
Explorando o Uso de LLMs para Fuzzing de Código Lua:
Metodologia e Primeiras Etapas

Richard Facin Souza1, Samuel da Silva Feitosa1

1Universidade Federal da Fronteira Sul

richard.souza@estudante.uffs.edu.br, samuel.feitosa@uffs.edu.br

Abstract. Fuzzing is a crucial technique for finding vulnerabilities in software,
but its effectiveness in scripting languages such as Lua is limited by the difficulty
of generating semantically valid test inputs. This work proposes a methodology
that uses Large Language Models (LLMs) to generate semantically rich mutati-
ons for fuzzing Lua scripts. Our approach involves developing a fuzzer prototype
that leverages an LLM’s in-context learning capabilities to create syntactically
and semantically plausible code variations, aiming to explore complex execu-
tion paths more effectively. We will validate this methodology by comparing its
ability to discover vulnerabilities and increase code coverage against traditio-
nal fuzzing techniques, expecting to offer a significant contribution to automated
software testing and the security of systems that use Lua.

Resumo. O fuzzing é uma técnica crucial para encontrar vulnerabilidades em
software, mas sua eficácia em linguagens de script como Lua é limitada pela
dificuldade de gerar entradas de teste semanticamente válidas. Este trabalho
propõe uma metodologia que utiliza Modelos de Linguagem de Grande Escala
(LLMs) para gerar mutações semanticamente ricas para o fuzzing de scripts
Lua. Nossa abordagem envolve o desenvolvimento de um protótipo de fuzzer
que explora a capacidade de aprendizado em contexto de um LLM para criar
variações de código sintática e semanticamente plausı́veis, visando explorar
caminhos de execução complexos de forma mais eficaz. Validaremos esta meto-
dologia comparando sua capacidade de descobrir vulnerabilidades e aumentar
a cobertura de código em relação a técnicas de fuzzing tradicionais, esperando
oferecer uma contribuição significativa para o teste de software automatizado e
a segurança de sistemas que utilizam Lua.

1. Introdução

A linguagem Lua é conhecida por ser leve, eficiente e de fácil integração, sendo am-
plamente utilizada em áreas como desenvolvimento de jogos, sistemas embarcados e
automação de tarefas [Lua.org 2025, Ierusalimschy 2016, Siberoloji 2021]. Devido à sua
popularidade e aplicabilidade, garantir a confiabilidade e a segurança de aplicações de-
senvolvidas em Lua é uma preocupação crescente, principalmente quando se considera o
impacto potencial de falhas em ambientes crı́ticos.

Uma das formas mais eficazes de identificar vulnerabilities e falhas em softwares
é por meio da técnica de fuzzing, uma abordagem que se destaca pela capacidade de gerar
entradas inesperadas ou malformadas que exercitam diferentes caminhos de execução nos



programas [Godefroid 2020, Manès et al. 2021]. No entanto, o fuzzing tradicional, espe-
cialmente o baseado em mutação, enfrenta limitações importantes, como a dificuldade
de gerar mutações semanticamente relevantes ou de explorar caminhos menos triviais no
código [Huang et al. 2024, Eom et al. 2024].

Recentemente, os Modelos de Linguagem de Grande Escala (LLMs, do
inglês Large Language Models) consolidaram-se como ferramentas promissoras na
geração de código, incluindo a criação de casos de teste [Wang and Chen 2023,
Deckker and Sumanasekara 2025]. No contexto do fuzzing, esses modelos apresentam
um potencial significativo para melhorar a geração de entradas, permitindo mutações
mais inteligentes e direcionadas, que consideram tanto a sintaxe quanto a semântica
da linguagem [Huang et al. 2024, Xia et al. 2024]. Esse avanço abre espaço para su-
perar limitações históricas das técnicas convencionais e explorar novas formas de
automatização de testes.

Neste trabalho, propomos e avaliamos uma metodologia para a geração de
mutações semanticamente ricas em fuzzing, utilizando LLMs como um motor de
transformação de código. Diferentemente de abordagens tradicionais que se baseiam em
alterações a nı́vel de bytes, nossa técnica explora a capacidade dos LLMs de compreen-
der a sintaxe e a semântica do código-fonte para criar variações complexas e válidas,
que têm maior potencial de descobrir vulnerabilidades profundas [Huang et al. 2024,
Xia et al. 2024].

Para validar essa abordagem, desenvolvemos uma idei de looping de fuzzing que
aplica a mutação guiada por LLM especificamente à linguagem Lua. A escolha de Lua
como caso de estudo se justifica por suas caracterı́sticas dinâmicas e seu uso prevalente
em sistemas crı́ticos onde a segurança é primordial [Ierusalimschy 2016, Marbux 2021].
O objetivo é avaliar experimentalmente se essa integração resulta em um aumento men-
surável na cobertura de código e na taxa de descoberta de erros quando comparada a
um fuzzer de mutação tradicional. Com isso, esperamos oferecer uma contribuição me-
todológica para a área de testes automatizados, demonstrando como a especialização de
prompts pode otimizar o fuzzing para linguagens de script especı́ficas.

2. Fundamentação Teórica
Esta seção apresenta a base conceitual necessária para compreender a proposta do tra-
balho. São abordados a linguagem de programação Lua, Modelos de Linguagem de
Grande Escala e da técnica de fuzzing, com foco no uso combinado de LLMs como apoio
à mutação em testes automatizados.

2.1. Linguagem Lua
Lua é uma linguagem de programação interpretada, eficiente e leve, desenvolvida no Bra-
sil na Pontifı́cia Universidade Católica do Rio de Janeiro (PUC-Rio). Desde sua criação
em 1993, destaca-se por sua simplicidade sintática, portabilidade e capacidade de ex-
tensão [Ierusalimschy 2016, Ierusalimschy 2020, Lua.org 2025]. Projetada para ser uma
glue language, integra-se facilmente a programas em C/C++ e é amplamente usada em
jogos, sistemas embarcados e aplicações de automação.

A linguagem é dinamicamente tipada e possui uma única estrutura de dados nativa,
a table, que pode representar vetores, registros ou objetos com grande flexibilidade. In-



clui ainda conceitos como funções de primeira classe, coleta de lixo automática e suporte
a corrotinas, recursos que favorecem concorrência cooperativa e programação orientada
a eventos [Ierusalimschy 2016]. Além disso, seu design minimalista e modular contribui
para um baixo consumo de memória e processamento, o que a torna adequada para dis-
positivos com recursos limitados e sistemas de tempo real, um dos fatores que explica sua
forte presença em softwares embarcados [Lua.org 2025, Siberoloji 2021].

Outro aspecto relevante é sua curva de aprendizado relativamente suave, favo-
recida pela sintaxe simples e documentação acessı́vel, o que estimula sua adoção tanto
em ambientes acadêmicos quanto industriais. A comunidade ativa e a ampla dispo-
nibilidade de bibliotecas também reforçam sua utilização em diferentes domı́nios, do
desenvolvimento de jogos digitais até ferramentas de segurança e automação de redes
[Ierusalimschy 2016, Marbux 2021]. Seu pequeno tamanho e eficiência explicam sua
adoção em motores de jogos, plataformas como Roblox e ferramentas como Nmap,
consolidando-se como uma linguagem de uso global.

2.2. Modelos de Linguagem de Grande Escala (LLMs) para Fuzzing

Modelos de Linguagem de Grande Escala (LLMs) são redes neurais profundas, geral-
mente baseadas na arquitetura Transformer, treinadas com volumes massivos de dados
textuais e de código-fonte [Naveed et al. 2024]. Essa escala permite que desenvolvam ca-
pacidades emergentes, como a compreensão da sintaxe, semântica e estruturas lógicas de
linguagens de programação [Wang and Chen 2023, Deckker and Sumanasekara 2025].

No contexto de fuzzing, o potencial dos LLMs reside em sua capacidade de atuar
como ”motores de mutação”, superando as limitações dos métodos tradicionais. Suas
principais caracterı́sticas aplicadas a este trabalho são:

• Aprendizado em Contexto (In-Context Learning): LLMs podem gerar
variações de um script de entrada com base em instruções em linguagem natu-
ral (prompts), sem a necessidade de retreinamento. Isso permite a criação de
mutações direcionadas que exploram lógicas de programa complexas de forma
controlada [Xia et al. 2024].

• Geração de Código Sintaticamente Válido: Treinados com milhões de exem-
plos de código, os LLMs têm uma alta probabilidade de gerar mutações que res-
peitam a gramática da linguagem alvo. Isso reduz o número de casos de teste
inválidos, que seriam descartados prematuramente pelo interpretador, otimizando
o tempo de fuzzing [Ou et al. 2024].

• Exploração de Casos de Borda: A diversidade de padrões de código presentes
nos dados de treinamento permite que os LLMs gerem mutações que simulam
cenários de borda ou usos incomuns de APIs, que dificilmente seriam criados por
mutadores baseados em regras ou aleatoriedade [Huang et al. 2024].

Apesar de seu potencial, os LLMs apresentam desafios, como a possibilidade de
gerar código plausı́vel mas funcionalmente incorreto (”alucinação”) e a forte dependência
da qualidade da engenharia de prompts [Naveed et al. 2024]. Nossa metodologia busca
mitigar esses riscos através de um ciclo de validação contı́nua e do desenvolvimento de
prompts especializados para a linguagem Lua.



2.3. Fuzzing
O fuzzing é uma técnica de teste de software que consiste em submeter um programa a
entradas inesperadas, inválidas ou malformadas, com o objetivo de revelar falhas, vul-
nerabilidades ou comportamentos incorretos [Godefroid 2020, Manès et al. 2021]. Ori-
ginalmente introduzida por Miller et al. na década de 1990, ao testar utilitários UNIX
com entradas aleatórias, a técnica tornou-se uma das mais eficazes para a detecção auto-
matizada de erros e é atualmente amplamente utilizada tanto pela academia quanto pela
indústria [Manès et al. 2021].

O processo básico de fuzzing envolve três elementos principais: (i) o programa sob
teste, conhecido como Program Under Test (PUT); (ii) um conjunto de entradas, chama-
das de seeds, que servem como ponto de partida; e (iii) o fuzzer, a ferramenta responsável
por gerar novas entradas e monitorar a execução do programa. Durante a execução, o
fuzzer busca gatilhos para falhas como crashes, violações de memória, estouros de buffer
e erros de validação de entrada.

Tipos de Fuzzing

Segundo Manès et al. [Manès et al. 2021], o fuzzing pode ser classificado em três catego-
rias principais:

• Black-box: trata o programa como uma “caixa-preta”, sem conhecimento interno
de sua implementação. As entradas são geradas de maneira aleatória ou com
mutações simples, e as falhas são observadas apenas pela saı́da ou comportamento
externo. É simples e escalável, mas apresenta baixa eficácia.

• White-box: tem acesso completo ao código-fonte e aplica técnicas de análise
simbólica e de fluxo de dados para guiar a geração de entradas. Apresenta alta
taxa de cobertura, mas sofre com o problema da explosão de estados, tornando-se
caro e de difı́cil aplicação em programas grandes.

• Grey-box: combina as duas abordagens anteriores, utilizando informações parci-
ais, como métricas de cobertura de código, para guiar as mutações. Ferramentas
como o AFL (American Fuzzy Lop) tornaram essa abordagem a mais popular, por
equilibrar eficácia e custo.

Abordagens de geração de entradas

A qualidade e eficácia do fuzzing dependem fortemente de como as entradas são geradas.
Existem duas estratégias principais [Godefroid 2020, Huang et al. 2024]:

• Fuzzing baseado em mutação: inicia-se a partir de seeds válidas, que são mo-
dificadas de forma aleatória ou sistemática. Operações tı́picas incluem a inversão
de bits, inserção de bytes especiais, duplicação ou remoção de blocos inteiros e
alterações aritméticas em valores. Essa abordagem é eficiente quando há seeds de
alta qualidade.

• Fuzzing baseado em geração: cria entradas do zero a partir de uma gramática
formal ou modelos estruturais do formato de entrada aceito pelo programa. Essa
técnica é indicada para sistemas que exigem entradas complexas ou altamente
estruturadas, como compiladores ou interpretadores de linguagens.



Alguns trabalhos recentes combinam as duas estratégias, usando gramáticas para
gerar entradas iniciais e, em seguida, aplicando mutações para explorar variações adicio-
nais [Huang et al. 2024, Xia et al. 2024].

2.4. Fuzzing com LLMs
A incorporação de LLMs ao processo de fuzzing representa uma evolução das abor-
dagens tradicionais. Diferentemente de mutações simples, como alteração de bits
ou bytes, os LLMs conseguem aplicar transformações semanticamente relevantes em
scripts de programação, aumentando as chances de descobrir falhas mais profundas
[Huang et al. 2024, Deckker and Sumanasekara 2025]. As principais estratégias incluem:

• Geração direta de entradas: o LLM cria scripts inteiros a partir de descrições ou
instruções;

• Mutação guiada por LLM: o modelo recebe um script válido e o modifica pre-
servando sua sintaxe e adicionando variações mais ricas.
Essa integração amplia a cobertura dos testes e facilita a adaptação a novas versões

de linguagens, uma vez que os LLMs não dependem de gramáticas manualmente defini-
das. Assim, o fuzzing apoiado por LLMs se apresenta como um caminho promissor para
aumentar a eficácia da detecção de vulnerabilidades em linguagens como Lua.

3. Trabalhos Relacionados
Diversos estudos recentes têm explorado a integração de Modelos de Linguagem de
Grande Escala em técnicas de fuzzing, propondo soluções que ampliam a capacidade
de descoberta de falhas em compiladores e interpretadores. O Fuzz4All [Xia et al. 2024]
apresenta um fuzzer universal orientado por LLMs, capaz de gerar testes diversificados
para múltiplas linguagens. Sua principal contribuição é o uso de autoprompting e um
ciclo iterativo de geração e mutação, que resultaram em melhorias significativas de cober-
tura e descoberta de bugs em diversos compiladores como GCC e Clang.

O trabalho Rust-Twins [Yang et al. 2024] aplica mutação baseada em LLMs no
contexto da linguagem Rust. Para superar as restrições sintáticas da linguagem, o método
utiliza mutações especı́ficas guiadas por prompts e técnicas de geração de macros duplas
para testes diferenciais. Os resultados mostraram maior cobertura e a identificação de
vulnerabilidades inéditas no compilador rustc.

No contexto de JavaScript, o CovRL-Fuzz [Eom et al. 2024] combina mutações
guiadas por LLM com aprendizado por reforço e métricas de cobertura. A técnica de
mutation by mask demonstrou eficácia na criação de casos de teste válidos e na detecção
de vulnerabilidades de segurança, superando fuzzers tradicionais.

Já o FlowFusion [Jiang et al. 2025] propõe a fusão de fluxos de dados para gerar
novos casos de teste a partir da suı́te oficial do PHP. A abordagem, aliada a mutações e
recombinações, possibilitou a descoberta de centenas de bugs no interpretador da lingua-
gem.

Por fim, o MetaMut [Ou et al. 2024] apresenta um framework para criação au-
tomática de operadores de mutação utilizando LLMs. Em vez de apenas gerar entradas,
o sistema sintetiza mutadores reutilizáveis, que foram aplicados com sucesso em compi-
ladores robustos como GCC e Clang, resultando em ampla cobertura e na descoberta de
falhas crı́ticas.



Embora esses trabalhos demonstrem a viabilidade e a relevância do uso de LLMs
no fuzzing, a maioria foca em linguagens de compilação estática como C/C++ e Rust.
A presente pesquisa diferencia-se ao focar na linguagem Lua, um ambiente de script
dinâmico raramente explorado na literatura de fuzzing. Nossa contribuição não se limita
a aplicar técnicas existentes, mas em desenvolver uma metodologia de engenharia de
prompts especializada para explorar as particularidades de Lua (como tabelas, metatables
e corrotinas) e avaliar se mutações semanticamente ricas, guiadas por LLM, podem de fato
ampliar a eficácia na identificação de vulnerabilidades em interpretadores de linguagens
dinâmicas.

4. Metodologia
O objetivo é desenvolver e avaliar um protótipo de fuzzer para scripts em Lua baseado
em mutação orientada por LLMs. O processo será dividido em fases sequenciais, a serem
realizadas entre julho a dezembro de 2025, que incluirão a revisão de literatura e a análise
experimental dos resultados.

4.1. Visão Geral
A abordagem adota um ciclo iterativo de geração e execução de testes, conforme ilustrado
na Figura 1. Nesse ciclo, um conjunto de seeds (scripts Lua válidos) é utilizado como
ponto de partida para as mutações realizadas pelo LLM. Cada script mutado é então exe-
cutado no interpretador Lua, com monitoramento de falhas e retroalimentação do ciclo.

Figura 1. Ciclo de fuzzing.

O ciclo funciona em etapas sucessivas e contı́nuas:

1. Seleção da semente: um script Lua válido é escolhido de um repositório inicial de
programas de referência e inspirado no FlowFusion irá conter a suite de teste ofi-
cial da linguagem. Essas sementes funcionam como ponto de partida para o pro-
cesso de mutação. O Pool de sementes é continuamente alimentando por scripts
mutados ”interessantes”. E uma sub-lista para sementes que levaram a falha para
serem escolhidas com mais frequência.

2. Engenharia de Prompts: inspirado pelo Rust-twins e no Fuzz4All haverá em
torno de 10 prompts separados por mutação focada em Lua, refatoração semântica
e adição de complexidade, que será escolhido aleatoriamente para mutar o script.



3. Mutação via LLM: o script é enviado ao modelo starcoder2, executado no Ol-
lama, junto ao prompt que orienta o modelo a gerar uma variante sintática ou
semanticamente distinta.

4. Execução no interpretador Lua: motivado pelo FlowFusion antes de executar,
a semente é enriquecida com funções Lua aleatórias utilizando as variáveis já
existentes e assim o script mutado é executado no ambiente de testes. Nessa etapa,
os monitores Asan (Address Sanitizer) e o UBSan (Undefined Behavior Sanitizer)
irão reportar falhas, erros de memória e desvios de comportamento.

5. Coleta e análise de resultados: os resultados da execução são registrados,
classificando os casos em falhas válidas, falhas descartadas (erros sintáticos) e
execuções corretas.

6. Retroalimentação do ciclo: se houve falha, a semente original que levou à falha
é adicionada à Fila de Prioridade no Pool de Sementes, e o próprio script mutante
que causou a falha pode ser adicionado ao pool principal, pois é um bom ponto
de partida para futuras mutações. Já se executou corretamente, o script é avaliado
e, se for considerado ”interessante”(e.g., aumentou a cobertura), é adicionado de
volta ao Pool de Sementes para aumentar a diversidade, inspirado no CovRL-Fuzz.

Esse fluxo cı́clico garante que o processo de fuzzing não se limita a mutações
simples e repetitivas. Ao contrário, ele explora de maneira incremental novos compor-
tamentos do interpretador Lua, ampliando as chances de detectar vulnerabilidades ou in-
consistências que não seriam encontradas por técnicas tradicionais.

4.2. Fases
A execução da pesquisa foi organizada nas seguintes fases:

• Fase 1: Revisão Bibliográfica - levantamento teórico sobre fuzzing, LLMs e a
linguagem Lua, além da análise de trabalhos correlatos.

• Fase 2: Definição do Ambiente Experimental - preparação do ambiente de testes,
incluindo a seleção da versão do interpretador Lua, os mecanismos de monitora-
mento de falhas ASan e UBSan, as métricas de cobertura utilizando o LuaCov e a
configuração do modelo de linguagem escolhido.

• Fase 3: Desenvolvimento do fuzzer - construção do protótipo capaz de operar em
um ciclo automático. O sistema envia scripts Lua ao LLM com prompts projetados
para guiar as mutações de forma sintática e semanticamente relevante.

• Fase 4: Geração e Execução dos Testes - aplicação do fuzzer sobre um conjunto
de programas Lua de referência. Para fins comparativos, também será executado
um fuzzer de baseline com mutações não guiadas por LLM.

• Fase 5: Análise dos Resultados - comparação das métricas coletadas, como
número de falhas encontradas, diversidade dos testes e cobertura de código atin-
gida. O objetivo é validar se o uso do LLM amplia a eficácia da abordagem.

4.3. Ambiente Experimental
Os experimentos serão conduzidos em um ambiente controlado, utilizando a versão Lua
5.4 como interpretador alvo. O monitoramento de falhas será realizado por meio da
análise de códigos de erro, sinais de interrupção (como segmentation faults) e o uso
das ferramentas Asan (Address Sanitizer) e UBSan (Undefined Behavior Sanitizer), de
sanitização. O modelo de linguagem utilizado será o starcoder2, executado localmente
através da plataforma Ollama para garantir a reprodutibilidade dos resultados.



4.4. Métricas de Avaliação

A validação da hipótese será realizada por meio da análise quantitativa das seguintes
métricas, alinhadas com a literatura de fuzzing [Godefroid 2020, Manès et al. 2021]:

• Número de Falhas Únicas Descobertas: Quantidade de crashes ou comporta-
mentos anômalos distintos identificados por cada abordagem.

• Cobertura de Código: Medida utilizando a ferramenta luacov, analisando a por-
centagem de linhas e ramos (branches) do código-fonte das seeds e de bibliotecas
padrão que foram executados. Será observada a taxa de crescimento da cobertura
ao longo do tempo.

• Taxa de Geração de Entradas Válidas: Percentual de scripts mutados que são
sintaticamente válidos e executáveis pelo interpretador Lua. Espera-se que a abor-
dagem com LLM tenha uma ótima taxa, otimizando o tempo de teste.

4.5. Validação

A validação da metodologia será realizada por meio da comparação sistemática entre os
resultados do fuzzer orientado por LLM e o fuzzer de baseline, utilizando as métricas
definidas anteriormente. Espera-se demonstrar que a incorporação de um modelo de lin-
guagem amplia a diversidade e a relevância das mutações, resultando em uma maior ca-
pacidade de identificar vulnerabilidades em scripts Lua.

5. Considerações Finais e Trabalhos Futuros
Neste trabalho foi apresentada uma proposta de fuzzer baseado em mutação para a lin-
guagem Lua, apoiado por Modelos de Linguagem de Grande Escala. A fundamentação
teórica mostrou como a combinação entre fuzzing e LLMs surge como uma abordagem
promissora para superar limitações de técnicas tradicionais, permitindo mutações seman-
ticamente mais ricas e potencialmente mais eficazes na detecção de falhas.

A metodologia descrita estabeleceu um ciclo iterativo, em que códigos em Lua
são selecionados, mutados por meio de um modelo de linguagem, executados no inter-
pretador e analisados quanto à ocorrência de falhas. Esse processo contı́nuo visa ampliar
a diversidade e a relevância das entradas de teste, explorando caracterı́sticas próprias da
linguagem Lua. O diferencial em relação a trabalhos correlatos está justamente no foco
dessa linguagem pouco explorada em pesquisas de teste e na adoção de processos rele-
vantes levantados.

Como trabalhos futuros, destacam-se as seguintes direções:

• Exploração de técnicas de prompt engineering: investigar diferentes estratégias
de construção de prompts para guiar mutações especı́ficas em elementos carac-
terı́sticos da linguagem Lua, como tabelas, metatables e corrotinas. A intenção é
avaliar como diferentes estilos de prompt podem influenciar a qualidade e a re-
levância semântica das mutações geradas.

• Definição de métricas de avaliação mais abrangentes: além da cobertura de
código, propor métricas que contemplem aspectos de segurança, desempenho e
manutenção do código mutado. Essas métricas podem contribuir para uma análise
mais completa da eficácia do fuzzer, indo além da simples detecção de falhas
superficiais.



• Generalização para outras linguagens de script: estender a abordagem para lin-
guagens com caracterı́sticas semelhantes, como JavaScript e Python, investigando
os desafios de adaptação e avaliando o potencial de reutilização do método em
diferentes contextos. Essa expansão pode demonstrar a versatilidade e o alcance
da proposta.

• Integração em pipelines de desenvolvimento e teste: estudar formas de incorpo-
rar o fuzzer a ambientes de desenvolvimento reais, como ferramentas de integração
contı́nua (CI/CD). Essa integração permitiria que mutações e testes fossem execu-
tados automaticamente durante o ciclo de desenvolvimento, ampliando o impacto
prático da abordagem.

Dessa forma, espera-se que este trabalho contribua tanto para a área de fuzzing
quanto para a aplicação prática de LLMs em testes automatizados. O avanço nessa li-
nha de pesquisa pode levar ao desenvolvimento de ferramentas mais eficazes, capazes de
fortalecer a confiabilidade e a segurança de softwares em diferentes domı́nios.

Referências

Deckker, D. and Sumanasekara, S. (2025). The role of chatgpt in software development
and code generation: A review of opportunities, challenges, and future directions. Te-
chRxiv Preprints. Preprint, disponı́vel em: https://www.researchgate.net/
publication/391807454.

Eom, J., Jeong, S., and Kwon, T. (2024). Covrl: Fuzzing javascript engines with
coverage-guided reinforcement learning for llm-based mutation. arXiv preprint ar-
Xiv:2402.12222v1.

Godefroid, P. (2020). Fuzzing: Hack, art, and science. Communications of the ACM,
63(2):70–76.

Huang, Y., Zuo, Z., Sun, Z., Yu, L., and Zhang, T. (2024). Large language models based
fuzzing techniques: A survey. arXiv preprint arXiv:2401.08753.

Ierusalimschy, R. (2016). Programming in Lua. Feisty Duck, 4th edition.

Ierusalimschy, R. (2020). Lua 5.4 Reference Manual. PUC-Rio. Documentação oficial
da linguagem Lua.

Jiang, Y., Zhang, C., Ruan, B., Liu, J., Rigger, M., Yap, R. H. C., and Liang, Z. (2025).
Fuzzing the php interpreter via dataflow fusion. arXiv preprint arXiv:2410.21713v2.

Lua.org (2025). About lua. Acesso em May. 2025.

Manès, V. J. M., Han, H., Han, C., Cha, S. K., Egele, M., Schwartz, E. J., and Woo, M.
(2021). The art, science, and engineering of fuzzing: A survey. IEEE Transactions on
Software Engineering, 47(11):2312–2331.

Marbux (2021). Where lua is used. Lista arquivada de casos de uso da linguagem Lua.

Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Akhtar, N., Bar-
nes, N., and Mian, A. (2024). A comprehensive overview of large language models.
Elsevier Preprint. Preprint, disponı́vel em: https://arxiv.org/abs/2307.
06435v10.



Ou, X., Li, C., Jiang, Y., and Xu, C. (2024). The mutators reloaded: Fuzzing compilers
with large language model generated mutation operators. In Proceedings of the 29th
ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’24), pages 298–312, La Jolla, CA, USA. ACM.

Siberoloji (2021). Basics of lua programming for nmap nse. Introdução prática ao uso de
Lua com Nmap.

Wang, J. and Chen, Y. (2023). A review on code generation with llms: Application and
evaluation. In Proceedings of the 2023 IEEE International Conference on Medical
Artificial Intelligence (MedAI), pages 284–290, Shanghai, China. IEEE.

Xia, C. S., Paltenghi, M., Tian, J. L., Pradel, M., and Zhang, L. (2024). Fuzz4all: Uni-
versal fuzzing with large language models. In Proceedings of the 46th International
Conference on Software Engineering (ICSE). IEEE/ACM.

Yang, W., Gao, C., Liu, X., Li, Y., and Xue, Y. (2024). Rust-twins: Automatic rust com-
piler testing through program mutation and dual macros generation. In Proceedings
of the 39th IEEE/ACM International Conference on Automated Software Engineering
(ASE). ACM.


