Explorando o Uso de LLMs para Fuzzing de Cédigo Lua:
Metodologia e Primeiras Etapas

Richard Facin Souza', Samuel da Silva Feitosa'

1Universidade Federal da Fronteira Sul

richard.souzal@estudante.uffs.edu.br, samuel.feitosal@uffs.edu.br

Abstract. Fuzzing is a crucial technique for finding vulnerabilities in software,
but its effectiveness in scripting languages such as Lua is limited by the difficulty
of generating semantically valid test inputs. This work proposes a methodology
that uses Large Language Models (LLMs) to generate semantically rich mutati-
ons for fuzzing Lua scripts. Our approach involves developing a fuzzer prototype
that leverages an LLM’s in-context learning capabilities to create syntactically
and semantically plausible code variations, aiming to explore complex execu-
tion paths more effectively. We will validate this methodology by comparing its
ability to discover vulnerabilities and increase code coverage against traditio-
nal fuzzing techniques, expecting to offer a significant contribution to automated
software testing and the security of systems that use Lua.

Resumo. O fuzzing é uma técnica crucial para encontrar vulnerabilidades em
software, mas sua eficdcia em linguagens de script como Lua é limitada pela
dificuldade de gerar entradas de teste semanticamente vdlidas. Este trabalho
propoe uma metodologia que utiliza Modelos de Linguagem de Grande Escala
(LLMs) para gerar mutagoes semanticamente ricas para o fuzzing de scripts
Lua. Nossa abordagem envolve o desenvolvimento de um prototipo de fuzzer
que explora a capacidade de aprendizado em contexto de um LLM para criar
variacoes de codigo sintdtica e semanticamente plausiveis, visando explorar
caminhos de execucdo complexos de forma mais eficaz. Validaremos esta meto-
dologia comparando sua capacidade de descobrir vulnerabilidades e aumentar
a cobertura de codigo em relacdo a técnicas de fuzzing tradicionais, esperando
oferecer uma contribuicdo significativa para o teste de software automatizado e
a seguranga de sistemas que utilizam Lua.

1. Introducao

A linguagem Lua é conhecida por ser leve, eficiente e de féacil integracdo, sendo am-
plamente utilizada em &4reas como desenvolvimento de jogos, sistemas embarcados e
automacao de tarefas [Lua.org 2025, Ierusalimschy 2016, Siberoloji 2021]. Devido a sua
popularidade e aplicabilidade, garantir a confiabilidade e a seguranca de aplicagdes de-
senvolvidas em Lua € uma preocupacgdo crescente, principalmente quando se considera o
impacto potencial de falhas em ambientes criticos.

Uma das formas mais eficazes de identificar vulnerabilities e falhas em softwares
€ por meio da técnica de fuzzing, uma abordagem que se destaca pela capacidade de gerar
entradas inesperadas ou malformadas que exercitam diferentes caminhos de execu¢ao nos

programas [Godefroid 2020, Manes et al. 2021]. No entanto, o fuzzing tradicional, espe-
cialmente o baseado em mutacdo, enfrenta limitagdes importantes, como a dificuldade
de gerar mutagdes semanticamente relevantes ou de explorar caminhos menos triviais no
codigo [Huang et al. 2024, Eom et al. 2024].

Recentemente, os Modelos de Linguagem de Grande Escala (LLMs, do
inglés Large Language Models) consolidaram-se como ferramentas promissoras na
geragdo de codigo, incluindo a criagdo de casos de teste [Wang and Chen 2023,
Deckker and Sumanasekara 2025]. No contexto do fuzzing, esses modelos apresentam
um potencial significativo para melhorar a geracdo de entradas, permitindo mutagdes
mais inteligentes e direcionadas, que consideram tanto a sintaxe quanto a semantica
da linguagem [Huang et al. 2024, Xia et al. 2024]. Esse avanco abre espago para su-
perar limitacdes historicas das técnicas convencionais e explorar novas formas de
automatizagao de testes.

Neste trabalho, propomos e avaliamos uma metodologia para a geracdo de
mutagdes semanticamente ricas em fuzzing, utilizando LLMs como um motor de
transformacdo de cédigo. Diferentemente de abordagens tradicionais que se baseiam em
alteracdes a nivel de bytes, nossa técnica explora a capacidade dos LLMs de compreen-
der a sintaxe e a semantica do cddigo-fonte para criar variagdes complexas e validas,
que t€ém maior potencial de descobrir vulnerabilidades profundas [Huang et al. 2024,
Xia et al. 2024].

Para validar essa abordagem, desenvolvemos uma idei de looping de fuzzing que
aplica a mutagdo guiada por LLM especificamente a linguagem Lua. A escolha de Lua
como caso de estudo se justifica por suas caracteristicas dindmicas e seu uso prevalente
em sistemas criticos onde a seguranca € primordial [Ierusalimschy 2016, Marbux 2021].
O objetivo € avaliar experimentalmente se essa integracao resulta em um aumento men-
surdvel na cobertura de codigo e na taxa de descoberta de erros quando comparada a
um fuzzer de mutagdo tradicional. Com isso, esperamos oferecer uma contribui¢do me-
todoldgica para a drea de testes automatizados, demonstrando como a especializacao de
prompts pode otimizar o fuzzing para linguagens de script especificas.

2. Fundamentacao Teorica

Esta secdo apresenta a base conceitual necessdria para compreender a proposta do tra-
balho. Sdo abordados a linguagem de programacgdo Lua, Modelos de Linguagem de
Grande Escala e da técnica de fuzzing, com foco no uso combinado de LLMs como apoio
a mutagdo em testes automatizados.

2.1. Linguagem Lua

Lua é uma linguagem de programacao interpretada, eficiente e leve, desenvolvida no Bra-
sil na Pontificia Universidade Catdlica do Rio de Janeiro (PUC-Rio). Desde sua criacdo
em 1993, destaca-se por sua simplicidade sintdtica, portabilidade e capacidade de ex-
tensao [lerusalimschy 2016, Ierusalimschy 2020, Lua.org 2025]. Projetada para ser uma
glue language, integra-se facilmente a programas em C/C++ e € amplamente usada em
jogos, sistemas embarcados e aplicacdes de automacao.

A linguagem € dinamicamente tipada e possui uma tnica estrutura de dados nativa,
a table, que pode representar vetores, registros ou objetos com grande flexibilidade. In-

clui ainda conceitos como funcdes de primeira classe, coleta de lixo automadtica e suporte
a corrotinas, recursos que favorecem concorréncia cooperativa € programacgao orientada
a eventos [lerusalimschy 2016]. Além disso, seu design minimalista € modular contribui
para um baixo consumo de memoria e processamento, o que a torna adequada para dis-
positivos com recursos limitados e sistemas de tempo real, um dos fatores que explica sua
forte presenca em softwares embarcados [Lua.org 2025, Siberoloji 2021].

Outro aspecto relevante € sua curva de aprendizado relativamente suave, favo-
recida pela sintaxe simples e documentacao acessivel, o que estimula sua ado¢do tanto
em ambientes académicos quanto industriais. A comunidade ativa e a ampla dispo-
nibilidade de bibliotecas também reforcam sua utilizacdo em diferentes dominios, do
desenvolvimento de jogos digitais até ferramentas de seguranca e automacgdo de redes
[lerusalimschy 2016, Marbux 2021]. Seu pequeno tamanho e eficiéncia explicam sua
adocdo em motores de jogos, plataformas como Roblox e ferramentas como Nmap,
consolidando-se como uma linguagem de uso global.

2.2. Modelos de Linguagem de Grande Escala (LLMs) para Fuzzing

Modelos de Linguagem de Grande Escala (LLMs) sdo redes neurais profundas, geral-
mente baseadas na arquitetura Transformer, treinadas com volumes massivos de dados
textuais e de codigo-fonte [Naveed et al. 2024]. Essa escala permite que desenvolvam ca-
pacidades emergentes, como a compreensao da sintaxe, semantica e estruturas logicas de
linguagens de programag¢do [Wang and Chen 2023, Deckker and Sumanasekara 2025].

No contexto de fuzzing, o potencial dos LLLMs reside em sua capacidade de atuar
como “motores de mutacdo”, superando as limitagdes dos métodos tradicionais. Suas
principais caracteristicas aplicadas a este trabalho sao:

* Aprendizado em Contexto (In-Context Learning): LLMs podem gerar
variagdes de um script de entrada com base em instrucdes em linguagem natu-
ral (prompts), sem a necessidade de retreinamento. Isso permite a criacdo de
mutagdes direcionadas que exploram ldgicas de programa complexas de forma
controlada [Xia et al. 2024].

* Geracao de Codigo Sintaticamente Valido: Treinados com milhdes de exem-
plos de cddigo, os LLMs tém uma alta probabilidade de gerar mutacdes que res-
peitam a gramadtica da linguagem alvo. Isso reduz o nimero de casos de teste
invélidos, que seriam descartados prematuramente pelo interpretador, otimizando
o tempo de fuzzing [Ou et al. 2024].

* Exploracao de Casos de Borda: A diversidade de padroes de cddigo presentes
nos dados de treinamento permite que os LLMs gerem muta¢des que simulam
cendrios de borda ou usos incomuns de APIs, que dificilmente seriam criados por
mutadores baseados em regras ou aleatoriedade [Huang et al. 2024].

Apesar de seu potencial, os LLMs apresentam desafios, como a possibilidade de
gerar cddigo plausivel mas funcionalmente incorreto (“alucinagdo”) e a forte dependéncia
da qualidade da engenharia de prompts [Naveed et al. 2024]. Nossa metodologia busca
mitigar esses riscos através de um ciclo de validag¢do continua e do desenvolvimento de
prompts especializados para a linguagem Lua.

2.3. Fuzzing

O fuzzing € uma técnica de teste de software que consiste em submeter um programa a
entradas inesperadas, invdlidas ou malformadas, com o objetivo de revelar falhas, vul-
nerabilidades ou comportamentos incorretos [Godefroid 2020, Manes et al. 2021]. Ori-
ginalmente introduzida por Miller et al. na década de 1990, ao testar utilitdrios UNIX
com entradas aleatdrias, a técnica tornou-se uma das mais eficazes para a deteccdo auto-
matizada de erros e é atualmente amplamente utilizada tanto pela academia quanto pela
indastria [Manes et al. 2021].

O processo basico de fuzzing envolve trés elementos principais: (i) o programa sob
teste, conhecido como Program Under Test (PUT); (ii) um conjunto de entradas, chama-
das de seeds, que servem como ponto de partida; e (iii) o fuzzer, a ferramenta responsdvel
por gerar novas entradas e monitorar a execucdo do programa. Durante a execucdo, o
fuzzer busca gatilhos para falhas como crashes, violagdes de memoria, estouros de buffer
e erros de validacdo de entrada.

Tipos de Fuzzing

Segundo Manes et al. [Manes et al. 2021], o fuzzing pode ser classificado em trés catego-
rias principais:

* Black-box: trata o programa como uma “‘caixa-preta”’, sem conhecimento interno
de sua implementacdo. As entradas sdo geradas de maneira aleatdria ou com
mutagdes simples, e as falhas sdo observadas apenas pela saida ou comportamento
externo. B simples e escaldvel, mas apresenta baixa eficicia.

* White-box: tem acesso completo ao cédigo-fonte e aplica técnicas de andlise
simbdlica e de fluxo de dados para guiar a geragdo de entradas. Apresenta alta
taxa de cobertura, mas sofre com o problema da explosdo de estados, tornando-se
caro e de dificil aplicacdo em programas grandes.

* Grey-box: combina as duas abordagens anteriores, utilizando informagdes parci-
ais, como métricas de cobertura de c6digo, para guiar as mutagdes. Ferramentas
como o AFL (American Fuzzy Lop) tornaram essa abordagem a mais popular, por
equilibrar eficicia e custo.

Abordagens de geraciao de entradas

A qualidade e eficdcia do fuzzing dependem fortemente de como as entradas sdo geradas.
Existem duas estratégias principais [Godefroid 2020, Huang et al. 2024]:

* Fuzzing baseado em mutacao: inicia-se a partir de seeds vélidas, que sao mo-
dificadas de forma aleatdria ou sistemédtica. Operacdes tipicas incluem a inversao
de bits, insercdo de bytes especiais, duplicacdo ou remocao de blocos inteiros e
alteracoes aritméticas em valores. Essa abordagem € eficiente quando h4 seeds de
alta qualidade.

* Fuzzing baseado em geracao: cria entradas do zero a partir de uma gramética
formal ou modelos estruturais do formato de entrada aceito pelo programa. Essa
técnica € indicada para sistemas que exigem entradas complexas ou altamente
estruturadas, como compiladores ou interpretadores de linguagens.

Alguns trabalhos recentes combinam as duas estratégias, usando gramadticas para
gerar entradas iniciais e, em seguida, aplicando mutagdes para explorar variagdes adicio-
nais [Huang et al. 2024, Xia et al. 2024].

2.4. Fuzzing com LLMs

A incorporagdao de LLMs ao processo de fuzzing representa uma evolucdo das abor-
dagens tradicionais. Diferentemente de mutacdes simples, como alteracdo de bits
ou bytes, os LLMs conseguem aplicar transformagdes semanticamente relevantes em
scripts de programacgdo, aumentando as chances de descobrir falhas mais profundas
[Huang et al. 2024, Deckker and Sumanasekara 2025]. As principais estratégias incluem:

* Geracao direta de entradas: o LLM cria scripts inteiros a partir de descricdes ou
instrucoes;

* Mutacao guiada por LLM: o modelo recebe um script valido e o modifica pre-
servando sua sintaxe e adicionando varia¢cdes mais ricas.

Essa integracdo amplia a cobertura dos testes e facilita a adaptagcdo a novas versoes
de linguagens, uma vez que os LLMs nao dependem de gramaticas manualmente defini-
das. Assim, o fuzzing apoiado por LLMs se apresenta como um caminho promissor para
aumentar a eficicia da detecc@o de vulnerabilidades em linguagens como Lua.

3. Trabalhos Relacionados

Diversos estudos recentes tém explorado a integracdo de Modelos de Linguagem de
Grande Escala em técnicas de fuzzing, propondo solu¢des que ampliam a capacidade
de descoberta de falhas em compiladores e interpretadores. O Fuzz4All [Xia et al. 2024]
apresenta um fuzzer universal orientado por LLMs, capaz de gerar testes diversificados
para multiplas linguagens. Sua principal contribui¢do € o uso de autoprompting e um
ciclo iterativo de geracdo e mutacdo, que resultaram em melhorias significativas de cober-
tura e descoberta de bugs em diversos compiladores como GCC e Clang.

O trabalho Rust-Twins [Yang et al. 2024] aplica mutacdo baseada em LLMs no
contexto da linguagem Rust. Para superar as restri¢des sintdticas da linguagem, o método
utiliza mutacdes especificas guiadas por prompts e técnicas de geracdo de macros duplas
para testes diferenciais. Os resultados mostraram maior cobertura e a identificacdo de
vulnerabilidades inéditas no compilador rustc.

No contexto de JavaScript, o0 CovRL-Fuzz [Eom et al. 2024] combina mutagdes
guiadas por LLM com aprendizado por reforco e métricas de cobertura. A técnica de
mutation by mask demonstrou eficicia na criacdo de casos de teste vélidos e na detecc¢ao
de vulnerabilidades de seguranca, superando fuzzers tradicionais.

Ja o FlowFusion [Jiang et al. 2025] propde a fusdo de fluxos de dados para gerar
novos casos de teste a partir da suite oficial do PHP. A abordagem, aliada a mutacdes e
recombinacdes, possibilitou a descoberta de centenas de bugs no interpretador da lingua-
gem.

Por fim, o MetaMut [Ou et al. 2024] apresenta um framework para criacdo au-
tomadtica de operadores de mutagdo utilizando LLMs. Em vez de apenas gerar entradas,
o sistema sintetiza mutadores reutilizdveis, que foram aplicados com sucesso em compi-
ladores robustos como GCC e Clang, resultando em ampla cobertura e na descoberta de
falhas criticas.

Embora esses trabalhos demonstrem a viabilidade e a relevancia do uso de LLMs
no fuzzing, a maioria foca em linguagens de compilagdo estitica como C/C++ e Rust.
A presente pesquisa diferencia-se ao focar na linguagem Lua, um ambiente de script
dinamico raramente explorado na literatura de fuzzing. Nossa contribui¢dao nao se limita
a aplicar técnicas existentes, mas em desenvolver uma metodologia de engenharia de
prompts especializada para explorar as particularidades de Lua (como tabelas, metatables
e corrotinas) e avaliar se mutagcdes semanticamente ricas, guiadas por LLM, podem de fato
ampliar a eficicia na identificacdo de vulnerabilidades em interpretadores de linguagens
dindmicas.

4. Metodologia

O objetivo € desenvolver e avaliar um prototipo de fuzzer para scripts em Lua baseado
em mutacdo orientada por LLMs. O processo serd dividido em fases sequenciais, a serem
realizadas entre julho a dezembro de 2025, que incluirdo a revisao de literatura e a andlise
experimental dos resultados.

4.1. Visao Geral

A abordagem adota um ciclo iterativo de geracdo e execucao de testes, conforme ilustrado
na Figura 1. Nesse ciclo, um conjunto de seeds (scripts Lua validos) € utilizado como
ponto de partida para as mutagdes realizadas pelo LLM. Cada script mutado € entio exe-
cutado no interpretador Lua, com monitoramento de falhas e retroalimentagdo do ciclo.

Conteudo Inicial: Contém a suite de testes oficial da
‘inguagen Lua

Conteddo Dindmico: E continuamente alimentado com novos

scripts Lua "interessantes” que sdo gerados durante o
processo de fuzzing

Fila de Prioridade: Contém uma sub-lista de sementes
1 que ja levaram a crashes e que devem ser escolhidas com
naior frequéncia
Pool de 1
Sementes TInspiragdo: FlowFusion

2 gias de Mutagdo)

" Coleta dos

0 resultado da execugéo: Resultados
+ Crash/Timeout: 0 fuzzer detectou uma falha. Este é o melhor A
resultado. 5 “’P”mps
+Dado Invalido: 0 script gerado contém um erro de sintaxe e é « Refatoragdo Semantica: Pede ao LLM para reescrever uma
descartado. parte do codigo de forma diferente, mas mantendo a

Execugdo Hutagio 3 funcionalidade
+ Dado V4lido (sem crash): 0 script executou normalmente. 5 no Atvo com LLM

« Mutagdo Focada em Lua: Pede ao LLM para introduzir ou
ifi isti ificas da Linguagem

- Adigdo de Complexidade: Pede ao LLM para adicionar novas

. N fungdes, l6gica condicional ou tratamento de erros ao

Antes de executar, o script mutado pode ser enriquecido. 0 fuzzer e o,

chama fungdes Lua aleatdrias com as varidveis dos scripts. 2
- . Inspiragdo: Rust-twins , Fuzz4ALL

Inspiragdo: FlowFusion

Execugdo: 0 script final é executado usando o interpretador Lua StarCoder2 via Ollama, rodando localmente, processa o
alvo com AddressSanitizer (erros de meméria) e o prompt recebido e gera um novo script Lua, agora
UndefinedBehaviorSanitizer (comportamentos indefinidos) modificado. Este é o "Script Mutado". 3

Monitoramento: em busca de crashes e timeouts. 4

Figura 1. Ciclo de fuzzing.

O ciclo funciona em etapas sucessivas € continuas:

1. Selecao da semente: um script Lua vélido é escolhido de um repositério inicial de
programas de referéncia e inspirado no FlowFusion ird conter a suite de teste ofi-
cial da linguagem. Essas sementes funcionam como ponto de partida para o pro-
cesso de mutagdo. O Pool de sementes € continuamente alimentando por scripts
mutados “interessantes”. E uma sub-lista para sementes que levaram a falha para
serem escolhidas com mais frequéncia.

2. Engenharia de Prompts: inspirado pelo Rust-twins e no Fuzz4All haverd em
torno de 10 prompts separados por mutacao focada em Lua, refatoragdo semantica
e adicdo de complexidade, que serd escolhido aleatoriamente para mutar o script.

3. Mutacao via LLM: o script € enviado ao modelo starcoder2, executado no Ol-
lama, junto ao prompt que orienta o0 modelo a gerar uma variante sintatica ou
semanticamente distinta.

4. Execucao no interpretador Lua: motivado pelo FlowFusion antes de executar,
a semente € enriquecida com fun¢des Lua aleatdrias utilizando as variaveis ja
existentes e assim o script mutado € executado no ambiente de testes. Nessa etapa,
os monitores Asan (Address Sanitizer) e o UBSan (Undefined Behavior Sanitizer)
irdo reportar falhas, erros de memoria e desvios de comportamento.

5. Coleta e analise de resultados: os resultados da execucdo sdo registrados,
classificando os casos em falhas validas, falhas descartadas (erros sintaticos) e
execugoes corretas.

6. Retroalimentacao do ciclo: se houve falha, a semente original que levou a falha
¢ adicionada a Fila de Prioridade no Pool de Sementes, e o proprio script mutante
que causou a falha pode ser adicionado ao pool principal, pois € um bom ponto
de partida para futuras mutagdes. J4 se executou corretamente, o script € avaliado
e, se for considerado “interessante”(e.g., aumentou a cobertura), é adicionado de
volta ao Pool de Sementes para aumentar a diversidade, inspirado no CovRL-Fuzz.

Esse fluxo ciclico garante que o processo de fuzzing ndo se limita a mutagdes
simples e repetitivas. Ao contrdrio, ele explora de maneira incremental novos compor-
tamentos do interpretador Lua, ampliando as chances de detectar vulnerabilidades ou in-
consisténcias que ndo seriam encontradas por técnicas tradicionais.

4.2. Fases
A execucdo da pesquisa foi organizada nas seguintes fases:

» Fase 1: Revisao Bibliografica - levantamento tedrico sobre fuzzing, LLMs e a
linguagem Lua, além da anélise de trabalhos correlatos.

* Fase 2: Defini¢cdo do Ambiente Experimental - preparacdo do ambiente de testes,
incluindo a selecao da versao do interpretador Lua, os mecanismos de monitora-
mento de falhas ASan e UBSan, as métricas de cobertura utilizando o LuaCov e a
configuracdo do modelo de linguagem escolhido.

* Fase 3: Desenvolvimento do fuzzer - construgdo do protdtipo capaz de operar em
um ciclo automético. O sistema envia scripts Lua ao LLM com prompts projetados
para guiar as mutagdes de forma sintdtica e semanticamente relevante.

* Fase 4: Geracdo e Execucdo dos Testes - aplicacdo do fuzzer sobre um conjunto
de programas Lua de referéncia. Para fins comparativos, também serd executado
um fuzzer de baseline com mutagdes niao guiadas por LLM.

* Fase 5: Andlise dos Resultados - compara¢do das métricas coletadas, como
nimero de falhas encontradas, diversidade dos testes e cobertura de cddigo atin-
gida. O objetivo € validar se o uso do LLLM amplia a eficicia da abordagem.

4.3. Ambiente Experimental

Os experimentos serdo conduzidos em um ambiente controlado, utilizando a versao Lua
5.4 como interpretador alvo. O monitoramento de falhas serd realizado por meio da
andlise de cddigos de erro, sinais de interrupcdo (como segmentation faults) e o uso
das ferramentas Asan (Address Sanitizer) e UBSan (Undefined Behavior Sanitizer), de
sanitiza¢do. O modelo de linguagem utilizado sera o starcoder2, executado localmente
através da plataforma Ollama para garantir a reprodutibilidade dos resultados.

4.4. Métricas de Avaliacao

A validacdo da hipotese serd realizada por meio da andlise quantitativa das seguintes
métricas, alinhadas com a literatura de fuzzing [Godefroid 2020, Manes et al. 2021]:

« Nimero de Falhas Unicas Descobertas: Quantidade de crashes ou comporta-
mentos andmalos distintos identificados por cada abordagem.

* Cobertura de Cédigo: Medida utilizando a ferramenta luacov, analisando a por-
centagem de linhas e ramos (branches) do cédigo-fonte das seeds e de bibliotecas
padrao que foram executados. Seréd observada a taxa de crescimento da cobertura
ao longo do tempo.

» Taxa de Geracao de Entradas Validas: Percentual de scripts mutados que sao
sintaticamente validos e executdveis pelo interpretador Lua. Espera-se que a abor-
dagem com LLLM tenha uma 6tima taxa, otimizando o tempo de teste.

4.5. Validacao

A validagdo da metodologia serd realizada por meio da comparacao sistematica entre os
resultados do fuzzer orientado por LLM e o fuzzer de baseline, utilizando as métricas
definidas anteriormente. Espera-se demonstrar que a incorporacao de um modelo de lin-
guagem amplia a diversidade e a relevancia das mutacdes, resultando em uma maior ca-
pacidade de identificar vulnerabilidades em scripts Lua.

5. Consideracoes Finais e Trabalhos Futuros

Neste trabalho foi apresentada uma proposta de fuzzer baseado em mutagdo para a lin-
guagem Lua, apoiado por Modelos de Linguagem de Grande Escala. A fundamentagao
tedrica mostrou como a combinacdo entre fuzzing e LLMs surge como uma abordagem
promissora para superar limitacdes de técnicas tradicionais, permitindo mutacdes seman-
ticamente mais ricas e potencialmente mais eficazes na deteccao de falhas.

A metodologia descrita estabeleceu um ciclo iterativo, em que codigos em Lua
sdo selecionados, mutados por meio de um modelo de linguagem, executados no inter-
pretador e analisados quanto a ocorréncia de falhas. Esse processo continuo visa ampliar
a diversidade e a relevancia das entradas de teste, explorando caracteristicas proprias da
linguagem Lua. O diferencial em relagdo a trabalhos correlatos esta justamente no foco
dessa linguagem pouco explorada em pesquisas de teste e na ado¢do de processos rele-
vantes levantados.

Como trabalhos futuros, destacam-se as seguintes dire¢oes:

» Exploracao de técnicas de prompt engineering: investigar diferentes estratégias
de construcido de prompts para guiar mutagdes especificas em elementos carac-
teristicos da linguagem Lua, como tabelas, metatables e corrotinas. A intengdo é
avaliar como diferentes estilos de prompt podem influenciar a qualidade e a re-
levancia semantica das mutacdes geradas.

* Definicao de métricas de avaliacio mais abrangentes: além da cobertura de
codigo, propor métricas que contemplem aspectos de seguranca, desempenho e
manutencdo do cédigo mutado. Essas métricas podem contribuir para uma andlise
mais completa da eficicia do fuzzer, indo além da simples detec¢do de falhas
superficiais.

* Generalizacao para outras linguagens de script: estender a abordagem para lin-
guagens com caracteristicas semelhantes, como JavaScript e Python, investigando
os desafios de adaptacdo e avaliando o potencial de reutilizacio do método em
diferentes contextos. Essa expansiao pode demonstrar a versatilidade e o alcance
da proposta.

* Integracao em pipelines de desenvolvimento e teste: estudar formas de incorpo-
rar o fuzzer a ambientes de desenvolvimento reais, como ferramentas de integracao
continua (CI/CD). Essa integracdo permitiria que mutacdes e testes fossem execu-
tados automaticamente durante o ciclo de desenvolvimento, ampliando o impacto
pratico da abordagem.

Dessa forma, espera-se que este trabalho contribua tanto para a area de fuzzing
quanto para a aplicacdo pritica de LLMs em testes automatizados. O avango nessa li-
nha de pesquisa pode levar ao desenvolvimento de ferramentas mais eficazes, capazes de
fortalecer a confiabilidade e a segurancga de softwares em diferentes dominios.

Referéncias

Deckker, D. and Sumanasekara, S. (2025). The role of chatgpt in software development
and code generation: A review of opportunities, challenges, and future directions. 7e-
chRxiv Preprints. Preprint, disponivel em: https://www.researchgate.net/
publication/391807454.

Eom, J., Jeong, S., and Kwon, T. (2024). Covrl: Fuzzing javascript engines with
coverage-guided reinforcement learning for llm-based mutation. arXiv preprint ar-
Xiv:2402.12222v1.

Godefroid, P. (2020). Fuzzing: Hack, art, and science. Communications of the ACM,
63(2):70-76.

Huang, Y., Zuo, Z., Sun, Z., Yu, L., and Zhang, T. (2024). Large language models based
fuzzing techniques: A survey. arXiv preprint arXiv:2401.08753.

Ierusalimschy, R. (2016). Programming in Lua. Feisty Duck, 4th edition.

Ierusalimschy, R. (2020). Lua 5.4 Reference Manual. PUC-Rio. Documentag¢do oficial
da linguagem Lua.

Jiang, Y., Zhang, C., Ruan, B., Liu, J., Rigger, M., Yap, R. H. C., and Liang, Z. (2025).
Fuzzing the php interpreter via dataflow fusion. arXiv preprint arXiv:2410.21713v2.

Lua.org (2025). About lua. Acesso em May. 2025.

Manes, V. J. M., Han, H., Han, C., Cha, S. K., Egele, M., Schwartz, E. J., and Woo, M.
(2021). The art, science, and engineering of fuzzing: A survey. IEEE Transactions on
Software Engineering, 47(11):2312-2331.

Marbux (2021). Where lua is used. Lista arquivada de casos de uso da linguagem Lua.

Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Akhtar, N., Bar-
nes, N., and Mian, A. (2024). A comprehensive overview of large language models.
Elsevier Preprint. Preprint, disponivel em: https://arxiv.org/abs/2307.
06435v10.

Ou, X, Li, C., Jiang, Y., and Xu, C. (2024). The mutators reloaded: Fuzzing compilers
with large language model generated mutation operators. In Proceedings of the 29th

ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’24), pages 298-312, La Jolla, CA, USA. ACM.

Siberoloji (2021). Basics of lua programming for nmap nse. Introdugio prética ao uso de
Lua com Nmap.

Wang, J. and Chen, Y. (2023). A review on code generation with llms: Application and
evaluation. In Proceedings of the 2023 IEEE International Conference on Medical
Artificial Intelligence (MedAl), pages 284-290, Shanghai, China. IEEE.

Xia, C. S., Paltenghi, M., Tian, J. L., Pradel, M., and Zhang, L. (2024). Fuzz4all: Uni-
versal fuzzing with large language models. In Proceedings of the 46th International
Conference on Software Engineering (ICSE). IEEE/ACM.

Yang, W., Gao, C., Liu, X., Li, Y., and Xue, Y. (2024). Rust-twins: Automatic rust com-
piler testing through program mutation and dual macros generation. In Proceedings
of the 39th IEEE/ACM International Conference on Automated Software Engineering
(ASE). ACM.

