
Desenvolvimento de uma API REST para Manipulação de
Ontologias utilizando Python e OWLReady2:

Um Relato de Experiência
Rafael Silva da Silva1, João Pablo Silva da Silva1, Alice Fonseca Finger1

1Laboratory of Intelligent Software Engineering (LabISE)
Campus Alegrete – Universidade Federal do Pampa (UNIPAMPA)

Av. Tiarajú, 810 – 97546-550 – Alegrete – RS – Brasil

{rafaelsds3.aluno, joaosilva, alicefinger}@unipampa.edu.br

Abstract. The Semantic Web enables new ways of organizing and intelligently
retrieving information but still lacks accessible mechanisms for ontology mani-
pulation. This report presents the development of a RESTful Web API in Python,
using the Owlready2 library, which supports the creation and classification of
individuals, the application of semantic rules (SWRL), and logical inferences.
The results indicate improvements in interoperability, content reuse, and query
accuracy, confirming the potential of this integration to enhance automated in-
formation retrieval.

Resumo. A Web Semântica possibilita novas formas de organizar e recuperar
informações de maneira inteligente, mas ainda carece de mecanismos acessı́veis
para manipulação de ontologias. Este relato descreve o desenvolvimento de
uma API Web RESTful em Python, com a biblioteca Owlready2, que viabiliza
criação e classificação de indivı́duos, aplicação de regras semânticas (SWRL)
e inferências lógicas. Os resultados indicam avanços em interoperabilidade,
reutilização de conteúdos e precisão nas consultas, confirmando o potencial
dessa integração para aprimorar a recuperação automatizada de informações.

1. Introdução
A evolução da Web tem impulsionado a busca por soluções capazes de organizar e re-
cuperar informações de maneira mais inteligente e eficiente. Nesse cenário, a Web
Semântica surge como uma abordagem que permite estruturar dados de forma inter-
pretável por máquinas, permitindo a formalização de conceitos e relações por meio de
ontologias [Berners-Lee et al. 2001]. Tais recursos favorecem a interoperabilidade entre
sistemas, a integração de dados heterogêneos e a construção de aplicações capazes de
executar raciocı́nios automáticos, resultando em maior precisão e relevância na entrega
de informações [Breitman 2005].

As ontologias ocupam papel central na pilha tecnológica da Web Semântica, uma
vez que permitem a formalização explı́cita de conceitos e relações dentro de um domı́nio
de conhecimento [Gruber 2009]. Por meio delas, informações deixam de ser representa-
das apenas como dados isolados e passam a incorporar significado semântico, tornando-
se passı́veis de interpretação por máquinas. Esse processo viabiliza a interoperabilidade
entre sistemas, o reuso de informações em diferentes contextos e a aplicação de me-
canismos de raciocı́nio automático, como classificação hierárquica e inferências lógicas
[Berners-Lee et al. 2001].



Apesar de seu potencial, a adoção prática da Web Semântica enfrenta barreiras
significativas. A ausência de ferramentas acessı́veis e padronizadas para manipulação de
ontologias limita o uso dessas tecnologias em sistemas distribuı́dos e aplicações do dia
a dia. Além disso, a necessidade de integrar mecanismos de inferência lógica em arqui-
teturas modernas de software exige soluções que conciliem formalismo semântico com
praticidade de implementação. Nesse contexto, torna-se fundamental explorar formas
de encapsular ontologias em interfaces padronizadas, favorecendo tanto desenvolvedores
quanto usuários na construção de sistemas inteligentes e interoperáveis.

Este trabalho tem como objetivo relatar a experiência de desenvolvimento de uma
API Web RESTful implementada em Python, utilizando a biblioteca Owlready2. A
proposta busca disponibilizar uma camada de serviços capaz de realizar operações so-
bre ontologias, incluindo a criação e classificação de indivı́duos, a aplicação de regras
semânticas e a execução de raciocı́nios lógicos com o auxı́lio de motores de inferência.
A metodologia adotada seguiu princı́pios de arquitetura de software baseada em serviços,
utilizando boas práticas de modularização e camadas de abstração, provendo uma inter-
face simples e padronizada, voltada à interoperabilidade, ao reuso de informações e à
integração com sistemas externos.

A experiência demonstrou que a integração entre APIs RESTful e tecnologias
semânticas pode contribuir significativamente para ampliar a interoperabilidade entre re-
positórios, facilitar a reutilização de conteúdos e aumentar a eficiência das consultas
semânticas. Além disso, observou-se que o uso da Owlready2 reduziu a complexidade no
acesso e manipulação das ontologias, tornando a implementação mais intuitiva e produtiva
para desenvolvedores. Assim, este trabalho contribui ao apresentar um relato prático que
aproxima os conceitos da Web Semântica de aplicações reais, oferecendo uma solução
que combina escalabilidade, padronização e inteligência na recuperação de informações.

O restante do trabalho está organizado da seguinte forma: a Seção 2 apresenta
os conceitos importantes que fundamentam o trabalho; a Seção 3 discute trabalhos que
também desenvolveram API Web RESTful em Python, com a biblioteca Owlready2; a
Seção 4 apresenta um relato da experiência no desenvolvimento da API com uso da Owl-
ready2; a Seção 5 expõe os resultados obtidos no desenvolvimento do trabalho; e, por
fim, a Seção 6 apresenta as conclusões, destacando as contribuições, as limitações e os
trabalhos futuros.

2. Fundamentação
O desenvolvimento de soluções baseadas em Web Semântica depende de uma
sólida fundamentação em ontologias, responsáveis por estruturar e dar significado às
informações. Essa combinação permite a criação de sistemas capazes de raciocinar e
inferir novos conhecimentos. Para tornar esse processo acessı́vel ao desenvolvimento de
software, a biblioteca OWLReady2 oferece recursos que simplificam a integração de on-
tologias em aplicações Python, sendo um componente central para este trabalho.

A Web Semântica foi Idealizada por Tim Berners-Lee como uma extensão da Web
atual. Ela tem como objetivo tornar os conteúdos publicados não apenas legı́veis, mas
também processáveis por máquinas. Sua proposta central é estruturar as informações de
maneira padronizada e formal, permitindo que sistemas sejam capazes de interpretar e re-
lacionar dados de forma inteligente. Dessa forma, agentes de software podem raciocinar



sobre o conteúdo disponibilizado, atribuindo-lhe significados bem definidos. Isso possi-
bilita avanços como mecanismos de busca mais precisos, recomendações personalizadas
e uma Web efetivamente interoperável [Berners-Lee et al. 2001].

As ontologias são estruturas formais que definem entidades, suas propriedades e
os relacionamentos existentes em um determinado domı́nio, com o objetivo de descrever
semanticamente o conhecimento presente nesse contexto [Gruber 2009]. Elas fornecem
um vocabulário compartilhado e regras explı́citas que permitem a interpretação consis-
tente de informações por humanos e sistemas computacionais. Além disso, ontologias
possibilitam a integração de dados heterogêneos, a inferência automática de novos conhe-
cimentos e o suporte a aplicações inteligentes, como sistemas de recomendação, agentes
semânticos e Web Semântica [Carlan 2006].

A Web Ontology Language (OWL) é um padrão do W3C projetado para repre-
sentar de forma formal conceitos, classes e relações em um domı́nio de conhecimento.
Baseada em lógica descritiva, a OWL permite não apenas descrever estruturas concei-
tuais, mas também realizar raciocı́nios automáticos, como verificação de consistência,
classificação hierárquica e inferência de novos fatos. Sua expressividade e compatibili-
dade com outros padrões da Web Semântica a tornam fundamental para a construção de
sistemas inteligentes e interoperáveis [McGuinness and Harmelen 2004].

A OWLReady21 é uma biblioteca Python que propõe o paradigma de programação
orientada a ontologias (ontology-oriented programming), realizando uma “tradução”
dinâmica entre os elementos de uma ontologia OWL e objetos/classe em Python. Em
termos práticos, classes OWL se tornam classes Python, indivı́duos são instâncias dessas
classes e propriedades OWL são acessadas como atributos. Esse mapeamento de alto nı́vel
reduz a distância semântica entre o formalismo lógico e o código, tornando as operações
de criação, consulta e atualização de ontologias mais naturais para quem programa em
Python [Lamy 2017].

No plano conceitual, a OWLReady2 trabalha sobre um mundo que carrega uma
ou mais ontologias, expondo uma API que preserva os princı́pios da OWL 2 e, ao mesmo
tempo, oferece operações idiomáticas de Python para manipular classes, indivı́duos e pro-
priedades. Assim, a definição de propriedades de dados (DataProperty) e propriedades
de objetos (ObjectProperty), bem como o uso de restrições (por exemplo, minQualifi-
edCardinality, only, some) podem ser expressos tanto no arquivo OWL (em RDF/XML
ou TTL) quanto diretamente em Python, mantendo a consistência com o modelo formal
[Lamy 2017].

Um dos principais diferenciais da biblioteca está na sua capacidade de integrar-
se a raciocinadores baseados em lógicas descritivas, como HermiT e Pellet, por meio de
funções especı́ficas, por exemplo, a sync reasoner(). Esse recurso possibilita não apenas
a verificação de consistência da ontologia, identificando contradições ou incoerências na
modelagem conceitual, mas também a classificação automática das classes, organizando-
as em hierarquias mais precisas de acordo com os axiomas definidos. Além disso, per-
mite a inferência de novos conhecimentos, como a atribuição de tipos a indivı́duos, a
propagação de restrições e a descoberta de relações implı́citas que não estavam explicita-
mente descritas no modelo [Lamy 2017].

1Disponı́vel em: https://owlready2.readthedocs.io/en/v0.48/



3. Trabalhos Relacionados
Diversos estudos exploram a integração de ontologias e serviços Web. Por exemplo,
[Wang et al. 2020] apresenta uma API voltada ao desenvolvimento de um sistema de
recomendação em saúde, fornecendo materiais educacionais personalizados a pacientes
com doenças crônicas na China, utilizando Owlready2 para manipulação da ontologia que
sustenta as recomendações.

Outros trabalhos avançam na incorporação de semântica em sistemas de e-
learning. O estudo de [Rabahallah and Ahmed-Ouamer 2015] propõe uma arquitetura
de serviços Web semânticos, reutilizando funcionalidades como autenticação, gerencia-
mento de cursos e avaliações, e viabilizando a descoberta e composição automática de
serviços. De forma complementar, [Júnior et al. 2022] apresenta uma abordagem hı́brida
para recomendação personalizada de Objetos de Aprendizagem Digitais (OADs), inte-
grando algoritmos bioinspirados e técnicas de Web Semântica para combinar diferentes
fontes (AVAs, YouTube, Wikipédia), representando metadados por meio de ontologias e
promovendo recomendações alinhadas ao perfil do estudante. Apesar da relevância des-
sas propostas, muitas permanecem conceituais ou não apresentam avaliações empı́ricas
robustas.

Diante das iniciativas identificadas na literatura, este trabalho se diferencia por
apresentar uma experiência prática de implementação que vai além de propostas concei-
tuais. Essa abordagem oferece uma camada de serviços reutilizável e padronizada, que
integra mecanismos de inferência semântica e classificação automática, ampliando a in-
teroperabilidade entre repositórios e a eficiência na recuperação de informações. Assim,
o trabalho avança em direção à aplicabilidade efetiva da Web Semântica em sistemas
distribuı́dos, apoiado por resultados empı́ricos que demonstram benefı́cios concretos em
termos de desempenho e reuso de informações.

4. Relato de Experiência
Nesta seção é relatado o processo de concepção e implementação da API, enfatizando a
metodologia adotada, as ferramentas empregadas e as estratégias de design utilizadas. A
descrição contempla a configuração do ambiente de desenvolvimento, a escolha de biblio-
tecas e frameworks, bem como a forma como a integração com raciocinadores semânticos
foi incorporada ao sistema. Esse panorama fornece a base para compreender os resultados
obtidos e as contribuições apresentadas nas seções seguintes.

A OntoObADi 2. Sua adoção possibilitou aplicar na prática os recursos da API
desenvolvida, como a criação e classificação de indivı́duos, a definição de propriedades
e a execução de inferências semânticas. Para um melhor entendimento da ontologia, é
apresentado na Figura 1 o modelo conceitual da OntoObADi.

O desenvolvimento da API foi pautado pela adoção de ferramentas modernas que
promovem produtividade, reprodutibilidade e alto desempenho. Para o gerenciamento de
dependências, empacotamento e isolamento de ambiente, utilizou-se o Poetry, que ga-
rantiu que todas as bibliotecas estivessem em suas versões corretas e compatı́veis. A
implementação da interface RESTful foi realizada com o FastAPI, escolhido por sua
alta performance (baseada no framework ASGI Starlette), pela tipagem automática com

2Disponı́vel em: https://zenodo.org/communities/ontoobadi/



tem um
ou mais indicado para

um ou mais

tem uma

atende a
um ou mais

é suportado
por um ou mais

tem um(a)
ou mais

tem
uma

pertence a
uma ou mais

tem um

é um
tipo de

tem um

suporta
uma ou
mais

é um
tipo de

tem um
ou mais níveis de

é
composto

por

tem
uma

tem um ou mais
recursos de

tem
uma

tem um

é fundamentado
por uma ou maisé um

tipo de

tem um(a)

tem um
ou mais

é um
tipo de

é um
tipo de

foi produzido
por um
ou mais

tem zero
ou mais

tem zero
ou mais

é um
tipo de

é coberto
por uma

propriedade
tipo objeto

propriedade
tipo objeto

especialização

conteúdo
gerado por IA

link para
currículo

requisito de
hardware

requisito de
software

link de
publicação

afiliação
acadêmica

Trabalho
Acadêmico

versão do
objeto

Memorização

cidade

Público-alvo Acessibilidade

link de
publicação

editora

Objeto de
Aprendizagem
Composto

Livro

Área de
Conhecimento

Objeto de
Aprendizagem

Simples

veículo de
publicação

Objeto de Aprendizagem
Gráfico

ano de
publicação

Objeto de Aprendizagem
Software

Objeto de Aprendizagem
Audiovisual

Autor
descrição

Operação

Licença

Robustez

objetivo de
aprendizagem

Objeto de
Aprendizagem

Digital

palavras-chave

AvaliaçãoEntendimento

Percepção

Ambiente Virtual
de Aprendizagem

Coisa

descrição

Língua

nome

descrição

Compreensão

instrumento de
avaliação

data de
criação

Artigo

Aplicação

Referência
Bibliográfica autor

Análise

Criação

Interatividade

Objeto de Aprendizagem
Textual

Classe 1 Classe 2
propriedade
tipo dado

Classe 1.1 Classe 1.2

LEGENDA

Figura 1. Modelo Conceitual da ontologia OntoObADi.

Pydantic e pela geração nativa de documentação interativa via Swagger/OpenAPI. Já a
manipulação da OntoObADi foi viabilizada pela biblioteca OWLReady2, considerada o
núcleo da solução, uma vez que permitiu realizar inferências, persistir informações e ado-
tar um paradigma de programação orientada a ontologias diretamente em Python.

4.1. Arquitetura da API
API foi desenvolvida seguindo os princı́pios do estilo arquitetural Representational State
Transfer (REST), um estilo amplamente consolidado em sistemas distribuı́dos, valorizado
por sua simplicidade, escalabilidade e compatibilidade nativa com os protocolos da Web
[Xiao-Hong 2014]. Essa opção arquitetural permite que as operações sejam realizadas
por meio dos métodos convencionais do protocolo Hypertext Transfer Protocol (HTTP),
facilitando a interação de aplicações externas com a OntoObADi de forma intuitiva e
padronizada. A troca de dados é realizada integralmente no formato JavaScript Object
Notation (JSON), tanto para entradas quanto para saı́das.

Do ponto de vista de implementação, a arquitetura da API segue o padrão MVC
(Model-View-Controller), ampliado com uma camada de serviços (Service Layer) dedi-
cada. A estrutura completa dessa arquitetura é ilustrada na Figura 2.

A camada Models é responsável por encapsular as entidades centrais do domı́nio
do problema. Nela são definidas as classes e estruturas de dados que mapeiam diretamente
os conceitos da ontologia, como Individual, BaseOntologyModel, Rule e ManagerOnto-
logy. Essa organização promove um desenvolvimento mais limpo, modular e alinhado



Figura 2. Diagrama de pacotes da Application Programming Interface (API).

com os princı́pios de orientação a objetos. A camada Controllers atua como intermediária
entre as requisições recebidas pela API e as demais camadas. Sua principal responsabi-
lidade é direcionar o fluxo das ações, processar entradas, invocar a camada de serviços
adequada e retornar as respostas correspondentes no formato esperado, garantindo assim
uma separação clara de responsabilidades.

A camada Services, encapsula a lógica de negócio complexa e especı́fica do
domı́nio, orquestrando operações, aplicando regras e coordenando interações entre mode-
los. Para manter os controllers enxutos e focados em sua função de mediação, utiliza-se
a injeção de dependências (Dependency Injection). Essa técnica permite que os control-
lers recebam instâncias de serviços como dependências em seus contrutores. Com isso, a
responsabilidade de gerenciar a lógica de negócio é delegada aos serviços. A camada In-
terfaces implementa o princı́pio de Inversão de Dependência, um dos pilares do SOLID,
com o objetivo de abstrair completamente o acesso à OntoObADi Ela promove o desaco-
plamento entre os componentes de alto nı́vel da aplicação (que definem o que precisam
fazer) e os módulos de baixo nı́vel (que implementam como as operações ontológicas são
realizadas).

Esse desacoplamento é concretizado por meio de um contrato formal, assim esta-
belecendo os métodos essenciais para interação com a ontologia. Dessa forma, os compo-
nentes consumidores (como Services ou Controllers) dependem apenas dessa abstração
e não de implementações concretas. Isso possibilita que a fonte ou a tecnologia de per-
sistência da ontologia (ex.: trocar arquivos OWL locais por um endpoint SPARQL ou uma
API remota) seja substituı́da sem que seja necessário alterar qualquer código nos módulos
de alto nı́vel que a consomem.

4.2. Utilização da OWLReady2
Logo nas fases iniciais do desenvolvimento, tornou-se evidente uma das mais significa-
tivas vantagens proporcionadas pela adoção da OWLReady2: a notável facilidade para
interagir e manipular a ontologia de forma programática. Essa facilidade se manifesta
concretamente através de uma sintaxe intuitiva e pythonica, permitindo realizar operações



complexas com comandos concisos e de alta legibilidade. Por exemplo, para carregar uma
ontologia, bastam poucas linhas de código:

1 from owlready2 import get_ontology
2

3 # Carregando a ontologia
4 onto = get_ontology("caminho/para/ontologia.owl").load()

Com esse simples trecho, temos uma instância completa da ontologia, incluindo
todas as classes definidas no arquivo .owl ilustradas na Figura 1. A OWLReady2 também
facilita a criação de indivı́duos e a manipulação de propriedades de forma direta e intui-
tiva. Por exemplo, é possı́vel criar um indivı́duo da classe Author e atribuir valores às
suas propriedades com poucas linhas:

1 # Instanciando individuo
2 with onto:
3 individual = Author("autor_teste")
4 individual.hasResumeLink = ["http://lattes.cnpq.br

/7433133067872365"]
5 onto.save(file="caminho/para/ontologia.owl", format="rdfxml"

)

Além da criação de indivı́duos, a biblioteca oferece suporte nativo para explorar
a estrutura ontológica, permitindo listar de forma simples tanto as data properties quanto
as object properties definidas no modelo. Isso é extremamente útil para compreender e
manipular o conteúdo da ontologia de maneira programática:

1 #Listando data_properties e object_properties
2 with onto:
3 for data_properties in onto.data_properties():
4 print(data_properties)
5 for object_properties in onto.object_properties():
6 print(object_properties)

Por fim, um dos recursos mais poderosos da OWLReady2 é a integração com
raciocinadores automáticos, como o HermiT e o Pellet. Esses mecanismos permitem a
inferência de novos fatos a partir das definições existentes na ontologia, enriquecendo o
conhecimento representado sem necessidade de intervenção manual. O exemplo a se-
guir demonstra a execução de um raciocinador para atualizar a hierarquia de classes e os
relacionamentos entre indivı́duos:

1 from owlready2 import sync_reasoner
2 #Executando raciocinador
3 with onto:
4 sync_reasoner()

Após a exploração prática dos recursos oferecidos pela OWLReady2, tais fun-
cionalidades foram incorporadas à camada de Models, sendo encapsuladas pela classe
ManagerOntology. Essa classe implementa a interface IManagerOntology,
a qual estabelece um contrato bem definido para todas as operações de acesso e



manipulação da ontologia. Com esse design, a complexidade inerente à OWLReady2
permanece isolada, garantindo que os demais módulos da aplicação não dependam di-
retamente da biblioteca ou da estrutura interna da ontologia. Dessa forma, a lógica de
negócio interage apenas com a interface, de maneira desacoplada e transparente, pre-
servando os princı́pios de modularidade e manutenibilidade do sistema. O diagrama de
classes apresentado na Figura 3 a seguir ilustra claramente essa organização.

Figura 3. Diagrama de classe da Application Programming Interface (API).

5. Resultados

A implementação da API possibilitou encapsular a OntoObADi de forma a permitir sua
manipulação via serviços RESTful. Foram desenvolvidos endpoints como por exemplo o
endpoint GET/createSchema, que retorna um JavaScript Object Notation (JSON) estru-
turado contendo data properties e object properties assim como suas labels definidas na
OntoObADi,como mostra a Figura 4.

Figura 4. Retorno do Endpoint.



Esse esquema dinâmico serve como base para a construção automática de for-
mulários, permitindo que sistemas clientes criem interfaces de cadastro e edição de
conteúdo educacional de forma padronizada. A Figura 5 exemplifica o consumo desse
endpoint em um formulário multi-step.

Figura 5. Web Client Consumindo o Endpoint.

Outro cenário relevante é a criação e classificação automática de OADs. A Appli-
cation Programming Interface (API) instancia dinamicamente indivı́duos na OntoObADi,
por meio da classe Individual e do endpoint POST/createindividual, que es-
pera os seguintes parâmetros: o campo name, que indica o nome do indivı́duo a ser
criado; e dois blocos de propriedades: data properties, destinado a valores literais,
e object properties, conforme ilustrado na Figura 6.

Figura 6. Parametros do Enpoint.

Dessa forma, o processo garante o retorno de um indivı́duo criado, instanciado e
classificado dinamicamente de forma automática na ontologia.

6. Conclusão
Durante o desenvolvimento, a utilização da OWLReady2 se mostrou um diferencial, per-
mitindo a abstração de tarefas complexas relacionadas ao acesso e manipulação da onto-
logia. A experiência prática revelou tanto benefı́cios como a simplicidade na definição
de propriedades e a flexibilidade na execução de consultas e inferências, quanto desafios,
como a necessidade de tratar limitações de desempenho em raciocı́nios mais extensos e a
adaptação da estrutura ontológica ao modelo relacional de uma API REST. Os exemplos
de uso obtidos até o momento indicam que a API, aliada à OWLReady2, é capaz de apoiar
desde a construção dinâmica de interfaces educacionais até a recomendação personalizada



de conteúdos, evidenciando seu potencial em contribuir com soluções pedagógicas mais
inteligentes e centradas no aluno.

Como trabalho futuro, propomos a criação de um repositório educacional baseado
em Web Semântica, voltado à classificação e recomendação de OADs. Acredita-se que
essa iniciativa contribuirá significativamente para a organização e o compartilhamento de
conteúdos educacionais, potencializando a reutilização e a interoperabilidade entre dife-
rentes plataformas. Com este trabalho, espera-se não apenas validar a aplicação prática
da OADs, mas também incentivar a adoção da OWLReady2 e de tecnologias semânticas
no contexto educacional, promovendo buscas mais eficientes e o desenvolvimento de
aplicações educacionais inteligentes.

Agradecimentos
Os autores agradecem à FAPERGS pelo apoio financeiro (Projeto ARD/ARC - processo
23/2551-0000761-4) e ao CNPq pela concessão de bolsa de Iniciação Cientı́fica.

Referências
Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scienti-

fic American, 284(5):35–43. Disponı́vel em: https://www.lassila.org/
publications/2001/SciAm.html. Acesso em: 01 set. 2024.

Breitman, K. K. (2005). Web semântica. LTC, Rio de Janeiro. recurso online. Dis-
ponı́vel em: https://app.minhabiblioteca.com.br/reader/books/
978-85-216-1958-1. Acesso em: 25 maio 2023.

Carlan, E. (2006). Ontologia e web semântica. Brası́lia: Universidade de Brası́lia.

Gruber, T. (2009). Ontology, page 3748. Springer-Verlag.

Júnior, C. P., Araújo, R., and Dorça, F. (2022). Uma abordagem hı́brida apoiada por
algoritmo bioinspirado e tecnologias de web semântica para recomendação personali-
zada de objetos de aprendizagem. In Anais Estendidos do XI Congresso Brasileiro de
Informática na Educação, pages 35–46, Porto Alegre, RS, Brasil. SBC.

Lamy, J.-B. (2017). Owlready: Ontology-oriented programming in python with automa-
tic classification and high level constructs for biomedical ontologies. Artificial Intelli-
gence in Medicine, 80:11–28.

McGuinness, D. L. and Harmelen, F. V. (2004). Owl web ontology language overview.
Dispon{ı́}vel em: {https://goo.gl/p0g6aq. Acesso em: 30 de junho de 2017.

Rabahallah, K. and Ahmed-Ouamer, R. (2015). Creating e-learning web services towards
reusability of functionalities in creating e-learning systems. In 2015 Global Summit on
Computer Information Technology (GSCIT), pages 1–6.

Wang, Z., Huang, H., Cui, L., Chen, J., An, J., Duan, H., Ge, H., and Deng, N. (2020).
Using natural language processing techniques to provide personalized educational
materials for chronic disease patients in china: Development and assessment of a
knowledge-based health recommender system. JMIR Med Inform, 8(4):e17642.

Xiao-Hong, L. (2014). Research and development of web of things system based on rest
architecture. In 2014 Fifth International Conference on Intelligent Systems Design and
Engineering Applications, pages 744–747.


