3.3. Builder

O padrão Builder foi empregado para facilitar a criação de objetos complexos que exi-
gem o preenchimento de múltiplos atributos, como anúncios, maquinários e negociações.
Sua utilização evitou construtores excessivamente longos e proporcionou maior legibili-
dade na instanciação desses objetos, além de tornar o processo de criação mais flexı́vel,
reutilizável e menos propenso a erros em cenários de evolução do sistema. A Figura 6
apresenta um trecho simplificado em JavaScript que ilustra a aplicação do padrão.

1 async create() {
2 // ...
3 const negotiationDetailsUpdated = new NegotiationDetailsBuilder(

negotiationDetails)
4 .setApproved(false)
5 .setReplied(false)
6 .setReplyDate(null)
7 .setRequestDate(null)
8 .setRequested(false)
9 .setPrice(price)

10 .setUnity(unity)
11 .setStartDate(startDate)
12 .setEndDate(endDate)
13 .setObservations(observations)
14 .build();
15 // ...
16 return await NegotiationDetailsRepository.update(negotiationDetailsData.id,

negotiationDetailsUpdated);
17 }

Figura 6. Exemplo de Implementação do Padrão Builder



5.3.4. Command

O padrão Command foi adotado para organizar o tratamento das requisições entre o
front-end e o back-end, em especial no processo de execução de fetchs e funções de
handle. Cada requisição foi encapsulada em uma classe que implementa uma interface
comum denominada Command, responsável por definir a operação a ser executada. Dessa
forma, requisições puderam ser representadas como comandos independentes, desaco-
plando a lógica de invocação da lógica de execução. A Figura 7 apresenta um diagrama
de classes simplificado da implementação do padrão no sistema.

Figura 7. Diagrama de Classes da Implementação do Padrão Command

5.3.5. Observer

O padrão Observer encontra aplicação natural no front-end da plataforma, em virtude
dos mecanismos reativos providos pelo Svelte. Diferentemente de outros padrões im-
plementados explicitamente no código, o comportamento de observação é nativo do fra-
mework e se manifesta principalmente através das declarações reativas (utilizando o ope-
rador $:). O trecho de código a na Figura 8 ilustra o uso do padrão.

No exemplo apresentado, a expressão reativa monitora continuamente as variáveis
inputPopupBrand e inputPopupTypes, funcionando como um mecanismo de
observação automática. Sempre que uma delas sofre alteração, o bloco associado é re-
executado, resultando na busca assı́ncrona dos modelos correspondentes no repositório
de dados. Em seguida, o array models é atualizado com as novas informações, e, em
consequência, todos os componentes da interface que dependem dessa coleção são noti-
ficados e renderizados novamente. Esse comportamento garante maior responsividade do
sistema, reduz a necessidade de chamadas manuais de atualização e reforça a aderência
ao paradigma reativo adotado pelo Svelte.

6. Discussão e Análise
A adoção dos padrões de projeto no desenvolvimento da plataforma mostrou-se um
exercı́cio relevante para estruturar e organizar o código de maneira mais robusta. O padrão
Repository permitiu centralizar o acesso aos dados. O State contribuiu para modelar o ci-
clo de vida das negociações. O Builder demonstrou ser adequado para a criação de objetos



1 // ...
2 $: if (inputPopupBrand && inputPopupTypes) {
3 (async () => {
4 let brandId = brands.find(
5 (brand) => brand.label === inputPopupBrand,
6 )?.value;
7 let typeId = types.find(
8 (type) => type.label === inputPopupTypes,
9 )?.value;

10
11 let modelsData = await fModel.getByBrandIdAndTypeId(
12 brandId,
13 typeId,
14 );
15 models = modelsData.map((type) => ({
16 label: type.name,
17 value: type.id,
18 }));
19 })();
20 }
21 // ...

Figura 8. Exemplo de implementação do padrão Observer

complexos. O Command possibilitou encapsular requisições ao servidor de forma modu-
lar, simplificando a manutenção e extensibilidade. Já o Observer, embora não tenha sido
implementado de forma manual, foi aproveitado através dos recursos do Svelte.

Os padrões empregados trouxeram diversos benefı́cios para o projeto. Em pri-
meiro lugar, contribuı́ram para uma maior organização estrutural do código, com clara
separação de responsabilidades entre classes e módulos, o que favoreceu a reutilização de
trechos de lógica em diferentes partes do sistema, reduzindo redundâncias. Outro ponto
relevante foi a maior facilidade em realizar manutenções ou ajustes incrementais, já que o
uso dos padrões forneceu uma base mais estável e previsı́vel. Em termos pedagógicos, a
prática consolidou o entendimento teórico dos padrões ao vinculá-los a um artefato real,
o que reforçou a importância de seu uso em sistemas de software.

Apesar dos avanços obtidos, alguns desafios e limitações foram identificados du-
rante o processo. Em certos casos, a aplicação dos padrões ocorreu de forma simplificada,
o que reduziu o pleno aproveitamento de suas potencialidades em cenários mais comple-
xos. Observou-se também que a escolha do padrão nem sempre se mostrou totalmente
aderente ao problema, exigindo adaptações que alteraram parcialmente a fidelidade às
implementações clássicas. Além disso, o estudo restringiu-se a um conjunto especı́fico de
padrões e situações de uso, o que limita a generalização dos resultados e deixa em aberto
a análise de sua efetividade em sistemas de maior escala ou em domı́nios distintos.

7. Considerações Finais

Este trabalho apresentou um relato de experiência sobre a aplicação de padrões de projeto
no desenvolvimento de uma plataforma digital voltada ao setor do agronegócio. A adoção
de soluções como Repository, State, Builder, Command e Observer contribuiu para a
organização estrutural do código, a separação de responsabilidades e a maior clareza ar-
quitetural, além de reforçar o aprendizado prático dos conceitos teóricos envolvidos. Os
resultados obtidos evidenciam que o uso de padrões pode oferecer ganhos significativos
em termos de manutenibilidade, reutilização e legibilidade, ao mesmo tempo em que se



mostraram uma oportunidade de integração entre teoria e prática em um artefato real.

Apesar dos benefı́cios observados, o estudo apresenta algumas ameaças à sua va-
lidade. Entre elas, destacam-se a aplicação dos padrões em um contexto restrito, tanto em
termos de domı́nio quanto de escala, o que limita a generalização dos resultados. Além
disso, a adaptação de certos padrões ao problema especı́fico pode ter reduzido sua fideli-
dade às implementações clássicas. Trabalhos futuros podem ampliar a análise incluindo
outros padrões, avaliando sua adoção em sistemas de maior porte e explorando métricas
quantitativas para complementar as reflexões qualitativas apresentadas. Dessa forma, o
estudo contribui para o entendimento dos benefı́cios, potencialidades e limitações do uso
de padrões de projeto em soluções full stack.

Agradecimentos
À FAPERGS, ao CNPq e à Pró-Reitoria de Pesquisa e Pós-Graduação (PROPPI) da Uni-
pampa pelo suporte financeiro.

Referências
Ali, M. and Elish, M. O. (2013). A comparative literature survey of design patterns impact

on software quality. In Proceedings of the ICISA.

Brown, S. (2021). Software Architecture for Developers. Leanpub.

do Amaral Santos, M. G., de A Souza, M. R., and Figueiredo, E. (2016). Padrões de
projeto em java: Um estudo prático sobre a utilização e benefı́cios. In Anais do I
Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley, Boston, MA.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science in information
systems research. MIS Quarterly.

Horita, F., Graciano Neto, V., and dos Santos, R. (2018). Design Science Research em
Sistemas de Informação e Engenharia de Software: Conceitos, Aplicações e Trabalhos
Futuros.

Manik, L. P. (2019). Design pattern evaluation on a restful api wrapper: A case study
of software integration with an internet payment gateway using model-driven architec-
ture. Journal of Information Technology and Computer Science.

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship. Pren-
tice Hall.

Shalloway, A. and Trott, J. R. (2004). Design patterns explained. Addison-Wesley, 2
edition.

Tran, V. T., Abdellatif, M., and Guéhéneuc, Y.-G. (2021). Formalising Solutions to REST
API Practices as Design (Anti)Patterns. In Proceedings of the Service-Oriented Com-
puting. Springer International Publishing.

Wendt, R., Tiadoro, E., Basso, F., and Bernardino, M. (2025). Bridging the gap in agri-
cultural sharing economy: A systematic review for evaluating information systems for
machinery efficiency. In Proceedings of the 27th International Conference on Enter-
prise Information Systems - Volume 2: ICEIS. SciTePress.


