
Towards a Web Portal for Teaching and Practicing of Software
Engineering Controlled Experiments

Fernando S. Grande1, André F. R. Cordeiro1, Edson OliveiraJr1

1Departamento de Informática – Universidade Estadual de Maringá (UEM)
Maringá – PR – Brazil

fsg0314@gmail.com, cordeiroandrefelipe@gmail.com, edson@din.uem.br

Abstract. Experimentation in Software Engineering is vital for improving meth-
ods and processes, but replication challenges and the lack of structured repos-
itories limit progress. While models and ontologies organize knowledge, they
do not provide integrated environments for teaching and practice. This paper
presents a web portal for controlled experiments in Software Engineering, struc-
tured on a experimental process and supported by an experimentation ontology.
It enables experiment registration, storage, and retrieval through a search mech-
anism. Tests on database connectivity, validation, and end-to-end functionality
confirmed effectiveness. Future work includes enhancing usability, expanding
the repository, and adding advanced analysis features.

1. Introduction
Software Engineering (SE) encompasses the study and application of processes
for software development and maintenance [Sommerville 2015]. Key subareas of
SE include Distributed Software Development [Robinson 2019], Software Mainte-
nance [Haldar and Capretz 2024], and Experimentation in Software Engineering (ESE)
[Juristo and Vegas 2016]. The ESE subarea focuses on studying and implementing ex-
perimental practices that enhance the development and improvement of maintenance
methods, tools, and processes [Kitchenham 2016]. By refining the quality of experi-
ments, researchers can broaden the knowledge base related to specific research topics
[Wohlin 2012].

Formalization is a characteristic that enhances the execution of experi-
ments [Freire et al. 2014]. In addition to the initial execution, it is essen-
tial to consider the repetition, replication, and reproduction of the experiment
[Gonzalez-Barahona and Robles 2023]. The literature presents different solutions to
assist in these activities [Anchundia 2020], such as conceptual models and ontolo-
gies related to SE experiments [Scatalon et al. 2011, Furtado 2018, Luz et al. 2020,
Vignando et al. 2020].

Considering formal structures for representing fundamental concepts and their re-
lationships, solutions can utilize the established semantic relationships, such as Recom-
mendation Systems [Vignando 2020]. In addition to these systems, one can also think of
Software Portals. A portal can be defined as a structure that enables access to a certain
type of information [Mead and McGraw 2005].

The adoption of portals can be viewed as a solution across various contexts
[Correa 2018, Kipping et al. 2016, Brito 2014, Adeyinka and Bashorun 2011]. Given the



unique characteristics of a portal, it is particularly suitable for use in the context of ESE.
This paper discusses the development of a web portal designed to support the teaching,
learning, and application of controlled experiments in SE, representing a novel contribu-
tion. One portal with these characteristics was not found in the literature.

This portal was developed based on an ontology built for the context
of ESE, which provides a framework for planning and executing experiments in
SE[Vignando 2020]. We anticipate that the web portal will allow researchers to input
experiments, search for existing experiments, and gather data for purposes such as repeti-
tion, replication, and reproduction.

This paper outlines the process involved in constructing the portal. The subsequent
sections detail the development stages. Section 2 discusses the essential research studies
necessary for the portal’s development. Section 3 covers the specifics of the portal project.
Section 3.4 describes the testing process for the portal and the outcomes of these tests.
Section 6 summarizes the conclusions drawn from the study and presents directions for
future work.

2. Background

The literature on ESE presents various artifacts that can facilitate the execution of ex-
periments. Possible artifacts include Experimental Templates [Juristo and Moreno 2013,
Wohlin 2012, Jedlitschka et al. 2008, Kitchenham et al. 2008, Wohlin et al. 2000] and
Experimental Process [Wohlin 2012, Wohlin et al. 2000]. Experimental Templates can
be defined as documents that describe what information should be recorded regarding ex-
periments. Possible information includes limitations and threats to validity [Wohlin 2012,
Wohlin et al. 2000]. Regarding the Experimental Process, it is observed that the process
established by Wohlin is widely applied, according to Furtado [Furtado 2018].

The process illustrated in Figure 1 is structured based on the following activities:
Experiment Scoping, Experiment Planning, Experiment Operation, Analysis and Inter-
pretation, Presentation, and Package.

The Experimental Process described by Wohlin et al. is composed by the fol-
lowing activities: Experiment Scoping describes the objective, problem, and hypothesis
for the experiment. Experiment Planning presents the definition of the methods, tech-
niques, resources, variables, and the elaboration of a guide for the experimental activities.
The Experiment Operation describes the steps to conduct the execution of the experi-
ment. Data validation is also conducted. Analysis and Interpretation consider descrip-
tive statistics in the data collected. The data can be interpreted and reduced. After that,
one hypothesis test is executed to determine whether the hypothesis will be accepted or
rejected. Finally, conclusions will be drawn to define how the experiment results will
be used. The Presentation and Package considers the documentation of the results. A
package that contains the experimental data for future repetitions, replications, and repro-
ductions of the experiment can be organized.

These activities can guide the researcher during the planning and execution of
an experiment [Wohlin 2012]. The experimental process has been applied in different
research contexts within ESE, such as quality. The study of Furtado presents guidelines
related to quality assessment of quasi-experiments and controlled experiments in Software



Figure 1. Experiment Process, designed by Wohlin et al. [Wohlin 2012]

Product Line (SPL) [Furtado 2018]. A conceptual model was developed to support the
defined guidelines. Another study presents the creation of an ontology to formally support
experiments in SPL [Vignando 2020].

3. Portal Project

The Web Portal started with a project. The information about the project was collected and
organized in terms of Research Methodology, Development Methodology, Requirements,
Technologies Used, and the Interface Prototype.

3.1. Research Methodology

The development of the portal started with a non-systematic literature review on topics
relevant to the portal. Next, exploratory studies were carried out to evaluate the web
development technologies. These studies were important for choosing technologies and
developing algorithms for constructing the portal, as well as its interface and search mech-
anism. After this, the portal was implemented, including its interface and search mech-
anism. Subsequently, tests were conducted to identify potential defects and possible im-
provements. Finally, an empirical evaluation of the project was planned and executed.
The activities carried out can be summarized as follows:

• Conducting a literature review on relevant topics for the portal.
• Performing exploratory studies on web development technologies.
• Selecting appropriate technologies for the project.
• Developing algorithms for the portal’s construction.
• Designing and implementing the portal’s interface.
• Developing and integrating the search mechanism.
• Implementing the portal with all selected features.
• Conducting tests to verify requirements and defects.
• Performing an empirical evaluation of the project.



3.2. Development Methodology
The requirements and the technologies were defined to develop the portal. Also, a proto-
type of the interface was designed. Finally, through the elaborated project, the portal was
constructed.

The development process involved iterative activities in which the requirements
guided the design decisions and the choice of technologies. Initially, the general and
functional requirements oriented the definition of the portal layout, the organization of
navigation elements, and the construction of the repository page. At the same time, non-
functional requirements such as clarity, simplicity, and consistency were considered in
the interface. Once the requirements were defined, the technologies were choosen. The
development was carried out incrementally. Each portal functionality was implemented
and integrated into the portal, ensuring alignment with the initial requirements.

3.2.1. Requirements

The requirements considered by the first version of the web portal can be classified as
functional or non-functional.

3.2.1.1. Functional Requirements
1. Repository Page: the portal has a dedicated page to present all experiments avail-

able on the portal.
2. Simple Search: the portal is equipped with a search feature that enables users to

find experiments using keywords or phrases, returning all the results related to that
entry.

3. Data Storage: the portal’s data, including all experiment details, is stored and
managed in a database.

3.2.1.2. Non-Functional Requirements
1. Portal Availability: the portal must be available to all users;
2. Layout: all pages on the portal must have the same layout pattern, which must

include a header;
3. Header Layout: the header must enable the search of registered experiments, as

well as a navigation mechanism that helps the user navigate through all the pages;
4. Clarity and Simplicity: one simple interface with intuitively organized elements

and the use of one simple language;
5. Consistency: same standard layout, colors, and typography to all pages. Pages

with the same element organization.

3.3. Technologies Used
The following technologies were used to build the portal:

• TypeScript1: TypeScript is considered a superset of the JavaScript programming
language with static typing. Based on this programming language, errors related

1TypeScript official website: https://www.typescriptlang.org



to data typing can be discovered and corrected at development time. TypeScript
also supports most of the libraries and frameworks used for web development.

• React2: React is a JavaScript framework that contains a set of elements that help
develop code using JavaScript in web systems. React works with the front-end
of the application and uses components to create the interface, allowing flexibility
and scalability.

• Vite3: Vite is a front-end development tool that speeds up development by using
native ES modules, so only changed files are reloaded. For example, in a Re-
act project, updating a single component triggers instant hot module replacement
instead of rebuilding the entire app. Vite also supports TypeScript.

• MongoDB4: MongoDB is a NoSQL database management system that uses a
JSON(JavaScript Object Notation)-oriented document structure (BSON (Binary-
encoded serialization of JSON data) in MongoDB) to store data. MongoDB is
used in applications that work with unstructured data and require flexibility and
scalability.

• Axios5: Axios is a library that uses http protocol, providing flexibility, scalability,
and error treatments using promises.

• TailwindCSS6: TailwindCSS is a framework that aims to reduce the number of
lines of CSS code, used for the web portal interface.

3.3.1. Interface Development

An initial version of the interface was developed to explore and validate the core func-
tionalities of the portal. The design emphasizes three central features: experiment reg-
istration, experiment visualization, and the integrated search mechanism available in the
portal’s header. More information can be found at https://doi.org/10.5281/
zenodo.17230418.

3.4. Portal Testing Methodology
Software testing is a critical activity in the software process, conducted to verify that a
program performs its intended functions and to discover defects before the system is put
into use [Sommerville 2015]. As noted by Pressman and Sommerville, testing consists
of two distinct activities: verification and validation. Verification demonstrates that the
software meets its requirements and specifications. Validation ensures that the system
meets the user’s needs [Pressman 2019], [Sommerville 2015].

To ensure that the requirements defined for the portal were correctly implemented,
a testing strategy was devised, focusing on the portal’s main functionalities. In this con-
text, the following tests were performed, following the testing strategies considered by
Pressman [Pressman 2019]: Database Testing and Content Testing.

On the other hand, a validation approach was also adopted to assess whether the
system fulfills the users’ real needs [Sommerville 2015, Pressman 2019]. In this context,

2React official website: https://react.dev
3Vite official website: https://vitejs.dev
4MongoDB official website: https://www.mongodb.com
5Axios official website: https://axios-http.com
6TailwindCSS official website: https://tailwindcss.com

https://doi.org/10.5281/zenodo.17230418
https://doi.org/10.5281/zenodo.17230418
https://doi.org/10.5281/zenodo.17230418
https://doi.org/10.5281/zenodo.17230418


End-To-End Testing was performed, considering what is proposed by Valente, simulating
a user workflow in the portal [Valente 2020].

3.4.1. Database Testing

For the portal, the database is a central and critical element, containing the data from the
registered experiments. It is therefore essential to test the database to ensure that data is
stored and retrieved correctly and that performance is acceptable [Pressman 2019]. This
process is particularly critical for the portal’s experiment search functionalities, which de-
pend on the database’s reliability and efficiency. Our database testing focused on verifying
the application’s interaction with the database, ensuring both correct connectivity and the
integrity of the data. For the database testing, the Jest JavaScript Testing Framework was
used7. In the context of database testing, connectivity and validation were chosen:

• Connectivity: This test verifies that the application establishes a proper connec-
tion with the database. A failure to connect makes all other database-related func-
tions unusable.

• Validation: This test seeks to ensure that the data stored in the database is valid
and adheres to the defined schema and integrity constraints. This includes check-
ing data types, relationships, and business rules implemented at the database level.

3.4.2. Content Testing

The content testing, particularly relevant for web applications, focuses on uncovering se-
mantic and syntactic errors in the content presented to the user [Pressman 2019]. The ob-
jective is to find errors in the organization or structure of content and to verify the accuracy
and completeness of the information presented as navigation occurs [Pressman 2019].

This test was planned in two steps. First, the functionalities responsible for re-
trieving data were tested to ensure that the interface components could correctly render
the content stored in the database. These functionalities, tested using the Jest framework,
are related to the following functions:

• getAllExperiments: Makes one request to the backend to fetch all experiments
from the portal.

• getSimpleSearchData: Makes one request to the backend to search for experi-
ments that match a given search string.

• getExperimentById: Makes one request to the backend to fetch data for a spe-
cific experiment using its ID.

Following the verification of these data-retrieval functions, the interface compo-
nents themselves were checked manually to ensure that they rendered the fetched content
correctly.

7Jest official website: https://jestjs.io/



3.4.3. End-to-End Testing

While unit and integration tests focus on specific parts of a system, system testing, or end-
to-end testing, tests the system as a whole [Sommerville 2015]. The goal is to verify that
all system components are compatible, interact correctly, and that the complete system
meets its functional and non-functional requirements [Valente 2020]. This form of test-
ing is essentially a black-box activity where the system’s external behavior is evaluated
against the requirements [Pressman 2019].

For the end-to-end test, Playwright 8, a framework for end-to-end tests in web ap-
plications. This test simulates a user’s interaction with the portal by executing a complete
workflow. The test navigates to the experiment registration page, enters valid data into
the form, and submits it. Upon receiving a confirmation from the backend, the test stores
the new experiment’s ID from the JavaScript Object Notation (JSON) response.

Subsequently, the test proceeds to the portal’s experiment repository page and
searches for the title and authorship of the newly registered experiment. Upon finding it,
the test clicks the “See Details” button to navigate to the experiment’s full data page. On
this final page, it verifies two key points:

1. That the title and authorship match the data originally submitted.
2. That the experiment ID in the page’s URL corresponds to the ID received from

the backend after the initial registration.

This test was conducted using three rendering engines: Chromium9, WebKit10,
and Gecko11. That means the test was conducted using the following navigators: Google
Chrome12, Safari13, and Firefox14.

4. Results

The tests performed on the portal confirmed the correct implementation of the func-
tionalities defined in the requirements. The results are summarized below, while
the detailed logs and full reports of all tests are available in the public repository:
https://doi.org/10.5281/zenodo.13788104

4.1. Database Testing

The database tests covered connectivity and validation aspects.

• Connectivity: In the connectivity test, the system successfully established a con-
nection to the database when valid credentials were provided. Conversely, when
invalid credentials were used, the system correctly rejected the connection at-
tempt, returning the expected authentication error.

8Playwright official website: https://playwright.dev/
9https://www.chromium.org

10https://webkit.org
11https://developer.mozilla.org/en-US/docs/Glossary/Gecko
12https://www.google.com/chrome
13https://www.apple.com/safari
14https://www.mozilla.org/firefox

https://doi.org/10.5281/zenodo.13788104


• Validation: In the validation test, the database accepted experimental data that ad-
hered to the defined schema and constraints, while invalid data was rejected, gen-
erating the appropriate validation errors. These results confirm that the database
layer enforces both access security and data integrity.

4.2. Content Testing
The content tests first verified the correctness of the functionalities responsible for re-
trieving data from the backend. The functions getAllExperiments, getSimpleSearchData,
and getExperimentById all returned the expected data when valid requests were made and
handled errors appropriately when failures were simulated.

Subsequently, the interface components that render this data were tested. The
repository page of the portal correctly displayed the list of experiments, including essen-
tial metadata, and appropriately presented error messages when backend failures were
forced. These results confirm that both data retrieval and presentation in the user interface
operate as intended.

4.3. End-to-End Testing
The end-to-end test simulated the complete workflow of a user registering a new exper-
iment. Across all tested browsers (Google Chrome, Firefox, and Safari), the experiment
was successfully registered, stored in the database, and retrieved in the repository view.
The details displayed matched the data initially submitted, and the identifiers used in the
interface corresponded to those returned by the server. These results confirm that the
portal supports the user workflow across multiple execution environments.

5. Lessons Learned and Future Directions
In this study, several key lessons emerged. The experimental process shaped the por-
tal’s structure and functionalities, ensuring alignment with best practices in the ESE field
[Wohlin 2012]. Utilizing an experimentation ontology significantly improved the orga-
nization and clarity of experimental data, underscoring the importance of structured ap-
proaches in software engineering research [Vignando et al. 2020]. The requirements en-
sured that the portal’s main functionalities were built, with a simple and intuitive interface.

From a technological perspective, the use of technologies such as TypeScript, Re-
act, and MongoDB improved development efficiency and scalability. The database test-
ing, content testing, and end-to-end testing were essential for verifying the portal’s relia-
bility. Nevertheless, the tests were limited in scope, as they primarily assessed functional
correctness. Aspects such as performance under high loads, usability across diverse user
profiles, and security vulnerabilities remain open challenges.

Looking ahead, the project’s future directions include improving the portal’s us-
ability, which will be assessed through a study validation with students, professors, and
researchers experienced in ESE. Other plans include increasing the database of regis-
tered experiments and implementing advanced features such as more robust search mech-
anisms.

6. Final Remarks
This paper describes the design, implementation, and evaluation of an initial version of a
web portal for teaching and practicing controlled experiments in SE, following an exper-



imentation ontology as a structural basis [Vignando 2020]. This alignment with method-
ological foundations ensures that the portal is not merely a technological artifact, but an
environment that supports the systematic practice of experimentation in SE.

The partial results obtained through the testing phase confirm that the portal meets
the proposed requirements. These evaluations validate the feasibility of the portal as a
reliable and scalable tool for researchers. Moreover, the portal demonstrated robustness
in its core functionalities, such as experiment registration and retrieval, while maintaining
simplicity of use.

Future studies will focus on enhancing usability through empirical evaluations
with real users, ensuring that the system is accessible and intuitive. Also, the repository
of experiments will be expanded, and an advanced search will be implemented. As a
practical application, the portal can be used in undergraduate or graduate courses to fa-
cilitate in-class discussions or to help students plan the experimental activities of their
research. Considering these new functionalities, the portal has the potential to evolve into
an ecosystem for designing, executing, and disseminating controlled experiments in SE.

References
Adeyinka, T. and Bashorun, M. (2011). Impact of web portals on e-learning. 4th Interna-

tional Conference on the Applications of Digital Information and Web Technologies,
ICADIWT 2011.

Anchundia, C. E. (2020). Resources for reproducibility of experiments in empirical soft-
ware engineering: Topics derived from a secondary study. IEEE Access, 8:8992–9004.

Brito, K. S. (2014). Brazilian government open data: Implementation, challenges, and
potential opportunities.

Correa, A. S. (2018). Investigating open data portals automatically: a methodology and
some illustrations.

Freire, M. A., Kulesza, U., Aranha, E., Jedlitschka, A., Neto, E. C., Acuña, S. T., and
Gómez, M. (2014). An empirical study to evaluate a domain specific language for
formalizing software engineering experiments. In SEKE, pages 250–255.

Furtado, V. R. (2018). Diretrizes para avaliação de qualidade de quasi-experimentos e ex-
perimentos controlados em linha de produto de software. Master’s thesis, Universidade
Estadual de Maringá.

Gonzalez-Barahona, J. M. and Robles, G. (2023). Revisiting the reproducibility of em-
pirical software engineering studies based on data retrieved from development reposi-
tories. Information and Software Technology, 164:107318.

Haldar, S. and Capretz, L. F. (2024). Interpretable software maintenance and support
effort prediction using machine learning. In 2024 IEEE/ACM 46th International Con-
ference on Software Engineering: Companion Proceedings (ICSE-Companion), pages
288–289, Lisbon, Portugal.

Jedlitschka, A., Ciolkowski, M., and Pfahl, D. (2008). Reporting experiments in software
engineering. In Guide to advanced empirical software engineering, pages 201–228.

Juristo, N. and Moreno, A. M. (2013). Basics of software engineering experimentation.
Springer Science and Business Media.



Juristo, N. and Vegas, S. (2016). Analyzing software engineering experiments: Every-
thing you always wanted to know but were afraid to ask. In 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C), pages 900–
901, Austin, TX, USA.

Kipping, S., Stuckey, M. I., Hernandez, A., Nguyen, T., and Riahi, S. (2016). A web-
based patient portal for mental health care: Benefits evaluation. J Med Internet Res,
18(11):e294.

Kitchenham, B., Al-Khilidar, H., Babar, M. A., Berry, M., Cox, K., Keung, J., ..., and
Zhu, L. (2008). Evaluating guidelines for reporting empirical software engineering
studies. Empirical Software Engineering, 13:97–121.

Kitchenham, B. A. (2016). Evidence-Based Software Engineering and Systematic Re-
views. CRC Press.

Luz, C. D., OliveiraJr, E., and Steinmacher, I. (2020). Uma ontologia de apoio ao ensino
de experimentaçao em engenharia de software. In Anais Estendidos do XI Congresso
Brasileiro de Software: Teoria e Prática, pages 70–76. SBC.

Mead, N. R. and McGraw, G. (2005). A portal for software security. IEEE Security and
Privacy, 3(4):75–79.

Pressman, R. S. (2019). Software Engineering: A Practitioner’s Approach. MC GRAW
HILL INDIA, 8th edition.

Robinson, P. T. (2019). Communication network in an agile distributed software devel-
opment team. In 2019 ACM/IEEE 14th International Conference on Global Software
Engineering (ICGSE), pages 100–104, Montreal, QC, Canada.

Scatalon, L. P., Garcia, R. E., and Correia, R. C. M. (2011). Packaging controlled experi-
ments using an evolutionary approach based on ontology (s). In SEKE, pages 408–413.

Sommerville, I. (2015). Software Engineering. Pearson.

Valente, M. T. (2020). Engenharia de Software Moderna: Princı́pios e Práticas para
Desenvolvimento de Software com Produtividade. Editora: Independente.

Vignando, H. (2020). Ontoexper-spl: uma ontologia de apoio a experimentos de linha de
produto de software. Master’s thesis, Universidade Estadual de Maringá.

Vignando, H., Furtado, V. R., Teixeira, L. O., and OliveiraJr, E. (2020). Ontoexper-spl:
An ontology for software product line experiments. In ICEIS (2), pages 401–408.

Wohlin, C. (2012). Experimentation in Software Engineering. Springer Science Business
Media.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2000).
Experimentation in software engineering: an introduction. Kluwer Academic Publish-
ers, Massachusetts.


	Introduction
	Background
	Portal Project
	Research Methodology
	Development Methodology
	Requirements
	Functional Requirements
	Non-Functional Requirements


	Technologies Used
	Interface Development

	Portal Testing Methodology
	Database Testing
	Content Testing
	End-to-End Testing


	Results
	Database Testing
	Content Testing
	End-to-End Testing

	Lessons Learned and Future Directions
	Final Remarks

