Implantacao de Padroes e Praticas de Qualidade de
Software: um estudo de caso

Daniel Paulo dos Santos', Rodrigo Miguel Tomazi', Jhony Maiki Maseto', Diego
Fabio Schuh'

'Universidade Comunitéria da Regifo de Chapecé - UNOCHAPECO
{daniel paulo,rodrigo.tomazi, jhony,df schuh}@unochapeco.edu.br

Abstract. Poor software quality is a major industry challenge, negatively
impacting productivity, maintenance and system sustainability. This article
presents a case study on implementing software quality methodologies at a
Higher Education Institution (HEI), with the goal of standardizing software
engineering processes and improving product quality. The adopted
methodology was action research, focusing on the creation and application of
coding standards, versioning and code review practices, along with the
increased use of automated testing and continuous documentation
mechanisms. The adoption of practices such as Test-Driven Development
(TDD) and Continuous Integration/Continuous Delivery (CI/CD) was
considered a crucial factor in ensuring code quality and functionality.
Previously scarce documentation became a strategic and dynamic resource,
facilitating knowledge sharing. The results of a survey conducted with the
development team show a significant increase in code readability,
maintainability and traceability. There was a general perception of reduced
defects and rework, as well as improved team communication. The HEI's
experience underscores the importance of process standardization, team
training and the adoption of appropriate tools to build a culture of continuous
improvement, resulting in more robust and reliable software.

Resumo. A md qualidade de software é um dos maiores desafios da industria,
impactando negativamente a produtividade, manutengdo e sustentabilidade
dos sistemas. Este artigo apresenta um estudo de caso sobre a implementacdo
de metodologias de qualidade de software em uma Instituicdo de Ensino
Superior (IES), com o objetivo de padronizar processos de engenharia de
software e elevar a qualidade dos produtos. A metodologia adotada foi a
pesquisa-agcdo, com foco na criacdo e aplicacdo de padroes de codificacdo,
versionamento e revisdo de codigo, além da ampliacdo do uso de testes
automatizados e da implementagdo de mecanismos de documentacdo
continua. A adog¢do de prdticas como Test-Driven Development (TDD) e
Continuous Integration/Continuous Delivery (ClI/CD) foi vista como um fator
crucial para garantir a qualidade e funcionalidade do codigo. A
documentagdo, antes escassa, tornou-se um recurso estratégico e dinamico,
facilitando o compartilhamento de conhecimento. Os resultados da pesquisa,
conduzida com a equipe de desenvolvimento, demonstram um aumento
significativo na legibilidade, manutenibilidade e rastreabilidade do coédigo.
Houve uma percepcdo geral de reducdo de defeitos e retrabalhos, assim como
uma melhoria na comunicacdo da equipe. A experiéncia da IES reforca a
importdncia da padronizacdo de processos, do treinamento da equipe e da
adogdo de ferramentas adequadas para construir uma cultura de melhoria
continua, resultando em software mais robusto e confidvel.

1. Introducao

A transformacao digital tornou os computadores e seus sistemas essenciais para nossas
vidas pessoais e profissionais. Para atender a2 demanda de armazenar, processar e

recuperar dados, esses sistemas precisam de software de qualidade. A qualidade de
software esta ligada diretamente ao valor do produto e € um atributo multidimensional e
essencial, devendo funcionar de maneira confidvel, ser seguro, facil de usar e de manter,
além de atender aos requisitos dos usudrios e outras partes interessadas [Saini et al.
2020] [Kokol 2022].

A md qualidade em sistemas criticos pode ter consequéncias graves, cOmo
perdas financeiras, danos permanentes, falhas em missdes ou até mesmo morte.
Segundo a ISO (International Organization for Standardization) 8402:1986, a qualidade
de software se refere a todas as caracteristicas de um produto ou servigo que afetam sua
capacidade de atender as necessidades dos usuarios. A ISO 9001:2008 complementou
essa defini¢do, afirmando que a qualidade € determinada pela comparacdo das
caracteristicas de algo com um conjunto de requisitos [Ndukwe et al. 2022].

A qualidade de software esta entre os maiores desafios da industria de software
atual. Apesar dos avancos das metodologias de desenvolvimento, as organizagdes ainda
sofrem com dificuldades para garantir que seus sistemas atendam padroes de
confiabilidade, desempenho e segurancga. A auséncia de processos padronizados, falta de
documentacio e negligéncia com testes automatizados contribuem para a introducao de
defeitos, aumentando o custo de manuten¢do, uma vez que encontrar € corrigir um
problema de software apés a entrega pode ser 100 vezes mais caro do que encontri-lo e
corrigi-lo durante a fase de modelagem e desenvolvimento [Boehm e Basili 2005].

Neste contexto, o presente trabalho tem como objetivo principal descrever o
processo de concepcdo, desenvolvimento e implementacdo de metodologias voltadas a
padronizacdo dos processos de engenharia de software em uma Instituicio de Ensino
Superior (IES). Os objetivos especificos incluem a definicdo e aplicacdo de padrdes
técnicos em todas as linguagens de programacdo utilizadas, a adocdo de praticas de
versionamento e revisdo de codigo, a ampliacio do uso de testes automatizados e a
implementacdo de mecanismos de documentagdo continua. Busca-se, com isso, elevar a
qualidade dos produtos entregues, otimizar o tempo de manutengdo e assegurar maior
eficiéncia, rastreabilidade e sustentabilidade dos sistemas produzidos.

2. Trabalhos relacionados

Uma visdo geral abrangente dos desafios e solugdes em qualidade de software sdo
oriundas de revisdes sistematicas da literatura e alguns estudos praticos. Estes estudos
relacionados trazem boas praticas de codificacio e documentagdo no ambito de
desenvolvimento de sistemas.

A divida técnica, uma metafora popularizada por Ward Cunningham, representa
as escolhas de atalhos e decisdes de design que levam a um software mais dificil de
manter no futuro. Um mapeamento sistemdtico é feito para explorar a literatura sobre o
tema, identificando as causas, tipos e estratégias para gerenciar a divida técnica.
Argumentos como a negligéncia com a qualidade de software € a principal causa desta
divida técnica, que, por sua vez, aumenta o custo € o tempo de manuten¢do, além de
dificultar a implementacdo de novas funcionalidades [Li et al. 2015].

Métricas para qualidade de software € um dos aspectos importantes no
desenvolvimento de novos soffwares. Uma revisdo sistemdtica da literatura para

identificar e categorizar as métricas mais utilizadas em ambientes de desenvolvimento
agil sdo destacadas neste estudo. Embora o foco da metodologia 4gil seja entregas
rapidas, a qualidade do software continua sendo um desafio e requer métricas adequadas
para ser monitorada. Métricas essas como satisfacdo do cliente, confiabilidade do cédigo
e manutenibilidade mostram como o gerenciamento continuo da qualidade € importante
para o sucesso de equipes dgeis [Muneer e Saquib 2020].

Estudos como automacdo de testes avaliam o impacto da implementacdo de
testes automatizados na qualidade de seus produtos. A automacdo de testes reduz
significativamente o nimero de defeitos introduzidos no software, diminui o tempo de
atrasos e aumenta a confianca nas entregas. Evidéncias empiricas mostram que o
investimento em testes automatizados sdo estrategicamente eficazes para garantir a
qualidade, reforcando a sua introdu¢do em ambientes de desenvolvimento [Eldhose e
Joy 2021].

Além de tudo isso, a documentacio de um software € indispensdvel para
alteracdes futuras e, muitas vezes, o proprio cddigo pode servir como tal. Nesse sentido,
a nomenclatura de identificadores, como varidveis, constantes, fungdes, rags, classes e
objetos, sdo importantes, especialmente para projetos em equipe, tornando o
cédigo-fonte altamente legivel e facil de manter [Wang et al. 2010].

Os trabalhos relacionados evidenciam que métricas, padrdes, estratégias e
automatizacdo de testes sdo fatores importantes para a qualidade de software. Sendo
assim, este estudo de caso aplicou um conjunto de procedimentos, padrdes e
ferramentas para melhoria na transcricdo e documentacio de c6digos, ndo se limitando a
uma Unica metodologia.

3. Metodologia

Esta pesquisa € verificada por meio de um estudo de caso, de natureza aplicada. Dessa
forma, a questdo de pesquisa é abordada por meio da metodologia de pesquisa-acdo. A
Figura 1 ilustra as 6 etapas utilizadas para aplicacdo da metodologia deste estudo.

Etapa 3 Etapa 4 Etapa 5 Etapa 6
Identificagdo da Estudo dos : Implementagdo :
necessidade de padrées e Documentagao de ferramentade Treinamento para Avaliagdo
adocéio de tecnologias de dos estudos e documentagées a equipe de preliminar dos
técnicas efou versionamento padrées de dos cédigos e desenvolvimento. resultados.
metodologias de atualmente “how to". criagéio de recurso
qualidade de utilizados. de testes
software. automatizados.

Figura 1. Etapas da metodologia.

Inicialmente, na etapa 1, a organizagdo identificou a necessidade de elevar a
qualidade de suas aplicagdes, impulsionada por fatores como a busca por redugdo de
bugs, a melhora da manutenibilidade e o aumento da satisfacdo do cliente. A partir
disso, a etapa 2 trata da andlise dos processos e ferramentas existentes, focando no
estudo dos padrdes de codificacdo e nas tecnologias de versionamento ja em uso pela

equipe, permitindo entender o cendrio atual e identificar as areas que podem ser
aprimoradas pela nova metodologia.

Na sequéncia, a etapa 3 ja foca em documentar os estudos e os novos padroes de
como fazer, passo fundamental para formalizar as diretrizes e garantir que todos na
equipe sigam as mesmas praticas. A etapa 4 é a fase de implementacido, onde sdo
introduzidas ferramentas de documentacdo técnica para os cddigos e criados recursos
para rodar testes automatizados, garantindo que a qualidade do cddigo seja mantida de
forma consistente e automatizada, reduzindo a carga de trabalho manual da equipe.

A etapa 5 concentra-se no treinamento da equipe, essencial para garantir a
adesdo e o entendimento da nova metodologia. E por fim, na etapa 6, é realizada uma
avaliac@o preliminar dos resultados. Essa andlise de dados permite medir o impacto das
mudancas e tomar decisdes informadas para a implementacdo em larga escala e a longo
prazo.

4. Identificacao da necessidade de adocao de metodologias de qualidade de
software

Durante a analise inicial do fluxo de desenvolvimento da IES, identificou-se um cendario
marcado pela auséncia de padronizacdo na esteira produtiva de codificacdo. Cada
desenvolvedor adotava seu préprio estilo de programacdo, definindo convencdes de
nomenclatura, estrutura de codigo e formatagdo de maneira arbitraria. Essa
heterogeneidade impactava diretamente a legibilidade e manutenibilidade dos sistemas,
dificultando a comunicagdo e colaboracdo entre diferentes membros da equipe nos
projetos.

Observou-se ainda que o processo de revisdo de codigo apresentava fragilidade
significativa. Em diversos casos, o code review simplesmente nao era realizado e as
alteracdes eram submetidas sem qualquer descricdo ou contextualizacdo, dificultando a
compreensdo das propostas de alteracdes no cédigo-fonte. Quando a revisdo acontecia,
mostrava-se deficiente pela falta de critérios uniformes, onde cada revisor utilizava
parametros subjetivos para avaliar o c6digo, resultando em revisdes inconsistentes.

Muitas vezes a aprovacdo do cd6digo ocorria mais pela urgéncia ou pressdo de
atender rapidamente as demandas do que pela verificacdo efetiva de qualidade e
conformidade com boas praticas de desenvolvimento. O que ndo somente comprometia
a deteccdo precoce de defeitos, mas também eliminava o potencial do processo de
revisdo como ferramenta de aprendizado e aprimoramento técnico para a equipe.

Esse contexto evidenciou a necessidade urgente de estabelecer diretrizes claras e
compartilhadas, capazes de alinhar a produc@o de cddigo aos padrdes comuns e reduzir
as variacdes que comprometem a qualidade final do software.

5. Estudos e documentacio de padroes e tecnologias

A definicdo dos padrdes técnicos e metodoldgicos foi o resultado de uma combinacio
da experiéncia empirica da equipe de desenvolvimento em seu dia a dia, com um estudo
de referéncias consolidadas que orientam a escrita técnica e a padronizacdo de
processos. Entre essas, destaca-se a RFC (Request for Comments) 2119 [Bradner 1997],

que estabelece diretrizes para o uso de termos normativos em documentos técnicos,
garantindo clareza, precisdo e consisténcia na comunicacao.

5.1. Padroes de Codificacao

Padrées de codificacdo consistem em diretrizes que asseguram consisténcia estrutural,
facilitando leitura, compreensdo e colaboracdo entre programadores [Wang et al. 2010].
Em equipes com alta rotatividade ou que terceirizam parte do desenvolvimento, tais
padrdes assumem papel essencial, na medida em que possibilitam a rdpida assimilacdo e
manuten¢do da base de cddigo por novos integrantes da equipe.

No contexto da IES, a definicio desse padrdo foi apoiada em boas praticas
consolidadas no mercado, como a PSR-12 [Szanto 2025], amplamente reconhecida pela
comunidade PHP-FIG como referéncia de estilo e formatacdo de cédigo em projetos
PHP, assim como recomendag¢des de Windler e Daubois (2022).

A partir do diagndstico realizado e das fragilidades identificadas no processo de
desenvolvimento, o primeiro passo adotado foi a criacdo de um conjunto formal de
padrdes de codificagdes especificos para as linguagens utilizadas pelo time da IES,
armazenado em um repositério centralizado, ilustrado na Figura 2, facilitando o acesso
pela equipe.

Nomes de métodos e Fungdes

Nomes de métodos e fungoes DEVEM conter somente caracteres alfanuméricos, NAO DEVEM ser utilizados underscores (salvo métodos

padrao do PHP como construtores e getters , e métodos de teste), nimeros sdo permitidos, mas altamente desencorajados

0s nomes DEVEM ser escritos comegando com letra mintscula e seguir a convengao ca e . A utilizacdo de verbos é encorajada,
devendo os nomes de fu ao verbais quanto pratico a fim de descrever de forma u propésito e comportamento.

Q public function get_user()

v 4 public function getUserByld()

Figura 2. Exemplo da documentacio de padroes de codificacao

A padronizacdo passou a abranger desde as convencgdes de nomenclatura, até
praticas recomendadas de organizacdo e escrita de cddigo, contando com exemplos e
trechos de cddigo para exemplificacdo, garantindo consisténcia entre os projetos e
facilitando a colaborac@o entre membros da equipe. Além disso, foram estabelecidos
procedimentos claros para atualizacdo e aprimoramento continuo dessa documentagdo,
incluindo a submissdo de propostas por qualquer integrante do time e a revisdao
obrigatéria por desenvolvedores seniores, assegurando que as alteragdes estivessem
alinhadas as boas praticas e a realidade técnica da organizacao.

5.2. Padroes de versionamento

O controle de versionamento do cédigo-fonte, viabilizado por ferramentas como o Git,
constitui um pilar fundamental no ambiente de desenvolvimento da IES, pois garante a
rastreabilidade das alteracdes, organiza o histdrico evolutivo dos projetos e possibilita a
contribui¢do estruturada e colaborativa entre os membros da equipe.

Para que o fluxo de codificacdo e versionamento acontecesse da maneira mais
eficiente possivel, foi estabelecido um conjunto de diretrizes documentadas que

definem, de maneira clara, o fluxo de contribui¢do via MR (Merge Requests), aliado a
um processo formal de code review.

Essas diretrizes contemplam desde a criacdo de branches com nomenclatura
padronizada, vinculada ao identificador da tarefa que gerou a alterag¢do no cddigo, até o
uso de mensagens de commit seguindo a especificacdo Conventional Commits,
garantindo legibilidade e rastreabilidade do histérico de alteracdes. Além disso, os MRs
devem conter descrigdes completas e contextualizadas, registrando ndo apenas o que foi
alterado, mas também o motivo e as decisOes técnicas adotadas. Essa prética visa
transformar o MR em um artefato de documentacdo viva, ttil para consultas futuras
apoiando a manutenc¢do do sistema.

O processo de code review também foi padronizado e documentado, sendo
instituido como etapa obrigatdria antes da integracdo das mudangas a aplicagdo em
producdo. As normas desse processo adotam o principio de que ndo existe codigo
perfeito, apenas cddigo melhor, de modo que um MR promova melhorias relevantes,
devendo ser aprovado por um analista, mesmo que ndo atinja perfeicao absoluta.

Essa metodologia assegura a conformidade com os padrdes definidos, além de
detectar inconsisténcias e fomentar o aprendizado continuo entre desenvolvedores.
Dessa forma, o processo de versionamento passou a atuar ndo somente como controle
de mudancgas, mas também como mecanismo efetivo de melhoria continua da qualidade
do software.

5.3. Testes

Embora a IES ji possuisse testes unitdrios implementados, constatou-se que a
metodologia atual para criagdo destes se mostrava ineficiente na cobertura das regras de
negécio, assim como nao possuia padronizacdo ou ferramentas para execugdo
automatica dos mesmos.

O primeiro passo adotado foi a padronizagdo da escrita dos testes, que serviu
como um dos balizadores para a melhoria continua da qualidade do software na IES. Foi
adotado o padrao de nomenclatura GIVEN-WHEN-THEN [Fowler 2013], o que tornou
o proposito e o escopo de cada teste mais claro e autoexplicativo, facilitando a leitura e
compreensdo por qualquer membro da equipe. Toda a padronizacdo dos testes foi
documentada da mesma forma dos padrdes de cédigo e utilizando o mesmo repositério.

Na estruturacdo dos testes a principal técnica aplicada foi o TDD (Test-Driven
Development), uma abordagem de desenvolvimento na qual os testes sdo escritos antes
da implementacdo do cddigo. Assim a equipe passou a compreender que essa
abordagem ndo se resume a verificacdo de funcionalidade, mas atua como um método
de projeto. Ao escrever os testes antes da implementagdo, os desenvolvedores sio
levados a tomar decisOes de andlise e arquitetura que favorecem a coesdo e o baixo
acoplamento do cdédigo, resultando em uma solugdo mais ficil de testar e
consequentemente mais ageis de manter e evoluir.

Ainda como parte dos esforcos para fortalecer a governanca da qualidade de
software, foi implementado uma pipeline de Continuous Integration/Continuous
Delivery (CI/CD) integrado ao repositorio de cédigo da IES, atuando em duas frentes
principais:

1. Existéncia dos testes unitarios: sempre que um commit € submetido a um MR,
o sistema identifica se os arquivos adicionados ou modificados possuem testes
correspondentes. Caso algum elemento ndo esteja coberto, € aberta
automaticamente uma discussdo no MR notificando o autor sobre a auséncia,
permitindo a correc@o antes da aprovacdo, conforme exemplificado na Figura 3.

& CodeGuardian @code_guardian - 2 days ago Reporter @ ® & £ %

= Testes unitarios nao encontrados =

Arquivo: module/exemplo/de/arquivo/sem/teste_unitario.php

CodeGuardian & §/

Reply. | Resolve thread | [V

Figura 3. Exemplo de discussao aberta em um MR

2. Execucdo automatica dos testes unitdrios: sempre que um commit é
submetido a um MR, todos os testes relacionados aos arquivos modificados ou
atualizados s3o executados, gerando relatorios detalhados, conforme Figura 4,
indicando os casos de testes que passaram e os que falharam, acompanhados das
respectivas mensagens de erro e rastreamento.

@ Testsummary: 2 failed, 8 errors, 18 total tests [? Copy failed tests Full report ~

@ test_modified_php_files: 2 failed, 8 errors, 18 total tests

New
© testGivenArguivolnexistente_WhenCallMergePDFs_ThenThrowFileNotFoundException View details

& testGivenExtensaoArquiveDiferenteDePDF_WhenCallMergePDFs_ThenThrowlnvalidFileTypeException View details

& testGivenAPIComRetornoVazio_WhenCallMergePDF_thenThrowRuntimeException View details
© testGivenMergeBemSucedido_WhenCallMergePDF_thenRetornaCaminhoDoArquive View details
© testGivenNenhumCaminhoDeArquivo_WhenCallMergePDFs_ThenThrowlinvalidArgumentException View details

Figura 4. Relatoério de testes unitarios de um MR

Com a aplicacao dessas melhorias relacionadas aos testes unitarios, observou-se
que 0os mesmos se tornaram recursos estratégicos para “documentagio viva” do projeto.
Ao contrdrio de registros por escrito, que tendem a ser esquecidos e estarem
desatualizados com o tempo, os testes, caso continuamente executados e atualizados,
acabam servindo como especificacdes técnicas das regras de negdcio, assim como
descrevem, de forma inequivoca, o comportamento esperado do software.

5.4. Documentacio

Antes da aplicacdo de padronizagdo de processos descrita neste artigo, a documentagao
dos sistemas na IES apresentava problemas significativos, pois muitas vezes ndo era
produzida e quando era, ndo existia um repositorio centralizado para disponibiliza-la a
equipe, dificultando assim a consulta e utiliza¢do desses registros. Como consequéncia,
o conhecimento técnico ou de negdcio ficavam restritos aos profissionais envolvidos
diretamente no projeto.

Com a implantacdo dos novos padrdes, foi utilizada a mesma estrutura que
foram descritos os padrdes de codificacdo, exemplificados na Figura 2, para a criagdo de
documentacdes internas, visando ndo contemplar apenas o cddigo, mas também
aspectos da funcionalidade e utilizacdo do sistema, além de sua arquitetura e fluxos de
processos, complementando a legibilidade do cd6digo ao explicitar seu propodsito e
comportamento esperado. Dessa forma e devido a facilidade em escrever ou encontrar a
documentacdo, ela se tornou uma referéncia estratégica no compartilhamento de
conhecimento entre os membros da equipe.

Para assegurar a qualidade e atualizacdo continua da documentagdo, passou-se a
exigir sua criacdo ou atualizacdo para que um MR seja aprovado, garantindo que a
documentacio reflita o estado atual do sistema e facilitando tanto a manuten¢do quanto
a evolucao futura.

6. Treinamento da equipe

A implantacdo das novas praticas e padroes na IES exigiu uma etapa de treinamento,
visando alinhar a equipe de desenvolvimento as metodologias propostas e garantir sua
aplicacdo consistente no cotidiano dos projetos. O processo foi organizado em duas
etapas principais, considerando a diversidade de experiéncia técnica dos integrantes.

A primeira etapa contemplou sessdes tedricas, realizadas em reunides
presenciais, nas quais foram apresentados os conceitos de qualidade de software, as
motivagdes para a padronizacdo e o funcionamento dos novos fluxos de trabalho.
Também foram ostentados os novos padroes de codificacdo, versionamento, code review
e documentacdo, destacando exemplos praticos que evidenciam problemas anteriores e
como essas novas praticas os mitigariam.

Ja a segunda etapa, envolveu um processo de acompanhamento continuo nas
semanas subsequentes a implantagdo. Desenvolvedores com mais experi€ncia atuaram
como professores, revisando o trabalho dos demais com foco educativo, promovendo
feedbacks e sanando duvidas ocasionais. Esse treinamento, embora simples, possibilitou
uma adocdo mais fluida das mudancas pelos desenvolvedores, assim como levantou
assuntos e criou espagos para troca de conhecimento entre os integrantes da equipe,
fortalecendo a cultura e colaboragdo no setor de desenvolvimento da IES.

7. Resultados

Para avaliar os efeitos dos novos métodos de qualidade de software, aplicou-se uma
pesquisa online com a equipe de desenvolvimento da IES. O questionario continha 15
perguntas obrigatorias, cujas respostas seguiram uma escala Likert de 5 pontos, variando
de “concordo totalmente” (5) a “discordo totalmente” (1). Para cada uma das perguntas,
também foi adicionada um campo opcional para que o profissional pudesse explicar o
motivo da sua resposta, caso ele considerasse relevante. A Figura 5 ilustra a avaliacdo
geral da equipe na percepcdo de melhora no desenvolvimento de sistema apds a
implementacio dos novos padrdes de qualidade.

@ 5 (Concordo totalmente)
@ 4 (Concordo parcialmente)
3 (N&o concordo e nem discordo)
@ 2 (Discordo parcialmente)
@ 1 (Discordo totalmente)

Figura 5. Avaliacio geral da metodologia aplicada

Conforme os resultados iniciais da pesquisa, houve um aumento significativo na
qualidade dos softwares desenvolvidos ap6s a aplicagdo dos novos padrdes de qualidade,
J4 que todas as implementag¢des seguiam um mesmo padrdo, tornando-se mais legiveis.
Além disso, 71,5% da equipe percebeu uma reducdo no nimero de problemas ou
retrabalhos em relacdo ao antigo cendrio, destacando que os padrdes de codificagdo
facilitam a manutencio e a compreensdo do cédigo e que, quando combinadas a boas
praticas e com uma cultura sélida de testes, sdo essenciais para a reducao de problemas,
onde 85,7% da equipe percebeu que a execucao automdtica de testes via CI/CD trouxe
mais seguranca nas implantagdes. Ainda, 71,4% da equipe percebeu uma melhora na
comunicacdo interna, pois o uso de uma padronizacdo a torna mais clara e objetiva,
facilitando discussdes técnicas e de regras de negdcio.

8. Conclusao

A necessidade crescente por software de alta qualidade na era da transformagdo digital
impde desafios significativos para as organizacdes. A falta de padronizagdo, a
negligéncia para com os testes e documentacdo, como observado na IES em questdo,
resulta em sistemas de dificil manutencdo, que elevam os custos operacionais e
comprometem a satisfacdo do usudrio.

O presente estudo de caso teve como objetivo central analisar a aplicacdo de
metodologias e padrdes orientados a qualidade de software. Os resultados evidenciam
que a adocdo sistemética de metodologias, em conjunto com a implementacao de testes
automatizados e de um processo continuo de documentacdo, contribui de forma
significativa para a transformacdo de contextos de desenvolvimento desorganizados em
ambientes colaborativos e produtivos. Destacam-se, nesse processo, a padronizacdo de
praticas de codificacdo, o estabelecimento de um modelo estruturado de versionamento
e a incorporacdo de testes unitdrios fundamentados em TDD, integrados a pipelines de
CI/CD. Essas medidas revelaram impactos positivos concretos, promovendo maior
legibilidade, manutenibilidade e rastreabilidade do c6digo, além de consolidar uma base
mais robusta para a evolugdo do sistema.

Os resultados da pesquisa interna confirmam o sucesso da iniciativa. A equipe
reportou maior facilidade na manutencdo dos sistemas, uma reducdo nos defeitos e
retrabalhos, além de uma melhora na comunicacdo e no aprendizado mutuo. A

documentacdo, que antes era escassa e descentralizada, passou a ser vista como um
recurso estratégico e dindmico, essencial para o compartilhamento de conhecimento.

A qualidade de software ndao € um atributo opcional, mas um pilar essencial para
o desenvolvimento de produtos digitais robustos e confidveis. A padronizagdo de
processos, aliada ao treinamento da equipe e ao uso de ferramentas adequadas, cria uma
cultura de melhoria continua que beneficia tanto a organizagdo quanto 0s usudrios.

9. Referéncias

Boehm, Barry; Basili, Victor R. (2005) Software defect reduction top 10 list.
Foundations of empirical software engineering: the legacy of Victor R. Basili, v. 426,
n. 37, p. 426-431, 2005.

Bradner, S. O. (1997) Key words for use in RFCs to Indicate Requirement Levels. RFC
2119. RFC Editor, 1997. DOI: 10.17487/RFC2119. Disponivel em:
https://www.rfc-editor.org/info/rfc2119. Acesso em: 18 ago. 2025.

Eldhose, J., Joy, T. (2021). The impact of automated testing on software quality: A case
study. International Journal of Modern Trends in Engineering and Research, 1-6.

Fowler, M.. (2013). Given When Then. Disponivel em:
https://martinfowler.com/bliki/GivenWhenThen.html. Acessado em: 18 ago. 2025.

Janzen, D.; Saiedian, H. (2005) Test-driven development concepts, taxonomy, and
future direction. Computer, v. 38, n. 9, p. 43-50, 2005.

Kokol, P. (2022). Software Quality: How Much Does It Matter? Electronics, v. 11, n. 16,
p. 2485, 10 ago. 2022

Li, Z., Ma, M., Yang, B. (2015). Technical debt: A systematic mapping study. Journal of
Software Engineering and Applications, 653-662.

Muneer, Z., Saqib, S. (2020). A systematic literature review on software quality metrics
in agile development. Journal of Computer Science, 1735-1748.

Ndukwe I. G., Licorish S. A., Tahir A., MacDonell S. G. (2022). How have views on
Software Quality differed over time? Research and practice viewpoints. Journal of
Systems and Software, p. 111524, out. 2022.

Saini G. L., Panwar D., Kumar S., Singh V., (2020). A systematic literature review and
comparative study of different software quality models. Journal of Discrete
Mathematical Sciences and Cryptography, v. 23, n. 2, p. 585-593, 17 fev. 2020.

Szanto, K. (2019) Extended Coding Style Guide. Disponivel em:
https://www.php-fig.org/psr/psr-12/. Acessado em: 18 ago. 2025.

Wang Y., Wang S., Li X., Li H., Du J.(2010). Identifier naming conventions and
software coding standards: A case study in one school of software. In: 2010
International Conference on Computational Intelligence and Software Engineering.
IEEE, 2010. p. 1-4.

Windler, C., & Daubois, A. (2022). Clean Code in PHP: Expert tips and best practices
to write beautiful, human-friendly, and maintainable PHP. Packt Publishing Ltd.

