
A Differential Testing Pipeline for Validating Lambda
Expression Handling in Java Compilers Through

LLM-Generated Test Cases

Douglas Kosvoski1, Andrei Braga1, Rodrigo Ribeiro2, Samuel Feitosa1

1Universidade Federal da Fronteira Sul (UFFS)
{douglas.kosvoski,andrei.braga,samuel.feitosa} [at] uffs.edu.br

2Universidade Federal de Ouro Preto (UFOP)
rodrigo.ribeiro [at] ufop.edu.br

Abstract. The Java programming language, known for its robustness and cross-
platform capabilities, has evolved with features like Lambda expressions (in-
troduced in Java 8) to enhance developer productivity and code readability.
However, the correctness of compiler implementations for such features is crit-
ical to maintaining Java’s reliability. This study leverages Large Language
Models (LLMs) to generate diverse Java programs with Lambda expressions,
enabling differential testing of compiler behavior across implementations like
Oracle JDK and OpenJDK. Through the proposed approach we were able to
validate the consistency of those compilers, and to demonstrate the proposal vi-
ability. Additionally, we provide a reusable test-suite framework for evaluating
other language features and compilers, demonstrating the utility of AI-driven
tools in advancing rigorous software testing and compiler validation.

Resumo. A linguagem de programação Java, conhecida por sua robustez e ca-
pacidades multiplataforma, evoluiu com funcionalidades como as expressões
Lambda (introduzidas no Java 8) para aumentar a produtividade do desenvolve-
dor e a legibilidade do código. No entanto, a correção das implementações do
compilador para tais funcionalidades é crı́tica para manter a confiabilidade
do Java. Este estudo aproveita os Grandes Modelos de Linguagem (LLMs)
para gerar diversos programas Java com expressões Lambda, permitindo o
teste diferencial do comportamento do compilador em implementações como
Oracle JDK e OpenJDK. A partir dessa abordagem foi possı́vel validar a con-
sistência das implementações desses compiladores e demonstrar a viabilidade
da proposta. Adicionalmente, fornece uma estrutura de conjunto de testes re-
utilizável para avaliar outras funcionalidades de linguagem e compiladores,
demonstrando a utilidade de ferramentas orientadas por IA no avanço de testes
de software rigorosos e na validação de compiladores.

1. Introduction

The Java programming language has long been valued for its portability, performance, and
widespread adoption across industries [Gosling et al. 2000]. Each new release expands
its capabilities, incorporating features to address modern programming paradigms. A
major milestone was the introduction of Lambda expressions in Java 8 (2014), which



brought functional programming concepts into the traditionally object-oriented language
[Goetz 2014]. While Lambdas improve code conciseness and readability, they also pose
challenges for compiler design and consistent implementation across Java Development
Kit (JDK) versions.

Compiler correctness is fundamental to Java’s “write once, run anywhere” princi-
ple. Inconsistencies between compilers can result in unexpected behavior, performance
degradation, or migration failures [Ora 2023b]. Ensuring that Lambda expressions are
interpreted uniformly requires rigorous testing against the Java Language Specification
(JLS) [Ora 2023a]. Traditional techniques such as manual inspection and unit testing of-
ten fall short in detecting subtle bugs, highlighting the need for automated methods that
can explore a broader range of scenarios.

Manual test design is limited by human creativity and bias, which can constrain
the diversity of generated cases. Automated approaches, by contrast, provide broader cov-
erage and systematically reveal hidden flaws by generating varied and unexpected inputs.
As compiler complexity grows, mechanisms that reduce reliance on human effort while
improving test thoroughness become essential for ensuring correctness and reliability.

Large language models (LLMs) such as OpenAI’s are emerging as powerful tools
for automated code generation and testing [Brown et al. 2020]. They can quickly produce
diverse test cases that exercise complex features like Lambda expressions, making them
particularly useful for differential testing across compilers. This paper leverages LLMs
to construct a test suite targeting Lambda expressions, with the goal of uncovering in-
consistencies, implementation bugs, or deviations from the JLS in widely used compilers
such as Oracle JDK and OpenJDK. The results contribute to assessing compiler reliability
while demonstrating the value of AI-driven methods in systematic software testing.

The remainder of this text is organized as follows: Section 2 presents an intro-
duction to Java lambda expressions. Section 3 presents generative code and its use using
Open AI’s GPT. Section 4 displays works related to this paper. Section 5 delves into the
methodology used in this test-suite and evaluation. Section 6 shows the results achieved
in this process. Finally, the final remarks are presented in Section 7.

2. Lambda Expressions
Lambda expressions, introduced in Java 8, integrate functional programming concepts
into Java’s traditionally object-oriented model [Goetz 2014, jls 2024]. They provide a
list of parameters and a body—an expression or block—offering a concise syntax for
data manipulation and collection operations such as map , filter , and reduce
[Oracle Corporation 2023].

1 List<Integer> numbers = Arrays.asList(1,2,3);
2 numbers.stream()
3 .map(n -> n * 2)
4 .forEach(System.out::println);

Built on functional interfaces, single-method interfaces that allow lambdas to be
treated as objects, this feature reduces reliance on verbose anonymous classes and aligns
Java more closely with modern languages like Scala and Kotlin, while maintaining its
object-oriented foundation [Gosling et al. 2000]. However, the added complexity also



poses challenges for compiler correctness, making consistent implementation of lambda
expressions across compilers essential for ensuring code portability [Ora 2023b].

3. Generative Code

Generative code marks a significant advancement in software engineering by automat-
ing the production of software components through predefined rules, templates, or ma-
chine learning algorithms. This approach reduces repetitive low-level programming
tasks, accelerates development, improves consistency, and minimizes human error. Re-
cent progress in artificial intelligence, particularly large language models (LLMs), has
strengthened generative programming by enabling contextually accurate and semantically
rich code generation. Beyond rapid prototyping, these models also support automated
testing and debugging through the generation of diverse test cases, aligning with the prin-
ciples of scalability and maintainability in modern software development.

Among the most influential advancements are Generative Pre-trained Transformer
(GPT) models, built on the Transformer architecture introduced by Vaswani et al. (2017).
These models leverage large-scale pre-training and fine-tuning to perform across a wide
variety of tasks, including natural language and code generation. The evolution of GPT
has been marked by increasing scale and capability, from GPT in 2018 to GPT-4 in 2023,
which introduced improvements in reasoning, factual accuracy, and multimodal process-
ing. GPT-4 is notable for its extended context window of up to 128k tokens, allowing it to
handle long documents and complex inputs while delivering high-quality outputs across
domains ranging from education to software engineering.

For practical integration, OpenAI provides an API that enables developers to em-
bed GPT models into applications without managing the underlying infrastructure. The
API abstracts model interaction into simple prompt–response exchanges, offering scala-
bility, security, and ease of deployment. In this work, we employ the GPT-4o Mini model
through OpenAI’s API. GPT-4o Mini is a lighter, cost-efficient variant of GPT-4 opti-
mized for speed and accessibility, making it particularly suited for automated code gener-
ation. Its ability to produce syntactically correct and semantically meaningful programs
enables differential compiler testing, significantly streamlining the evaluation process and
enhancing software reliability.

4. Related Work

Compiler testing has long relied on random program generation to uncover discrep-
ancies across implementations. McKeeman’s pioneering work on differential test-
ing [McKeeman 1995] inspired tools like CSmith [Schkufza et al. 2011], which gener-
ates valid random C programs to detect bugs in optimization and execution. Similar
approaches have been applied in functional programming, where random well-typed
lambda terms have been used to expose subtle issues in Haskell compilers such as GHC
[Palka et al. 2011, Kraus et al. 2021, Feitosa et al. 2020].

More recently, the rise of AI-driven methods has expanded compiler testing ca-
pabilities. Large Language Models (LLMs) have been investigated both for differ-
ential testing of Java compilers and for mutation testing. For example, Wang et al.
[Wang et al. 2023] demonstrated that LLMs can automate diverse test case generation,



while a subsequent study [Wang et al. 2024] showed that LLM-generated mutants im-
proved fault detection rates by nearly 20% compared to rule-based approaches, albeit
with challenges such as higher rates of uncompilable outputs.

Together, these studies illustrate the evolution from random program generators
to AI-assisted methods, highlighting the potential of LLMs to complement traditional
differential testing by producing richer, more effective test cases for ensuring compiler
correctness and software reliability.

5. Test-Suite Implementation
The test suite for this study was designed with two primary components in mind: program
generation using OpenAI’s API and program compilation targeting multiples compilers.
These steps were structured to ensure efficient generation and systematic evaluation of
Java programs under test.

5.1. Prompt Engineering
Prompt Engineering is the practice of crafting input prompts to optimize the output gener-
ated by AI models like OpenAI’s GPT. It involves designing clear, structured, and precise
queries or instructions to guide the model toward producing desired results. Prompt engi-
neering is crucial for maximizing the effectiveness of LLMs across various applications,
including text generation, summarization, and decision support. Effective prompts can
clearly articulate the task or question, while ambiguity can lead to suboptimal or irrele-
vant responses [Ferrer 2024].

To generate the programs for this study, multiple prompt variations were tested
and refined through an iterative process to ensure the output met specific requirements.
Each prompt was carefully adjusted based on feedback from test outputs, which helped
optimize the generation of clean, functional Java code. The goal was to produce code that
was concise, without unnecessary boilerplate such as comments or explanatory text. This
refinement process involved several revisions, ensuring that the final prompts reliably
elicited the desired responses from GPT-4o-mini. The result was a set of prompts that
consistently generated code ready for use, avoiding extraneous content and reducing the
need for manual cleaning.

The following and final prompt used in this process specifically instructed the
model to generate concise Java programs incorporating lambda expressions, meeting the
requirements for this analysis:

1 You are an expert Java programmer.
2 Your task is to push the limits and explore the boundaries of

Lambda Expressions in Java, with the intention to break the
compiler apart to find issues and bugs.

3 Return only the Java code, with no explanations nor comments.
4 Include all necessary imports to successfully compile the

generated code without issues.
5 Ensure that the main class is named Main and includes a valid

main method for execution.
6 Double check everything before outputting the source code.
7 You can be very creative and explore the boundaries of the

language to generate the expressions



Below is the query that served as the starting point for generating the code to en-
sure that all relevant parameters and variables were accounted for, allowing for a smooth
and efficient code generation process:

1 Generate Lambda Expressions in Java of varying sizes that
demonstrate various use cases and stretch the limits of the
feature.

2 Ensure that the main class is named Main and all the imports are
included.

Deliberate emphasis was placed on guiding the generative AI to prioritize creativ-
ity, encouraging it to produce diverse and unconventional Java programs with the potential
to uncover compiler bugs and edge cases. The primary goal was to generate programs that
could push the boundaries of compiler behavior, deliberately seeking out scenarios that
might reveal flaws or limitations in their handling of syntax and semantics.

5.2. Program Generation

To generate the Java programs efficiently, the prompts were set in such a way that the
programs could be produced in batches. This was necessary due to rate limiting in the
service API, which restricts the number of requests that can be made within a certain
timeframe. After generation, each program was stored in the Unix file system, where a
unique numeric identifier was assigned as its filename. This approach helped maintain a
well-organized system for storing and retrieving generated programs, which was essential
for subsequent compilation and testing.

Using unique numeric identifiers, this method ensured that each file could be ac-
cessed quickly without the risk of naming conflicts or manual errors. In addition, it fa-
cilitated automated processing of the files, enabling batch compilation and analysis to
be carried out systematically. This organization is crucial when handling large datasets
or numerous program instances, as it simplifies tracking and processing tasks for both
quality assurance and testing purposes.

The following pseudocode outlining the steps involved in the program generation
phase, which describes the overall process for generating, storing, and organizing Java
programs.

1 1. Import necessary modules.
2 2. Validate API key and set OpenAI API parameters.
3 3. Set up pagination for response batches
4 4. Define feature and instructions for generating.
5 5. For each batch:
6 - Send requests for code generation.
7 - Parse API response
8 - Save each variation to file
9 6. Log progress and completion status.

This pseudocode provides a high-level view of how program generation works
from start to finish. It encompasses the initialization of the prompt, the interaction with
the service API to generate the code in batches, the saving of the generated programs with
unique identifiers, and the subsequent organization of the files in the Unix file system for



retrieval and testing. This structured approach ensures that the process is systematic,
particularly when working with large quantities of generated code.

5.2.1. Code Generated

The example below is one among over a thousand programs generated during the process
described earlier. It illustrates advanced applications of lambda expressions, highlight-
ing their flexibility in handling diverse programming scenarios. Through concise syntax,
lambdas simplify complex tasks such as filtering, mapping, and recursion while empha-
sizing the growing role of functional programming in modern Java. By reducing verbosity
and improving readability, they provide more maintainable solutions compared to tradi-
tional approaches.

1 import java.util.*;
2 import java.util.function.*;
3 import java.util.stream.*;
4

5 public class Main {
6 public static void main(String[] args) {
7 Consumer<String> varArgPrinter = (argsList) -> {
8 Arrays.stream(argsList.split(",")).forEach(System.out::

println);
9 };

10 varArgPrinter.accept("arg1,arg2,arg3,arg4,arg5");
11

12 Function<Integer, Function<Integer, Integer>> addLambda = a
-> b -> a + b;

13 System.out.println(addLambda.apply(5).apply(10));
14

15 List<String> names = Arrays.asList("Alice", "Bob", "Charlie"
);

16 Collections.sort(names, (a, b) -> a.length() - b.length());
17 names.forEach(System.out::println);
18

19 IntUnaryOperator factorial = new IntUnaryOperator() {
20 public int applyAsInt(int x) {
21 return (x == 0) ? 1 : x * this.applyAsInt(x - 1);
22 }
23

24 public IntUnaryOperator getRecursion() {
25 return this;
26 }
27 }.getRecursion();
28 System.out.println(factorial.applyAsInt(5));
29 }
30 }

The first part processes a comma-separated string by splitting it into elements
and printing them via a stream, demonstrating concise data processing with functional



constructs. Next, a higher-order lambda returning another lambda showcases modular
composition and arithmetic computation, illustrating the flexibility of functional program-
ming.

In practice, the generated programs share common traits: they range between
20–50 lines and vary in the number and type of lambda expressions used. Each exam-
ple demonstrates different applications, underscoring the versatility of lambdas in Java.
The program shown here was selected randomly, ensuring it is representative without bias
toward any particular case.

5.3. Program Compilation
The generated programs were divided into five batches of 250 files each. Compilation
was automated with a Bash script that handled file management and invoked the target
compiler. Each file was copied, renamed to Main.java—to match the class declaration and
avoid compilation errors—and then compiled. The compiler’s exit status was recorded,
contributing to success and failure counters for each batch. This procedure was repeated
for all files across all batches.

The pseudocode below summarizes the compilation workflow:

1 1. List available compilers
2 2. Validate the provided compiler argument.
3 3. Match the argument to a compiler path.
4 4. Start execution timer
5 5. Locate all ‘.java‘ files in the target directory.
6 6. For each ‘.java‘ file:
7 - Copy to a temporary location as ‘Main.java‘.
8 - Compile using the selected compiler.
9 - Count successes and failures, log results.

10 7. Calculate duration and failure percentage.
11 8. Display compilation summary.
12 9. Save summary and logs to a file.

The process begins by listing available compilers, validating the user’s choice,
and mapping it to the correct executable. An execution timer is started for performance
tracking. The script then iterates through all .java files, compiling each after renaming,
and logs the outcome.

After all files are processed, the total duration and failure percentage are calcu-
lated. A summary of results—successful and failed compilations, execution time, and
error rate—is displayed and stored, along with detailed logs containing timestamps and
error messages for later analysis.

6. Results
The test suite used JavaScript to generate 1,250 programs across twenty-five batches, with
50 programs produced concurrently in each batch using the OpenAI GPT-4o-mini model.

Experiments ran on an Acer Aspire A515-45 laptop with an AMD Ryzen 7 5700U
CPU (4.3 GHz × 8), 16 GB RAM, and Linux 6.8.0-48-generic (Ubuntu 24.04.1 LTS).
This setup easily managed concurrent program generation and compilation. Producing
one batch of programs required about 30 seconds.



For compilation, the 1,250 programs were divided into five batches of 250. Each
batch took about 150 seconds per compiler on newer versions and 90 seconds on older
versions.

The graphs below compare results for two Java compilers across older and newer
versions. This side-by-side view highlights performance and reliability differences, show-
ing improvements over time.

Figure 1 shows results with Oracle JDK 8.0.202 and OpenJDK 8.0.432, providing
baseline metrics for older compilers.

Figure 1. Compilation success and failure counts for each batch on older com-
pilers versions.

Here, success rates remained below 27%, exposing major issues with Lambda
expressions in early releases. Shorter compilation times reflected frequent errors, which
triggered earlier exits. Both Oracle JDK and OpenJDK showed similar results, confirming
the problem was widespread rather than platform-specific.

Figure 2 presents results with Oracle JDK 23.0.1 and OpenJDK 21.0.5, the latest
versions at the time. Success rates nearly doubled to around 50%, demonstrating clear
progress in reliability and compliance.

Figure 2. Compilation success and failure counts for each batch on latest com-
pilers versions.

All compilers produced identical results within their version groups, indicating
consistency but revealing no new bugs. While this suggests strong reliability, it also
shows the test suite was not exhaustive.



Notably, failed code still validated compiler robustness by confirming strict en-
forcement of Java rules. Many programs failed due to syntax or semantic issues—an
expected outcome that nonetheless served as a valuable stress test. This illustrates how
generative AI both probes compiler limits and reinforces their resilience.

Overall, AI-driven program generation proved effective for rigorous compiler test-
ing, combining efficient generation, systematic compilation, and wide error exploration
into an evaluation framework.

7. Conclusion

In this paper, we described a test-suite framework for differential testing of Java compil-
ers using Large Language Models to generate program codes for a specified programming
language feature and verified the compilers’ alignment to the Java Language Specifica-
tion, all the necessary steps were shown, from the prompt provided to the AI model, to
the generation and compilation steps. We presented arguments for the importance of gen-
erative code to test and stress compilers beyond of what manual and traditional testing
is capable of in relation to compilers compliance and cross-compiler support for Java
programs, especially for newer features.

As future work, it is possible to expand the test-suite to generate more focused
programs by narrowing the programs generated to certain scenarios and improve the
compilation step by making use of concurrent programming techniques. Also, the same
framework can be explored to test different Java compilers.

References

(2023a). Java language specification (jls). Technical report, Oracle Corporation. https:
//docs.oracle.com/javase/specs/.

(2023b). Java se documentation. Technical report, Oracle Corporation. https://
docs.oracle.com/en/java/.

(2024). Lambda expressions.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C.,
Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language models are few-shot
learners. In Advances in Neural Information Processing Systems, NeurIPS ’20.

Feitosa, S., Ribeiro, R., and Du Bois, A. (2020). A type-directed algorithm to generate
random well-typed java 8 programs. Science of Computer Programming, 196:102494.

Ferrer, J. (2024). How transformers work: A detailed exploration of transformer architec-
ture.

Goetz, B. (2014). Java SE 8 for the Really Impatient. Addison-Wesley.

Gosling, J., Joy, B., Steele, G., Bracha, G., and Buckley, A. (2000). The Java Language
Specification. Addison-Wesley.



Kraus, L. F., Schafaschek, B., Ribeiro, R. G., and da Silva Feitosa, S. (2021). Synthesis
of random real-world java programs from preexisting libraries. In Proceedings of the
25th Brazilian Symposium on Programming Languages, SBLP ’21, page 108–115,
New York, NY, USA. Association for Computing Machinery.

McKeeman, W. M. (1995). Differential testing for software. In Proceedings of the ACM
SIGSOFT ’95: Foundations of Software Engineering, pages 98–104. ACM.

Oracle Corporation (2023). Lambda expressions: The java™ tutorials.
https://docs.oracle.com/javase/tutorial/java/javaOO/
lambdaexpressions.html. Accessed: 2023-10-28.

Palka, M. H., Claessen, K., Russo, A., and Hughes, J. (2011). Differential testing using
random well-typed haskell programs. In Proceedings of the International Conference
on Software Engineering, pages 504–514. ACM.

Schkufza, E., Sharma, R., and Aiken, A. (2011). Csmith: A tool for generating random
c programs. In Proceedings of the 2011 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 320–331. ACM.

Wang, B., Chen, M., Lin, Y., Papadakis, M., and Zhang, J. M. (2024). An exploratory
study on using large language models for mutation testing. CoRR, abs/2401.04567.
OpenReview preprint.

Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., and Wang, Q.
(2023). Software testing with large language models: Survey, land-
scape, and vision. arXiv preprint arXiv:2307.07567. Available on
Papers with Code at https://paperswithcode.com/paper/
software-testing-with-large-language-model.


