Padroes de Projeto no Desenvolvimento de Solucao de
Software Full Stack: Um Relato de Experiéncia

Reinaldo Wendt', Eduardo Tiadoro', Miguel Muniz', Maicon Bernardino'

'Laboratory of Empirical Studies in Software Engineering (LESSE)
Universidade Federal do Pampa (UNIPAMPA) — Alegrete — RS — Brasil

{reinaldowendt, eduardotiadoro, miguelmuniz}.aluno@Qunipampa.edu.br,
bernardino@acm.org

Abstract. This article presents an experience report on the use of design pat-
terns in the development of a full stack application aimed at the agribusiness
sector. The solution, conceived as a digital platform for renting agricultural
machinery, was built using a client-server architecture with Express.js, Svelte-
Kit, and Firebase. Patterns such as Repository, State, Builder, Command, and
Observer were applied to ensure modularity, architectural clarity, and easier
maintenance. The analysis highlighted benefits in code organization, reuse, and
readability, but also revealed challenges in adapting patterns to specific con-
texts. The study provides practical insights into the effectiveness of these pat-
terns in distributed solutions.

Resumo. Este artigo apresenta um relato de experiéncia sobre o uso de padroes
de projeto no desenvolvimento de uma aplicagdo full stack voltada ao setor
do agronegocio. A solugcdo, concebida como uma plataforma digital para alu-
guel de mdquinas agricolas, foi construida a partir de uma arquitetura cliente-
servidor, utilizando Express.js, SvelteKit e Firebase. Foram aplicados padroes
como Repository, State, Builder, Command e Observer, visando modularidade,
clareza arquitetural e manutengdo facilitada. A andlise evidenciou beneficios
em organizagdo, reutilizacdo e legibilidade do codigo, mas também desafios na
adaptagdo de padroes a contextos especificos. O estudo contribui com reflexoes
prdticas sobre a efetividade desses padroes em solucoes distribuidas.

1. Introducao

A adocdo de padrdes de projeto (design patterns) tem se consolidado como uma
pratica fundamental no desenvolvimento de software, oferecendo solugcdes reutilizdveis
para problemas recorrentes de estrutura e comportamento em sistemas computacionais
[Gamma et al. 1994]. Esses padrdes ndo apenas promovem uma melhor organizacgdo in-
terna do cédigo, mas também facilitam a comunicacdo entre desenvolvedores ao estabe-
lecer uma linguagem comum para o design de software. Quando aplicados em conjunto
com uma arquitetura bem definida, eles contribuem significativamente para a modulari-
dade, escalabilidade e manutencdo dos sistemas.

No contexto atual do desenvolvimento de sistemas, aplicagdes full stack t€ém ga-
nhado relevancia por integrarem tanto a camada de apresentagdo quanto a de persisténcia e
l6gica de negdcios em uma solugdo tnica e coesa. Nesse cendrio, a utilizagdo de padroes
de projeto torna-se especialmente pertinente, uma vez que a complexidade inerente a

integracdo entre cliente e servidor demanda mecanismos que favorecam a reutilizacdo, a
clareza arquitetural e a reducdo de acoplamentos indevidos.

Assim, o objetivo principal deste artigo € relatar a experi€éncia de desenvolvimento
de uma aplicacdo com arquitetura cliente-servidor, destacando o papel dos padrdes de
projeto no processo de construcio e manutencao do sistema. Ao final, espera-se oferecer
uma reflexdo critica sobre os beneficios, limitagdes e aprendizados advindos da aplicagdo
desses padroes em um contexto pratico, contribuindo para o avango do conhecimento
sobre sua efetividade em arquiteturas distribuidas.

Dessa forma, este artigo estd organizado como segue. Na Secdo 2 apresenta-
se a fundamentacdo tedrica, discutindo conceitos e classificacdes dos padrdes de pro-
jeto. A Secdo 3 revisa iniciativas semelhantes encontradas na literatura. Em seguida,
a Secdo 4 descreve os procedimentos adotados para o desenvolvimento da solu¢do. A
caracterizacao da aplicacao proposta € detalhada na Secdo 5, enquanto a Secdo 6 disserta
a discussdo e andlise sobre os padrdes adotados no projeto. Por fim, a Secdo 7 apresenta
as consideragdes finais, ressaltando os principais resultados e perspectivas futuras.

2. Padroes de Projeto

Os padrdes de projeto sdo solucdes reutilizdveis para problemas recorrentes que sur-
gem durante o desenvolvimento de software [Shalloway and Trott 2004]. Eles ndo sao
algoritmos prontos, mas sim descri¢des ou modelos que orientam como estruturar e or-
ganizar o cédigo para resolver um determinado problema de forma eficiente. O con-
ceito foi amplamente difundido na 4rea de engenharia de software a partir da obra de
[Gamma et al. 1994], que define como “descrigdes de solugOes recorrentes para proble-
mas que ocorrem com frequéncia no design de software orientado a objetos”.

Entre os principais beneficios do uso de padrdes de projeto, destacam-se a me-
lhoria da comunicagdo entre equipes, a facilidade de manuten¢do e evolucao do codigo
e o aumento da reutilizagdo de solugdes testadas [Martin 2008]. Além disso, eles contri-
buem para reduzir a complexidade de sistemas ao fornecer abstracdes de alto nivel que
favorecem a legibilidade e a escalabilidade das aplicacdes [Ali and Elish 2013]. Assim, o
emprego de padrdes assegura um desenvolvimento mais robusto e manutenivel, consoli-
dando principios essenciais de qualidade de software.

2.1. Classificacao dos Padroes

A literatura organiza os padrdes de projeto em trés categorias principais: criacionais, es-
truturais e comportamentais. Essa classificagdo tem como objetivo agrupar solugdes con-
forme o tipo de problema que resolvem. Seguindo a definicdo de [Gamma et al. 1994]:

(i) Padroes Criacionais: Sao empregados para encapsular a Iégica de criagao de
objetos, evitando o acoplamento direto entre classes e promovendo maior flexibilidade.
Em sua obra, Gamma et al. apresentam 5 padrdes criacionais, sendo eles: (1) Abstract
Factory, (2) Builder, (3) Factory, (4) Prototype, (5) Singleton. Eles sdo especialmente
uteis em cendrios onde o processo de criacao envolve multiplas etapas ou quando diferen-
tes representacdes de um mesmo objeto precisam coexistir. Dessa forma, esses padroes
tornam o cédigo mais adaptdvel a mudangas futuras e reduzem dependéncias rigidas.

(ii) Padroes Estruturais: Tange a forma como os objetos sdo organizados e com-
binados para formar estruturas de software. O objetivo € facilitar a modularidade, rea-

proveitamento de codigo e a separacdo clara de responsabilidades. Sdo ao total 7, sendo
eles: (1) Adapter, (2) Bridge, (3) Composite, (4) Decorator, (5) Facade, (6) Flyweight,
(7) Proxy. Esses padrdes sdo essenciais para criar arquiteturas mais reutilizdveis e ex-
pansiveis, além de facilitarem a integra¢do entre componentes heterogéneos no sistema.

(iii) Padroes Comportamentais: Tratam da comunica¢do e coordenagdo entre
objetos. Esses padroes buscam tornar os sistemas mais dinAmicos ao separar responsa-
bilidades. Ao todo sdo 11, sendo eles: (1) Chain of Responsibility, (2) Command, (3)
Interpreter, (4) Iterator, (8) Mediator, (6) Memento, (7) Observer, (8) State, (9) Stra-
tegy, (10) Template Method, (11) Visitor. Ao adotar esses padrdes, os desenvolvedores
conseguem projetar sistemas mais claros e adaptdveis a novas regras de negdcio.

3. Trabalhos Relacionados

Esta secdo investiga estudos e iniciativas semelhantes j4 existentes na literatura. A andlise
dessas obras tem como objetivo identificar abordagens e oportunidades de contribuicao,
funcionando como um referencial para a proposta apresentada neste trabalho.

Em Do Amaral Santos et al. (2016), os autores investigaram o conhecimento, 0s
incentivos e as dificuldades de desenvolvedores de software sobre a utilizacdo de padroes
de projeto na industria. O objetivo do trabalho foi identificar os fatores que encorajam ou
desencorajam o uso de padrdes, bem como a influéncia de aspectos organizacionais nesse
processo. A metodologia consistiu em uma pesquisa quantitativa, por meio da aplica¢ao
de um questiondrio a 34 desenvolvedores de software atuantes no mercado. Os resul-
tados apontaram que a cultura da empresa e seus processos de desenvolvimento sao 0s
principais influenciadores na ado¢@o de padrdes. Os maiores fatores que dificultam seu
uso, segundo os participantes, sdo os prazos curtos dos projetos e a falta de conhecimento
sobre os proprios padrdoes. O estudo concluiu que, apesar de os desenvolvedores reco-
nhecerem claramente os beneficios dos padroes, a sua aplicacao pratica € frequentemente
impedida por barreiras organizacionais e pressao por entregas rapidas.

Em Manik (2019), o autor avaliou o impacto do uso de padrdes de projeto no de-
senvolvimento de um wrapper para uma API RESTful. O objetivo do estudo foi analisar
as mudancas nas métricas de software ao aplicar os padrdes Builder, Observer e Factory.
A metodologia consistiu em gerar uma versdo do cédigo-fonte diretamente do modelo
e, em seguida, uma segunda versao apos a aplicagcdo manual dos padrdes. O autor usou
andlise estdtica para medir métricas de coesdao, complexidade, acoplamento, heranca e ta-
manho em ambas as versdes. Os resultados mostraram que a implementagao dos padrdes
de projeto aumentou todas as métricas analisadas. Entretanto, ndo se pode afirmar se isso
€ positivo ou negativo, pois tais aumentos podem representar um trade-off para melhorar
outros atributos de qualidade de software a longo prazo, como flexibilidade, manutenibi-
lidade e reusabilidade, que nao foram medidos no estudo.

O trabalho de Tran et al. (2021) visou formalizar solugdes para boas e mds praticas
comuns de APIs REST no formato de padrdes de projeto e antipadrdes. O estudo usou
como metodologia o Design Science Research, e iniciou com uma revisao da literatura que
identificou 19 praticas, que foram divididas em 8 “técnicas” (soluciondveis via arquite-
tura) e 11 “ndo técnicas”. Para as praticas técnicas, os autores propuseram solucdes adap-
tando padrdes de projeto (como Factory, Visitor e Proxy) e fornecendo implementagdes
de exemplo em Java Spring e ASP.NET Core. A validacao dessas solucdes foi realizada

por meio de uma pesquisa e entrevistas com 55 desenvolvedores profissionais. Os resul-
tados mostraram alta aceitacdo para a maioria das solugdes. O estudo concluiu que as
solugdes propostas sdo relevantes e aplicdveis em ambientes de produgdo, oferecendo um
catdlogo que pode servir como base para futuras implementacdes e pesquisas.

4. Metodologia

Nesta secdo, serd apresentado o arcabougo metodoldgico dos procedimentos adotado para
o desenvolvimento e avaliacao dos artefatos produzidos durante o trabalho.

4.1. Design Science Research

A metodologia adotada neste trabalho é a Design Science Research (DSR), uma aborda-
gem para a conducdo de pesquisas que visam a construcdo e avaliacdo de artefatos vol-
tados a solug¢do de problemas em contextos reais. Segundo [Hevner et al. 2004], a DSR
busca equilibrar rigor cientifico e relevancia pratica, permitindo que o desenvolvimento
de solucdes seja fundamentado tanto em bases tedricas quanto nas necessidades do ambi-
ente em que serdo aplicadas. Esse arcabougo se mostra adequado para investigacdes em
Engenharia de Software, uma vez que favorece a criacdo de artefatos que ndo apenas so-
lucionam problemas, mas também contribuem para o avanco do conhecimento cientifico.

A DSR estrutura o processo de pesquisa por meio da interacdo de trés ciclos: ci-
clo da relevancia, responsavel por assegurar a conexao entre o problema investigado e
o contexto pratico; ciclo do rigor, que integra conhecimentos da literatura e fundamen-
tos tedricos; e ciclo de design, que contempla a constru¢do, avaliacdo e refinamento do
artefato desenvolvido. Essa organizacgdo sistemadtica garante que os artefatos resultantes
sejam simultaneamente uteis e cientificamente fundamentados [Horita et al. 2018].

4.2. Aplicacao da Design Science Research no Estudo

A aplicagdo da metodologia neste estudo ocorreu de forma iterativa, abrangendo desde o
projeto até a consolidac¢ao da solucdo. Essa abordagem favoreceu a evolugao continua,
resultando em um artefato mais robusto e alinhado as necessidades do dominio.

Ciclo de Relevancia: Este estudo foi guiado pelas demandas do agronegécio,
que motivaram a criacdo de uma plataforma digital voltada inicialmente a divulgacdo de
aluguéis de maquindrios agricolas. A partir da andlise dessas necessidades, apoiada em
uma revisdo do estado da pratica em aplicacdes semelhantes [Wendt et al. 2025], propds-
se o desenvolvimento de uma solucdo para tal. Esse alinhamento entre problema e con-
texto pratico assegurou que o artefato desenvolvido tivesse utilidade direta.

Ciclo de Rigor: Este estudo foi sustentado por uma base tedrica consolidada em
literatura, garantindo que o desenvolvimento da solu¢do ndo se limitasse a atender a uma
demanda prética imediata, mas também estivesse fundamentado em principios sélidos
de Engenharia de Software. Para isso, foram considerados referenciais sobre o uso de
padrdes de projeto como instrumentos para melhorar a manutenibilidade, extensibilidade
e qualidade de sistemas. Essa fundamentagdo proporcionou critérios objetivos para a
selecdo dos padrdes empregados evitando escolhas ad hoc.

Ciclo de Design: Este ciclo serd explorado de forma detalhada na Secdo 5, com
énfase especial na Se¢do 5.3, em que sdo apresentados os padrdes de projeto efetivamente

implementados na solu¢do proposta. Nessa etapa sdo descritas as decisdes de design
adotadas, sua justificativa e a forma como cada padrdo contribuiu para a constru¢do do
artefato, alinhando teoria e pratica no desenvolvimento da aplicacao.

5. Caracterizacao da Solucao

A presente Secdo descreve a solucdo desenvolvida no ambito deste estudo. O objetivo
¢ apresentar de como a aplicacao foi concebida e construida, evidenciando as decisOes
arquiteturais e tecnoldgicas que nortearam o processo de desenvolvimento.

5.1. Contexto e Motivacao

O artefato desenvolvido consiste em uma plataforma digital voltada a divulgacdo de
servigos de aluguel de maquindrios agricolas. A escolha desse dominio justifica-se pela
relevancia do setor do agronegdcio no cendrio econdmico brasileiro e pela crescente de-
manda por solucdes tecnoldgicas que promovam maior eficiéncia e acessibilidade. As
Figuras 1 e 2 representam, respectivamente, um exemplo da tela de listagem de antincios
e outro da tela de negociagao do sistema.

Buscar Monitorados Negciagaes Home Buscor Monitorados Negodiagoes

Solicitagio Negociagao E Finalizado

Figura 1. Tela de Anuncios Figura 2. Tela de Negociacao

A plataforma busca aproximar fornecedores de maquindrio de potenciais clientes,
oferecendo um ambiente centralizado para negocia¢cao de equipamentos, contribuindo as-
sim para a modernizagdo de praticas de economia compartilhada no ambito agricola.

5.2. Visao Geral da Plataforma Desenvolvida

A plataforma desenvolvida adota uma arquitetura de software baseada no modelo cliente-
servidor, estruturada como uma aplicacdo web. O servidor foi implementado como
uma API REST, construido em Express. js com a linguagem JavaScript, res-
ponsavel pelo processamento das requisicoes, pela aplicacdo das regras de negdcio e pela
integracdo com a camada de persisténcia de dados. O armazenamento das informagdes é
realizado no Firebase Firestore Database, um banco de dados NoSQL orientado a docu-
mentos, que oferece escalabilidade e integragdo com aplicacdes baseadas em nuvem.

O cliente, por sua vez, corresponde a interface web acessada pelos usudrios, de-
senvolvida em Svelte com o SvelteKit como framework. Complementado pelas
bibliotecas SkeletonUI e Tailwind CSS para construcao de interfaces responsivas.
Essa combinac¢do de tecnologias no front-end possibilitou a criagdo de uma experiéncia
de usudrio fluida, alinhada a boas praticas de design e usabilidade.

A Figura 3 apresenta a visdo arquitetural do software a partir de uma representacao
baseada no C4 model, evidenciando os principais componentes da solu¢do e suas
interacoes [Brown 2021]. Essa visdo fornece uma abstragdo de alto nivel que facilita
o entendimento da plataforma, destacando a divisdo entre as camadas cliente e servidor e
a forma como elas se conectam a base de dados.

Retorna dados

js +
Frontend (SvelteKit SPA) Each Rl Mo =
[Container:javaseript Sveltakit] Express)
Interface web que envia requisigdes L]
HTTP a0 backend. /API RESTful que lida com leitura e
escrita no banco de dados,

Firestore
{coniaines Gonge s s

Camada de per NosQL,
variando entre instan em nuvem
eemulada.

Usuario
2

Figura 3. Arquitetura do Software

5.3. Implementaciao de Padroes de Projeto

Esta secdo apresenta os principais padroes de projeto aplicados, detalhando seu papel e a
forma como contribuiram para a organizagao e evolucao do sistema.

5.3.1. Repository

O padrao Repository foi utilizado para organizar a camada de persisténcia de dados, pro-
movendo a separagdo entre a ldgica de negdcio e o acesso ao banco de dados, além de cen-
tralizar a manipulacdo das entidades do sistema. Foi implementada uma classe genérica
Repository, responsavel por prover métodos basicos de manipulagao de dados (como
create, read, update, delete). A partir dela, foram derivadas classes especificas
que reutilizam os métodos principais e, quando necessdrio, definem métodos auxiliares
proprios para atender particularidades de cada entidade. Essa abordagem contribuiu para
reduzir redundancias e facilitar futuras altera¢des na camada de persisténcia. A Figura 4
apresenta um diagrama de classes simplificado da implementa¢ao do padrao no sistema.

Repository

- db : Firestore

- collection * String ProfileRepository

AdRepository

+findByProfileld(profileld : uuid) : json +findBy(field : String, value : Object) : json + findByRenterld(profileld : uuid) : json
+findByMachineld(machineld : uuid) - json + create(data : json) : boolean + findByLessorld(profileld : uuid) - json
+ update(id : uuid, data - json) - boolean
+ delete(id - uuid) : boolean

E=n T

MachineRepository

+ findByProfileld{profileld : uuid) : json

Figura 4. Diagrama de Classes da Implementacao do Padrao Repository

5.3.2. State

O padrao State foi aplicado para modelar os diferentes estados do ciclo de vida de
uma negociagdo. A negociagcdo pode evoluir por diferentes etapas: Solicitada —
Negociacdo — Operacdo — Avaliacdo — Finalizada.

wW N

[c-BEN B NIV, NN

el

11
12
13
14
15
16

Cada estado foi representado por uma classe distinta, implementando uma inter-
face comum denominada State. Essa abordagem reduziu a complexidade do cédigo
ao evitar condicionais extensos para tratar mudancas de estado, além de tornar o fluxo
da negociacao mais legivel e manutenivel. A Figura 5 apresenta um diagrama de classes
simplificado da implementacdo do padrao State no sistema.

RequestedState

InNegotiationState

Negotiation

- state : State State

- ad: Advertisement

- lessor : Profile

- renter : Profile

- history : json

- requestDate : DateTime

- admissionDate : DateTime

-negotiation : Negotiation

+ approve() : boolean
+cancel() . boolean
+transition() : boolean

OperationState

/

EvaluationState

FinishedState

Figura 5. Diagrama de Classes da Implementacao do Padrao state

5.3.3. Builder

O padrao Builder foi empregado para facilitar a criagdo de objetos complexos que exi-
gem o preenchimento de multiplos atributos, como antincios, maquindrios € negociagdes.
Sua utilizagc@o evitou construtores excessivamente longos e proporcionou maior legibili-
dade na instanciacio desses objetos, além de tornar o processo de criagdo mais flexivel,
reutilizavel e menos propenso a erros em cendrios de evolucdo do sistema. A Figura 6
apresenta um trecho simplificado em JavaScript que ilustra a aplicacdo do padrao.

async create () {
//
const negotiationDetailsUpdated =
negotiationDetails)
.setApproved (false)
.setReplied (false)
.setReplyDate (null)
.setRequestDate (null)
.setRequested (false)
.setPrice (price)
.setUnity (unity)
.setStartDate (startDate)
.setEndDate (endDate)
.setObservations (observations)
.build();
//
return await NegotiationDetailsRepository.update (negotiationDetailsData.id,
negotiationDetailsUpdated) ;

new NegotiationDetailsBuilder (

Figura 6. Exemplo de Implementacao do Padrao Builder

5.3.4. Command

O padrao Command foi adotado para organizar o tratamento das requisicdoes entre o
front-end e o back-end, em especial no processo de execucao de fetchs e funcdes de
handle. Cada requisi¢do foi encapsulada em uma classe que implementa uma interface
comum denominada Command, responsavel por definir a operagdo a ser executada. Dessa
forma, requisicdes puderam ser representadas como comandos independentes, desaco-
plando a légica de invocagdo da légica de execucao. A Figura 7 apresenta um diagrama
de classes simplificado da implementacao do padrdo no sistema.

pkg

Command

- apilr - String
- options : json L1 ProfileCommands
- toastStore : Toast

AdvertisementCommands

AV

+ execute() : json

/ + handleResponse() : boolean V\

BrandCommands NegotiationCommands

MachineCommands

Figura 7. Diagrama de Classes da Implementacao do Padrdao Command

5.3.5. Observer

O padrdao Observer encontra aplicagdo natural no front-end da plataforma, em virtude
dos mecanismos reativos providos pelo Svelte. Diferentemente de outros padroes im-
plementados explicitamente no c6digo, o comportamento de observagao € nativo do fra-
mework e se manifesta principalmente através das declaragdes reativas (utilizando o ope-
rador $:). O trecho de codigo a na Figura 8 ilustra o uso do padrao.

No exemplo apresentado, a expressao reativa monitora continuamente as variaveis
inputPopupBrand e inputPopupTypes, funcionando como um mecanismo de
observacdo automadtica. Sempre que uma delas sofre alteracdo, o bloco associado € re-
executado, resultando na busca assincrona dos modelos correspondentes no repositorio
de dados. Em seguida, o array models ¢ atualizado com as novas informacdes, e, em
consequéncia, todos os componentes da interface que dependem dessa colec¢do siao noti-
ficados e renderizados novamente. Esse comportamento garante maior responsividade do
sistema, reduz a necessidade de chamadas manuais de atualizagcdo e reforca a aderéncia
ao paradigma reativo adotado pelo Svelte.

6. Discussao e Analise

A adocdo dos padrdes de projeto no desenvolvimento da plataforma mostrou-se um
exercicio relevante para estruturar e organizar o cddigo de maneira mais robusta. O padrao
Repository permitiu centralizar o acesso aos dados. O State contribuiu para modelar o ci-
clo de vida das negociacoes. O Builder demonstrou ser adequado para a criagao de objetos

00NN R W~

RO R m m = = e e e
— O 00NN R WD = O 0

/] ...
$: if (inputPopupBrand && inputPopupTypes) {

(async () => {
let brandId = brands.find(
(brand) => brand.label === inputPopupBrand,
) ?.value;
let typeld = types.find(
(type) => type.label === inputPopupTypes,
) ?.value;

let modelsData = await fModel.getByBrandIdAndTypeId (
brandId,
typeld,

)i

models = modelsData.map ((type) => ({
label: type.name,
value: type.id,

1))

1) O

Figura 8. Exemplo de implementacao do padrdao Observer

complexos. O Command possibilitou encapsular requisi¢des ao servidor de forma modu-
lar, simplificando a manutengao e extensibilidade. Ja o Observer, embora nao tenha sido
implementado de forma manual, foi aproveitado através dos recursos do Svelte.

Os padrdes empregados trouxeram diversos beneficios para o projeto. Em pri-
meiro lugar, contribuiram para uma maior organizagao estrutural do cédigo, com clara
separacdo de responsabilidades entre classes e mdédulos, o que favoreceu a reutilizacao de
trechos de 16gica em diferentes partes do sistema, reduzindo redundancias. Outro ponto
relevante foi a maior facilidade em realizar manutengdes ou ajustes incrementais, ja que o
uso dos padrdes forneceu uma base mais estavel e previsivel. Em termos pedagdgicos, a
pratica consolidou o entendimento tedrico dos padrdes ao vinculd-los a um artefato real,
o que refor¢ou a importancia de seu uso em sistemas de software.

Apesar dos avancos obtidos, alguns desafios e limitagdes foram identificados du-
rante o processo. Em certos casos, a aplicagdo dos padrdes ocorreu de forma simplificada,
o que reduziu o pleno aproveitamento de suas potencialidades em cendrios mais comple-
xos. Observou-se também que a escolha do padrao nem sempre se mostrou totalmente
aderente ao problema, exigindo adaptacOes que alteraram parcialmente a fidelidade as
implementagdes cldssicas. Além disso, o estudo restringiu-se a um conjunto especifico de
padrdes e situagdes de uso, o que limita a generalizacao dos resultados e deixa em aberto
a andlise de sua efetividade em sistemas de maior escala ou em dominios distintos.

7. Consideracoes Finais

Este trabalho apresentou um relato de experiéncia sobre a aplicagcdo de padrdes de projeto
no desenvolvimento de uma plataforma digital voltada ao setor do agronegdcio. A adogao
de solugdes como Repository, State, Builder, Command e Observer contribuiu para a
organizacgdo estrutural do cédigo, a separacdo de responsabilidades e a maior clareza ar-
quitetural, além de reforcar o aprendizado pratico dos conceitos tedricos envolvidos. Os
resultados obtidos evidenciam que o uso de padrdes pode oferecer ganhos significativos
em termos de manutenibilidade, reutilizacdo e legibilidade, a0 mesmo tempo em que se

mostraram uma oportunidade de integracdo entre teoria e pratica em um artefato real.

Apesar dos beneficios observados, o estudo apresenta algumas ameacas a sua va-
lidade. Entre elas, destacam-se a aplicacdo dos padroes em um contexto restrito, tanto em
termos de dominio quanto de escala, o que limita a generaliza¢dao dos resultados. Além
disso, a adaptacdo de certos padrdes ao problema especifico pode ter reduzido sua fideli-
dade as implementacOes cldssicas. Trabalhos futuros podem ampliar a anélise incluindo
outros padrdes, avaliando sua ado¢do em sistemas de maior porte e explorando métricas
quantitativas para complementar as reflexdes qualitativas apresentadas. Dessa forma, o
estudo contribui para o entendimento dos beneficios, potencialidades e limitagdes do uso
de padrdes de projeto em solugdes full stack.

Agradecimentos

A FAPERGS, ao CNPq e a Pré-Reitoria de Pesquisa e Pés-Graduagdo (PROPPI) da Uni-
pampa pelo suporte financeiro.

Referéncias

Ali, M. and Elish, M. O. (2013). A comparative literature survey of design patterns impact
on software quality. In Proceedings of the ICISA.

Brown, S. (2021). Software Architecture for Developers. Leanpub.

do Amaral Santos, M. G., de A Souza, M. R., and Figueiredo, E. (2016). Padrdes de
projeto em java: Um estudo prético sobre a utilizacdo e beneficios. In Anais do I
Workshop sobre Aspectos Sociais, Humanos e Econémicos de Software.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley, Boston, MA.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science in information
systems research. MIS Quarterly.

Horita, F., Graciano Neto, V., and dos Santos, R. (2018). Design Science Research em
Sistemas de Informagdo e Engenharia de Software: Conceitos, Aplicagoes e Trabalhos
Futuros.

Manik, L. P. (2019). Design pattern evaluation on a restful api wrapper: A case study
of software integration with an internet payment gateway using model-driven architec-
ture. Journal of Information Technology and Computer Science.

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship. Pren-
tice Hall.

Shalloway, A. and Trott, J. R. (2004). Design patterns explained. Addison-Wesley, 2
edition.

Tran, V. T., Abdellatif, M., and Guéhéneuc, Y.-G. (2021). Formalising Solutions to REST
API Practices as Design (Anti)Patterns. In Proceedings of the Service-Oriented Com-
puting. Springer International Publishing.

Wendt, R., Tiadoro, E., Basso, F., and Bernardino, M. (2025). Bridging the gap in agri-
cultural sharing economy: A systematic review for evaluating information systems for
machinery efficiency. In Proceedings of the 27th International Conference on Enter-
prise Information Systems - Volume 2: ICEIS. SciTePress.

