Desenvolvimento de uma API REST para Manipulacao de
Ontologias utilizando Python e OWLReady2:
Um Relato de Experiéncia

Rafael Silva da Silva', Joao Pablo Silva da Silva', Alice Fonseca Finger!

!Laboratory of Intelligent Software Engineering (LabISE)
Campus Alegrete — Universidade Federal do Pampa (UNIPAMPA)
Av. Tiaraju, 810 — 97546-550 — Alegrete — RS — Brasil

{rafaelsds3.aluno, joaosilva, alicefinger}@unipampa.edu.br

Abstract. The Semantic Web enables new ways of organizing and intelligently
retrieving information but still lacks accessible mechanisms for ontology mani-
pulation. This report presents the development of a RESTful Web API in Python,
using the Owlready?2 library, which supports the creation and classification of
individuals, the application of semantic rules (SWRL), and logical inferences.
The results indicate improvements in interoperability, content reuse, and query
accuracy, confirming the potential of this integration to enhance automated in-
formation retrieval.

Resumo. A Web Semantica possibilita novas formas de organizar e recuperar
informagoes de maneira inteligente, mas ainda carece de mecanismos acessiveis
para manipulagcdo de ontologias. Este relato descreve o desenvolvimento de
uma API Web RESTful em Python, com a biblioteca Owlready2, que viabiliza
criagdo e classificacdo de individuos, aplicacdo de regras semdanticas (SWRL)
e inferéncias logicas. Os resultados indicam avangos em interoperabilidade,
reutilizacdo de contetidos e precisdo nas consultas, confirmando o potencial
dessa integracdo para aprimorar a recuperagdo automatizada de informacaes.

1. Introducao

A evolucdo da Web tem impulsionado a busca por solu¢des capazes de organizar e re-
cuperar informacdes de maneira mais inteligente e eficiente. Nesse cendrio, a Web
Semantica surge como uma abordagem que permite estruturar dados de forma inter-
pretdvel por maquinas, permitindo a formalizacdo de conceitos e relagdes por meio de
ontologias [Berners-Lee et al. 2001]. Tais recursos favorecem a interoperabilidade entre
sistemas, a integracdo de dados heterogéneos e a constru¢do de aplicacdes capazes de
executar raciocinios automaticos, resultando em maior precisdo e relevincia na entrega
de informacdes [Breitman 2005].

As ontologias ocupam papel central na pilha tecnolégica da Web Semantica, uma
vez que permitem a formalizacdo explicita de conceitos e relagdes dentro de um dominio
de conhecimento [Gruber 2009]. Por meio delas, informagdes deixam de ser representa-
das apenas como dados isolados e passam a incorporar significado semantico, tornando-
se passiveis de interpretagdo por miquinas. Esse processo viabiliza a interoperabilidade
entre sistemas, o reuso de informacdes em diferentes contextos e a aplicacdo de me-
canismos de raciocinio automaético, como classifica¢do hierdrquica e inferéncias légicas
[Berners-Lee et al. 2001].

Apesar de seu potencial, a adoc@o pratica da Web Semantica enfrenta barreiras
significativas. A auséncia de ferramentas acessiveis e padronizadas para manipulacdo de
ontologias limita o uso dessas tecnologias em sistemas distribuidos e aplicacdes do dia
a dia. Além disso, a necessidade de integrar mecanismos de inferéncia l6gica em arqui-
teturas modernas de software exige solucdes que conciliem formalismo semantico com
praticidade de implementacdo. Nesse contexto, torna-se fundamental explorar formas
de encapsular ontologias em interfaces padronizadas, favorecendo tanto desenvolvedores
quanto usudrios na construcao de sistemas inteligentes e interoperaveis.

Este trabalho tem como objetivo relatar a experiéncia de desenvolvimento de uma
API Web RESTful implementada em Python, utilizando a biblioteca Owlready2. A
proposta busca disponibilizar uma camada de servigos capaz de realizar operagdes so-
bre ontologias, incluindo a criacdo e classificacdo de individuos, a aplicacido de regras
semanticas e a execucao de raciocinios 16gicos com o auxilio de motores de inferéncia.
A metodologia adotada seguiu principios de arquitetura de software baseada em servigos,
utilizando boas praticas de modularizacdo e camadas de abstracdo, provendo uma inter-
face simples e padronizada, voltada a interoperabilidade, ao reuso de informacdes e a
integracdo com sistemas externos.

A experiéncia demonstrou que a integracdo entre APIs RESTful e tecnologias
semanticas pode contribuir significativamente para ampliar a interoperabilidade entre re-
positorios, facilitar a reutilizacdo de conteudos e aumentar a eficiéncia das consultas
semanticas. Além disso, observou-se que o uso da Owlready?2 reduziu a complexidade no
acesso e manipulacao das ontologias, tornando a implementac¢ao mais intuitiva e produtiva
para desenvolvedores. Assim, este trabalho contribui ao apresentar um relato prético que
aproxima os conceitos da Web Semantica de aplicagdes reais, oferecendo uma solugdo
que combina escalabilidade, padronizacao e inteligéncia na recuperacao de informagdes.

O restante do trabalho estd organizado da seguinte forma: a Secdo 2 apresenta
os conceitos importantes que fundamentam o trabalho; a Secdo 3 discute trabalhos que
também desenvolveram API Web RESTful em Python, com a biblioteca Owlready2; a
Secdo 4 apresenta um relato da experiéncia no desenvolvimento da API com uso da Owl-
ready2; a Secdo 5 expde os resultados obtidos no desenvolvimento do trabalho; e, por
fim, a Secdo 6 apresenta as conclusdes, destacando as contribui¢des, as limitacdes e os
trabalhos futuros.

2. Fundamentacao

O desenvolvimento de solucdes baseadas em Web Semantica depende de uma
sOlida fundamentacdo em ontologias, responsdveis por estruturar e dar significado as
informacdes. Essa combinagdo permite a criagdo de sistemas capazes de raciocinar e
inferir novos conhecimentos. Para tornar esse processo acessivel ao desenvolvimento de
software, a biblioteca OWLReady?2 oferece recursos que simplificam a integracao de on-
tologias em aplicagdes Python, sendo um componente central para este trabalho.

A Web Semantica foi Idealizada por Tim Berners-Lee como uma extensao da Web
atual. Ela tem como objetivo tornar os contetidos publicados nao apenas legiveis, mas
também processdveis por maquinas. Sua proposta central € estruturar as informacgdes de
maneira padronizada e formal, permitindo que sistemas sejam capazes de interpretar e re-
lacionar dados de forma inteligente. Dessa forma, agentes de software podem raciocinar

sobre o contetddo disponibilizado, atribuindo-lhe significados bem definidos. Isso possi-
bilita avangos como mecanismos de busca mais precisos, recomendacdes personalizadas
e uma Web efetivamente interoperdvel [Berners-Lee et al. 2001].

As ontologias sdo estruturas formais que definem entidades, suas propriedades e
os relacionamentos existentes em um determinado dominio, com o objetivo de descrever
semanticamente o conhecimento presente nesse contexto [Gruber 2009]. Elas fornecem
um vocabulario compartilhado e regras explicitas que permitem a interpretacdo consis-
tente de informag¢des por humanos e sistemas computacionais. Além disso, ontologias
possibilitam a integracao de dados heterogéneos, a inferéncia automatica de novos conhe-
cimentos e o suporte a aplicacdes inteligentes, como sistemas de recomendacdo, agentes
semanticos ¢ Web Semantica [Carlan 2006].

A Web Ontology Language (OWL) é um padrao do W3C projetado para repre-
sentar de forma formal conceitos, classes e relacdes em um dominio de conhecimento.
Baseada em ldgica descritiva, a OWL permite ndo apenas descrever estruturas concei-
tuais, mas também realizar raciocinios automaticos, como verificagdo de consisténcia,
classificacdo hierarquica e inferéncia de novos fatos. Sua expressividade e compatibili-
dade com outros padroes da Web Semantica a tornam fundamental para a construcdo de
sistemas inteligentes e interoperaveis [McGuinness and Harmelen 2004].

A OWLReady?2! é uma biblioteca Python que propde o paradigma de programagio
orientada a ontologias (ontology-oriented programming), realizando uma “tradugdo”
dinamica entre os elementos de uma ontologia OWL e objetos/classe em Python. Em
termos préticos, classes OWL se tornam classes Python, individuos sdo instancias dessas
classes e propriedades OWL sdo acessadas como atributos. Esse mapeamento de alto nivel
reduz a distancia semantica entre o formalismo 16gico e o cddigo, tornando as operagdes
de criacdo, consulta e atualizacdo de ontologias mais naturais para quem programa em
Python [Lamy 2017].

No plano conceitual, a OWLReady?2 trabalha sobre um mundo que carrega uma
ou mais ontologias, expondo uma API que preserva os principios da OWL 2 e, a0 mesmo
tempo, oferece operagdes idiomaticas de Python para manipular classes, individuos e pro-
priedades. Assim, a defini¢cdo de propriedades de dados (DataProperty) e propriedades
de objetos (ObjectProperty), bem como o uso de restri¢des (por exemplo, minQualifi-
edCardinality, only, some) podem ser expressos tanto no arquivo OWL (em RDF/XML
ou TTL) quanto diretamente em Python, mantendo a consisténcia com o modelo formal
[Lamy 2017].

Um dos principais diferenciais da biblioteca estd na sua capacidade de integrar-
se a raciocinadores baseados em légicas descritivas, como HermiT e Pellet, por meio de
fungdes especificas, por exemplo, a sync_reasoner(). Esse recurso possibilita ndo apenas
a verificacdo de consisténcia da ontologia, identificando contradi¢des ou incoeréncias na
modelagem conceitual, mas também a classificacdo automética das classes, organizando-
as em hierarquias mais precisas de acordo com os axiomas definidos. Além disso, per-
mite a inferéncia de novos conhecimentos, como a atribui¢do de tipos a individuos, a
propagacdo de restricdes e a descoberta de relagdes implicitas que ndo estavam explicita-
mente descritas no modelo [Lamy 2017].

'Disponivel em: https://owlready2.readthedocs.io/en/v0.48/

3. Trabalhos Relacionados

Diversos estudos exploram a integracdo de ontologias e servicos Web. Por exemplo,
[Wang et al. 2020] apresenta uma API voltada ao desenvolvimento de um sistema de
recomendacdo em saude, fornecendo materiais educacionais personalizados a pacientes
com doengas cronicas na China, utilizando Owlready?2 para manipulacao da ontologia que
sustenta as recomendacoes.

Outros trabalhos avangcam na incorporacdo de semantica em sistemas de e-
learning. O estudo de [Rabahallah and Ahmed-Ouamer 2015] propde uma arquitetura
de servicos Web semanticos, reutilizando funcionalidades como autenticacio, gerencia-
mento de cursos e avaliagdes, e viabilizando a descoberta e composi¢do automdtica de
servigos. De forma complementar, [Junior et al. 2022] apresenta uma abordagem hibrida
para recomendacdo personalizada de Objetos de Aprendizagem Digitais (OADs), inte-
grando algoritmos bioinspirados e técnicas de Web Semantica para combinar diferentes
fontes (AVAs, YouTube, Wikipédia), representando metadados por meio de ontologias e
promovendo recomendagdes alinhadas ao perfil do estudante. Apesar da relevancia des-
sas propostas, muitas permanecem conceituais ou nao apresentam avaliagdes empiricas
robustas.

Diante das iniciativas identificadas na literatura, este trabalho se diferencia por
apresentar uma experiéncia pratica de implementacao que vai além de propostas concei-
tuais. Essa abordagem oferece uma camada de servicos reutilizdvel e padronizada, que
integra mecanismos de inferéncia semantica e classificacdo automatica, ampliando a in-
teroperabilidade entre repositorios e a eficiéncia na recuperacao de informagdes. Assim,
o trabalho avanca em direcdo a aplicabilidade efetiva da Web Semantica em sistemas
distribuidos, apoiado por resultados empiricos que demonstram beneficios concretos em
termos de desempenho e reuso de informagoes.

4. Relato de Experiéncia

Nesta secdo € relatado o processo de concepcao e implementagdo da API, enfatizando a
metodologia adotada, as ferramentas empregadas e as estratégias de design utilizadas. A
descricao contempla a configuragao do ambiente de desenvolvimento, a escolha de biblio-
tecas e frameworks, bem como a forma como a integracdo com raciocinadores semanticos
foi incorporada ao sistema. Esse panorama fornece a base para compreender os resultados
obtidos e as contribui¢des apresentadas nas secdes seguintes.

A OntoObADi 2. Sua adogdo possibilitou aplicar na prética os recursos da API
desenvolvida, como a criacdo e classificacdo de individuos, a defini¢do de propriedades
e a execugdo de inferéncias semanticas. Para um melhor entendimento da ontologia, €
apresentado na Figura 1 o modelo conceitual da OntoObAD:.

O desenvolvimento da API foi pautado pela adogao de ferramentas modernas que
promovem produtividade, reprodutibilidade e alto desempenho. Para o gerenciamento de
dependéncias, empacotamento e isolamento de ambiente, utilizou-se o Poetry, que ga-
rantiu que todas as bibliotecas estivessem em suas versdes corretas e compativeis. A
implementagdo da interface RESTful foi realizada com o FastAPI, escolhido por sua
alta performance (baseada no framework ASGI Starlette), pela tipagem automatica com

Disponivel em: https://zenodo.org/communities/ontoobadi/

LEGENDA

“propriedade’, o _ _ _propriedade dad
_tipo dado’,u tipo objeto"@' -propriedade__ _ p[classe 2|

tipo objeto
espE,cia'hz‘acéo m ----tem le“"b\',nome\‘
éum
tipo de
tem TN
‘{ l l l l l uma - Pidescricdo)
tem um __ P i Ambiente Virtual Area d o di N e
" Autor| |Licenga| |Lingua ’ ea de T indicado
A e - . para
ou r:nals x 2 Y de Apr IP"bI'T alvok- um ou mais _~]Acessibilidade
_.-Y___foi produzido | suporta i i i 1 e
/link para, POrum é coberto uma ou € suportado pertence a ! T éum

. i i e - i i atende a
\ 1)/ oumais poruma.___mais ~.__ POrum ou mais uma ou mais
«curriculo, : ~.nais s . 3

um ou mais =" tipo de
em um ou mais

- recursos de
\ tem um ~— tem mT T
"\ ou mais niveis de”~ Interatividade --- umaf——b\gescrigaorx

\ \—A—‘ -

\

N

;/ conteido
“.gerado por Ie/" -tem zero __
-- - ou mais

Objeto de
Aprendizagem
Digital

/'l:equisito de™,
\. hardware ~g¢-__

“zztem um(a)

{palavras-chave 4

.- . N IERR éum por
/instrumento de ", N ‘versdo do'y tipo de
', avaliagdo - ‘publicagdo,” ‘. objeto L

hl
i
-- oumais --TTssl 5 . & um
---=-~_ ldescricdo) / ! AN — ;

e, SR |\ [iemorizagho] oo e~ {criacd
/‘requisito de . S\ criagdo, k\ / I N "] [—
_ software . / objetivode _ <. \ é' N\ [E d | L |

~~.____.-- ‘aprendizagem ¥ """ \ —/_

o . P composto N _A licacdo E!E!lg!
Iliz-T P é fundamentado pricag

por uma ou mais PR
1 N s S\
| N / link de
- ! v tslznrizir:'"\publicagéo,/'
1 Referéncia Pt
Bibliografica [-tem um__y.autor)
s autor,

Objeto de Objeto de i
Aprendizagem Aprendizagem v mal - T
Simples €um > . ™
p Composto i c:Jde tem um-»/ ano de~ \
* P *\publicagdo,

éum

tipo de Trabalho

Objeto de Aprendizagem < ! ___ |Académico
Gréfico tem um [

1

PR ./ afiliacgo
'veiculo de tem::___\‘ tem uma »‘\gt:adémic_a/
‘.publicagdo, uma tsdit0[q¥ S

’ Objeto de Aprendizagem

L Objeto de Aprendizagem
Audiovisual

Software

Objeto de Aprendizagem
Textual

Figura 1. Modelo Conceitual da ontologia OntoObAD:.

Pydantic e pela geracdo nativa de documentagdo interativa via Swagger/OpenAPI. Ja a
manipulagdo da OntoObADi1 foi viabilizada pela biblioteca OWLReady2, considerada o
nucleo da solucdo, uma vez que permitiu realizar inferéncias, persistir informacdes e ado-
tar um paradigma de programacao orientada a ontologias diretamente em Python.

4.1. Arquitetura da API

API foi desenvolvida seguindo os principios do estilo arquitetural Representational State
Transfer (REST), um estilo amplamente consolidado em sistemas distribuidos, valorizado
por sua simplicidade, escalabilidade e compatibilidade nativa com os protocolos da Web
[Xiao-Hong 2014]. Essa opg¢ao arquitetural permite que as operacdes sejam realizadas
por meio dos métodos convencionais do protocolo Hypertext Transfer Protocol (HTTP),
facilitando a interacdo de aplicacOes externas com a OntoObADi de forma intuitiva e
padronizada. A troca de dados € realizada integralmente no formato JavaScript Object
Notation (JSON), tanto para entradas quanto para saidas.

Do ponto de vista de implementacdo, a arquitetura da API segue o padraio MVC
(Model-View-Controller), ampliado com uma camada de servicos (Service Layer) dedi-
cada. A estrutura completa dessa arquitetura € ilustrada na Figura 2.

A camada Models é responsavel por encapsular as entidades centrais do dominio
do problema. Nela s@o definidas as classes e estruturas de dados que mapeiam diretamente
os conceitos da ontologia, como Individual, BaseOntologyModel, Rule e ManagerOnto-
logy. Essa organiza¢do promove um desenvolvimento mais limpo, modular e alinhado

RESTFull API
Models Controllers
Consumer
E JSON/Response ManagerOntology|| BaseOntologyModel | | |IndividualController| | OntologyController
Web Client HTTP/Endpoints Rule Individual FormController || RuleController
Services Interfaces
IndividualService FormService IManagerOntology
OntologyService
4
-<<import>> L
v Ontology
| ‘ <<artifact>>
: ontology.owl
OWLReady2 ‘ FastAPI ‘

Figura 2. Diagrama de pacotes da Application Programming Interface (API).

com os principios de orientagdo a objetos. A camada Controllers atua como intermedidria
entre as requisicoes recebidas pela API e as demais camadas. Sua principal responsabi-
lidade € direcionar o fluxo das agdes, processar entradas, invocar a camada de servigos
adequada e retornar as respostas correspondentes no formato esperado, garantindo assim
uma separagdo clara de responsabilidades.

A camada Services, encapsula a l6gica de negdcio complexa e especifica do
dominio, orquestrando operag¢des, aplicando regras e coordenando interacdes entre mode-
los. Para manter os controllers enxutos e focados em sua fun¢do de mediagdo, utiliza-se
a injecdo de dependéncias (Dependency Injection). Essa técnica permite que os control-
lers recebam instancias de servigos como dependéncias em seus contrutores. Com isso, a
responsabilidade de gerenciar a l6gica de negdcio € delegada aos servigos. A camada In-
terfaces implementa o principio de Inversdao de Dependéncia, um dos pilares do SOLID,
com o objetivo de abstrair completamente o acesso a OntoObADi Ela promove o desaco-
plamento entre os componentes de alto nivel da aplica¢do (que definem o que precisam
fazer) e os médulos de baixo nivel (que implementam como as operagdes ontoldgicas sao
realizadas).

Esse desacoplamento é concretizado por meio de um contrato formal, assim esta-
belecendo os métodos essenciais para interacdo com a ontologia. Dessa forma, os compo-
nentes consumidores (como Services ou Controllers) dependem apenas dessa abstracao
e ndo de implementagdes concretas. Isso possibilita que a fonte ou a tecnologia de per-
sisténcia da ontologia (ex.: trocar arquivos OWL locais por um endpoint SPARQL ou uma
API remota) seja substituida sem que seja necesséario alterar qualquer c6digo nos modulos
de alto nivel que a consomem.

4.2. Utilizacao da OWLReady2

Logo nas fases iniciais do desenvolvimento, tornou-se evidente uma das mais significa-
tivas vantagens proporcionadas pela adocdo da OWLReady?2: a notével facilidade para
interagir € manipular a ontologia de forma programaética. Essa facilidade se manifesta
concretamente através de uma sintaxe intuitiva e pythonica, permitindo realizar operagoes

complexas com comandos concisos e de alta legibilidade. Por exemplo, para carregar uma
ontologia, bastam poucas linhas de cédigo:

from owlready?2 import get_ontology

Carregando a ontologia
onto = get_ontology ("caminho/para/ontologia.owl") .load /()

Com esse simples trecho, temos uma instancia completa da ontologia, incluindo
todas as classes definidas no arquivo .owl ilustradas na Figura 1. A OWLReady2 também
facilita a criacdo de individuos e a manipulag¢do de propriedades de forma direta e intui-
tiva. Por exemplo, € possivel criar um individuo da classe Author e atribuir valores as
suas propriedades com poucas linhas:

Instanciando individuo
with onto:
individual = Author ("autor_ teste")
individual.hasResumelLink = ["http://lattes.cnpq.br
/7433133067872365"]
onto.save (file="caminho/para/ontologia.owl", format="rdfxml"

)

Além da criacdo de individuos, a biblioteca oferece suporte nativo para explorar
a estrutura ontoldgica, permitindo listar de forma simples tanto as data properties quanto
as object properties definidas no modelo. Isso é extremamente util para compreender e
manipular o conteddo da ontologia de maneira programatica:

#Listando data_properties e object_properties
with onto:
for data_properties in onto.data_properties() :
print (data_properties)
for object_properties in onto.object_properties():
print (object_properties)

Por fim, um dos recursos mais poderosos da OWLReady2 € a integracio com
raciocinadores automaticos, como o HermiT e o Pellet. Esses mecanismos permitem a
inferéncia de novos fatos a partir das defini¢cdes existentes na ontologia, enriquecendo o
conhecimento representado sem necessidade de intervencao manual. O exemplo a se-
guir demonstra a execucdo de um raciocinador para atualizar a hierarquia de classes e os
relacionamentos entre individuos:

from owlready2 import sync_reasoner
#Executando raciocinador
with onto:

sync_reasoner ()

Ap6s a exploragdo pratica dos recursos oferecidos pela OWLReady?2, tais fun-
cionalidades foram incorporadas a camada de Models, sendo encapsuladas pela classe
ManagerOntology. Essa classe implementa a interface IManagerOntology,
a qual estabelece um contrato bem definido para todas as operacdes de acesso e

manipulagdo da ontologia. Com esse design, a complexidade inerente a OWLReady?2
permanece isolada, garantindo que os demais mdédulos da aplicacdo nao dependam di-
retamente da biblioteca ou da estrutura interna da ontologia. Dessa forma, a ldgica de
negdcio interage apenas com a interface, de maneira desacoplada e transparente, pre-
servando os principios de modularidade e manutenibilidade do sistema. O diagrama de
classes apresentado na Figura 3 a seguir ilustra claramente essa organizagao.

- name: String
- rule_string : String

BaseOntologyModel

0.% - manager : IManagerOntology

- class_name : String
-owl_class : String

- data_properties : List
- ontology : Ontology - object_properties : List

ManagerOntology

+ ManagerOntology(ontology : Ontology) : void +get_class_by_name() : String
X + get_data_properties(]: Dict
i + get_object_properties() : Dict
! .- +get_type_range(): String
Vi s + create_generic_individual() : OWLClass
<<interface>> Pie
IManagerOntology -

+ load_ontology() : void
+ save_ontology) : void Individual
+ get_owl_dasses() : void
+ get_all_properties() : void k- - -]
+ get_data_properties() : void
+ get_object_properties) : void
+ list_rufes() : void +Individual(manager : IManagerOntology) : void
+ run_reasoner() : void
+ add_rule() : void

+ get_label() : void

- class_name : String
- name_individual : String
- manager : IManagerOntology

Figura 3. Diagrama de classe da Application Programming Interface (API).

5. Resultados

A implementacdo da API possibilitou encapsular a OntoObADi de forma a permitir sua
manipulagdo via servicos RESTful. Foram desenvolvidos endpoints como por exemplo o
endpoint GET/createSchema, que retorna um JavaScript Object Notation (JSON) estru-
turado contendo data_properties e object_properties assim como suas labels definidas na
OntoObADi,como mostra a Figura 4.

Response body

“super_properties”: []

: "hasReference",
em referéncia”,
"ty : "object"”,
"related_data_properties": [

“name": “"hasReferenceAuthor™,
“label": "tem autor"
1
{
“name": "hasYear",
"label": "tem ano"

}

,
"super_properties": []

: "hasTarget",

"related_data_properties": [],
"super_properties": []

Figura 4. Retorno do Endpoint.

Esse esquema dindmico serve como base para a constru¢do automdtica de for-
mulérios, permitindo que sistemas clientes criem interfaces de cadastro e edicdo de
conteudo educacional de forma padronizada. A Figura 5 exemplifica o consumo desse
endpoint em um formuldrio multi-step.

Submissao de material

3

Figura 5. Web Client Consumindo o Endpoint.

Outro cenario relevante € a criacdo e classificacao automatica de OADs. A Appli-
cation Programming Interface (AP]) instancia dinamicamente individuos na OntoObAD:I,
por meio da classe Individual e do endpoint POST/createindividual, que es-
pera os seguintes pardmetros: o campo name, que indica o0 nome do individuo a ser
criado; e dois blocos de propriedades: data_properties, destinado a valores literais,
e object_properties, conforme ilustrado na Figura 6.

Request body " application/json v

Edit Value | Schema

Figura 6. Parametros do Enpoint.

Dessa forma, o processo garante o retorno de um individuo criado, instanciado e
classificado dinamicamente de forma automatica na ontologia.

6. Conclusao

Durante o desenvolvimento, a utilizacio da OWLReady2 se mostrou um diferencial, per-
mitindo a abstracdo de tarefas complexas relacionadas ao acesso e manipulacdo da onto-
logia. A experi€ncia prética revelou tanto beneficios como a simplicidade na defini¢ao
de propriedades e a flexibilidade na execucao de consultas e inferéncias, quanto desafios,
como a necessidade de tratar limitacdes de desempenho em raciocinios mais extensos e a
adaptagdo da estrutura ontolégica ao modelo relacional de uma API REST. Os exemplos
de uso obtidos até o momento indicam que a API, aliada a OWLReady?2, é capaz de apoiar
desde a construcao dinamica de interfaces educacionais até a recomendacdo personalizada

de conteddos, evidenciando seu potencial em contribuir com solu¢des pedagdgicas mais
inteligentes e centradas no aluno.

Como trabalho futuro, propomos a criagdo de um repositorio educacional baseado
em Web Semantica, voltado a classificacdo e recomendacdo de OADs. Acredita-se que
essa iniciativa contribuird significativamente para a organizacdo e o compartilhamento de
contetidos educacionais, potencializando a reutilizacio e a interoperabilidade entre dife-
rentes plataformas. Com este trabalho, espera-se ndo apenas validar a aplicacao pratica
da OADs, mas também incentivar a adocdo da OWLReady2 e de tecnologias semanticas
no contexto educacional, promovendo buscas mais eficientes e o desenvolvimento de
aplicagdes educacionais inteligentes.

Agradecimentos

Os autores agradecem a FAPERGS pelo apoio financeiro (Projeto ARD/ARC - processo
23/2551-0000761-4) e ao CNPq pela concessdo de bolsa de Iniciacdo Cientifica.

Referéncias

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scienti-
fic American, 284(5):35-43. Disponivel em: https://www.lassila.org/
publications/2001/SciAm.html. Acesso em: 01 set. 2024.

Breitman, K. K. (2005). Web semdantica. LTC, Rio de Janeiro. recurso online. Dis-
ponivel em: https://app.minhabiblioteca.com.br/reader/books/
978-85-216-1958-1. Acesso em: 25 maio 2023.

Carlan, E. (2006). Ontologia e web semantica. Brasilia: Universidade de Brasilia.
Gruber, T. (2009). Ontology, page 3748. Springer-Verlag.

Junior, C. P,, Araugjo, R., and Dor¢a, F. (2022). Uma abordagem hibrida apoiada por
algoritmo bioinspirado e tecnologias de web semantica para recomendagdo personali-
zada de objetos de aprendizagem. In Anais Estendidos do XI Congresso Brasileiro de
Informdtica na Educagdo, pages 35-46, Porto Alegre, RS, Brasil. SBC.

Lamy, J.-B. (2017). Owlready: Ontology-oriented programming in python with automa-
tic classification and high level constructs for biomedical ontologies. Artificial Intelli-
gence in Medicine, 80:11-28.

McGuinness, D. L. and Harmelen, F. V. (2004). Owl web ontology language overview.
Dispon{i}vel em: {https://goo.gl/p0g6aqg. Acesso em: 30 de junho de 2017.

Rabahallah, K. and Ahmed-Ouamer, R. (2015). Creating e-learning web services towards
reusability of functionalities in creating e-learning systems. In 2015 Global Summit on
Computer Information Technology (GSCIT), pages 1-6.

Wang, Z., Huang, H., Cui, L., Chen, J., An, J., Duan, H., Ge, H., and Deng, N. (2020).
Using natural language processing techniques to provide personalized educational
materials for chronic disease patients in china: Development and assessment of a
knowledge-based health recommender system. JMIR Med Inform, 8(4):e17642.

Xiao-Hong, L. (2014). Research and development of web of things system based on rest
architecture. In 2014 Fifth International Conference on Intelligent Systems Design and
Engineering Applications, pages 744-747.

