

Segurança Proativa em Arquitetura de Microsserviços e
Container: um estudo de caso

Jhony Maiki Maseto1, Diego Fabio Schuh1, Daniel Paulo dos Santos1, Rodrigo
Miguel Tomazi1, Ariel Gustavo Zuquello1

1Universidade Comunitária da Região de Chapecó - UNOCHAPECÓ

{jhony,df_schuh,daniel_paulo,rodrigo.tomazi,ariel.zuquello}@unochapeco.e
du.br

Abstract. Security in containerized environments is essential for a consistent
and stable application. Vulnerabilities, unauthorized access, code injection,
and information theft can lead to complete service unavailability. Therefore,
this study proposes a proactive approach based on action research and a
practical case study. The methodology was applied to the implementation of a
Docker Swarm solution at a Higher Education Institution (HEI), focusing on
resource optimization and security. The solution included network
segmentation, privilege limitation with access only allowed via SSH with RSA
key registration, and the integration of Wazuh as an Host-based Intrusion
Detection System (HIDS). In addition, the adoption of continuous container
update practices based on CVE queries. The results demonstrated that the
solution was effective in monitoring traffic and automatically responding to
attacks, as observed in a shell shock test. Therefore, the combination of Docker
Swarm with security tools such as Wazuh creates a robust and scalable
environment, efficiently protecting applications and data.

Resumo. A segurança em ambientes conteinerizados é essencial para se ter
uma aplicação consistente e estável. Vulnerabilidades, acessos não
autorizados, injeção de código e roubo de informações podem levar à
indisponibilidade completa do serviço. Diante disso, este estudo propõe uma
abordagem proativa baseada em pesquisa-ação e um estudo de caso prático. A
metodologia foi aplicada na implementação de uma solução com Docker
Swarm em uma Instituição de Ensino Superior (IES), com foco na otimização
de recursos e segurança. A solução incluiu a segmentação de redes, a
limitação de privilégios com acesso permitido apenas via SSH com cadastro
de chaves RSA e a integração do Wazuh como Sistema de Detecção de
Intrusão baseado em Host (HIDS), além da adoção de práticas de atualização
contínua dos containers, com base em consultas de CVEs. Os resultados
demonstraram que a solução foi eficaz em monitorar o tráfego e responder
automaticamente a ataques, como observado em um teste de "shell shock". E,
portanto, a combinação do Docker Swarm com ferramentas de segurança
como o Wazuh cria um ambiente robusto e escalável, protegendo aplicações e
dados de forma eficiente.

1. Introdução

​ O período de convergência tecnológica da atual sociedade tem forçado
organizações a estarem mais dependentes da informação. Diante deste cenário, é
possível afirmar que a informação pode ser considerada como um dos maiores bens das
organizações [Aramuni e Maia 2020].

​ A computação em nuvem tem ganhado cada vez mais destaque. A indústria de
tecnologia desenvolveu diversas tecnologias de virtualização que permitem que
múltiplas aplicações rodem no mesmo hardware físico, organizando aplicações usando

Máquinas Virtuais (VMs). Entretanto, as VMs apresentam algumas desvantagens: são
grandes, podem ter desempenho instável ao executar várias instâncias, levam tempo para
inicializar e não resolvem problemas como gerenciamento, atualizações de software e
integração/entrega contínuas. A partir disto, surgiu a conteinerização, uma nova
abordagem que oferece virtualização no nível do Sistema Operacional (SO) [Potdar et
al. 2020].

​ Diferentemente da virtualização tradicional, que atua no nível do hardware, a
conteinerização utiliza o SO do hospedeiro, compartilhando bibliotecas e recursos
relevantes. Isso a torna mais eficiente, pois elimina a necessidade de um sistema
operacional para cada aplicação. As aplicações e suas dependências são empacotadas
em container, que são executados rapidamente no kernel do SO do hospedeiro, em um
espaço isolado [Potdar et al. 2020]. A plataforma Docker é fundamental para a criação e
execução desses container, garantindo que o ambiente suporte qualquer aplicação
relacionada [Docker 2025].

​ Os container facilitam a implantação rápida de aplicativos, mas também
facilitam a exploração de vulnerabilidades por invasores. Junto a isso, problemas de
segurança surgem e é crucial que as organizações compreendam e lidem com as
ameaças de segurança. Aplicativos de software são suscetíveis a vários tipos de
vulnerabilidades, incluindo bugs de software conhecidos e desconhecidos, injeção de
código malicioso e acesso não autorizado. Para mitigar o risco de vulnerabilidades em
aplicativos, as organizações devem seguir práticas de codificação seguras, aplicar
patches de software prontamente e usar ferramentas de segurança para verificar
vulnerabilidades em aplicativos [Arasu 2023].

​ Este trabalho tem como objetivo apresentar as principais técnicas e tecnologias
utilizadas para implementação de container em uma organização visando a segurança da
informação sobre as aplicações neste hospedadas, pensando principalmente em
confidencialidade, integridade e disponibilidade. Implementação de soluções de
segurança proativas, controle de acesso dos desenvolvedores e escalabilidade das
aplicações são os principais tópicos abordados.

2. Trabalhos relacionados

​ Uma visão geral abrangente dos desafios e soluções únicas inerentes a um
ambiente de microsserviços distribuídos são oriundas de revisões sistemáticas da
literatura e alguns estudos pesquisaram trabalhos relacionados a aspectos de segurança
de sistemas baseados em microsserviços.

​ Proteção de microsserviços é um tópico que vem tomando forma e importância,
se espalhando entre as organizações, com isso é possível classificar e identificar sinais
que podem ser um problema no âmbito de segurança da informação [Ponce et al. 2022].
Pensando principalmente nos desenvolvedores, é possível observar ameaças conhecidas
em microsserviços, com isso, esses profissionais podem detectar, mitigar e prevenir as
ameaças de segurança oriundas de microsserviços, seguindo alguns procedimentos
definidos pela criação de um guia [Hannousse e Yahiouche 2021].

​ A segurança da infraestrutura subjacente é uma grande preocupação, levantando
ameaças e estratégias de mitigação relacionadas a ambientes com container e

plataformas de orquestração [Pahl 2018]. Além das preocupações mencionadas, é
importante observar também que, em caso de algum ataque ou falha de segurança, é
como se recuperar deles [Pereira-Vale et al. 2019].

​ A segurança de APIs (Application Programming Interface), sendo um dos
principais canais de comunicação nas aplicações, também é amplamente abordada na
literatura, com pesquisas gerais fornecendo uma visão geral das estratégias para proteger
essas interfaces [Kothapalli 2021]. O campo evoluiu para adotar padrões arquitetônicos
e melhores práticas que integram a segurança ao ciclo de vida do desenvolvimento. O
modelo DevSecOps (Development, Security, Operations), que incorpora segurança em
pipelines de integração e entrega contínuas, é um pilar da segurança moderna de
microsserviços. Fornecer diretrizes cruciais para proteger esses processos contínuos e
adotar modelos como zero trust trazem grandes benefícios à segurança [Chandramouli
2019].

​ Os trabalhos relacionados mostram que a segurança da informação em
microsserviços vem evoluindo à medida que as aplicações tornam-se cada vez mais
complexas e à medida que as organizações vêm adotando essa tecnologia. Sendo assim,
este trabalho visa trazer tópicos, procedimentos, políticas e ferramentas utilizadas para
uma maior segurança, tanto em acesso aos container quanto nas aplicações em si. Estes
foram aplicados em uma organização real para utilização de aplicações de sistema de
gestão educacional.

3. Metodologia

​ Esta pesquisa é verificada por meio de um estudo de caso, de natureza aplicada.
Dessa forma, a questão de pesquisa é abordada por meio da metodologia de
pesquisa-ação. A Figura 1 ilustra as etapas para aplicação da metodologia deste estudo.

Figura 1. Etapas da metodologia.

​ Inicialmente, na etapa 1 a organização identificou a necessidade de ampliação na
estrutura das aplicações, porém com a necessidade de otimizar recursos de hardware e
software, buscando alternativas para novos serviços e soluções para os clientes. Na
sequência, a etapa 2 trata da pesquisa de soluções de implementação de microsserviços,
sendo possível otimizar recursos de bibliotecas, por exemplo, para implementação de
várias aplicações no mesmo servidor, com a possibilidade de escalabilidade.

​ A etapa 3 já elucida a implementação de uma aplicação dentro da stack do
Docker Swarm, a fim de identificar lacunas e testar a solução nesta nova arquitetura. E
na etapa 4, serão abordadas as políticas de segurança da informação e infraestrutura.

4. Identificação da necessidade e estudos de container

​ Soluções e tecnologias que utilizam arquitetura de software monolítica,
pensando principalmente em escalabilidade, tornam-se alternativas engessadas com
necessidade de upgrades de hardware para acompanhar o crescimento e expansão na
utilização das ferramentas.

​ Nesse cenário, a Instituição de Ensino Superior (IES) passou a investigar
alternativas mais flexíveis e escaláveis que pudessem servir as soluções, principalmente
web, com grande volume de conexões simultâneas, assim como permitir a portabilidade
para ambientes de nuvem, aumentando a resiliência e independência sobre a
infraestrutura física atual.

​ De fato a IES possuía poucos microsserviços em instâncias não clusterizadas do
Docker mas sem efetividade na adoção da tecnologia, então, a partir disso o próximo
passo foi estudar mais sobre a solução com Docker Swarm, criando um cluster
específico adicionando a ele o proxy reverso.

4.1. Container e Docker Compose

​ Diferentes paradigmas arquitetônicos vêm sendo investigados visando acelerar
os processos e reduzir os custos relacionados ao desenvolvimento e à implantação de
aplicações em ambientes de computação em nuvem. A emergente virtualização baseada
em container, em particular o Docker, tem se consolidado como uma alternativa
promissora para essas soluções. Essa abordagem permite que os container
compartilhem não apenas os recursos físicos, mas também o sistema operacional e suas
bibliotecas de suporte [Wan et al. 2018].

​ O Docker Compose é uma ferramenta que permite orquestrar múltiplos
container de forma declarativa, por meio da definição de suas configurações e
propriedades de execução em um arquivo. Cada container é tratado como um “serviço”,
entendido como uma unidade que interage com outros containers e que possui
propriedades de execução. Essa ferramenta simplifica a implantação das aplicações,
possibilitando, com um único comando, criar e iniciar todos os serviços de sua
configuração. [Turnbull 2016].

​ Dentro da arquitetura de microsserviços, cada componente é executado de forma
independente e pode ser substituído ou atualizado sem impactar diretamente os demais.
O advento da arquitetura de container e microsserviços oferece a possibilidade de
melhorar a escalabilidade e a elasticidade do desenvolvimento de aplicações [Wan et al.
2018].

5. Instalação de aplicações em containers

​ A partir de pesquisas e do conhecimento pŕevio da equipe, a IES decidiu adotar
o Docker Swarm para os novos projetos, devido a sua escalabilidade, facilidade de
aprendizado e a simplicidade de instalação e manutenção.

​ Foram migrados alguns projetos, que operavam como monolitos ou em
container avulsos para este novo ambiente. Além disso, um projeto com escopo mais
amplo foi implementado em microsserviços, com foco na resolução de um problema em
específico de uma aplicação web. A implementação desta solução trouxe diversos
benefícios, sendo o principal, a resolução do problema enfrentado, permitindo assim,
trabalhar de forma escalável com várias réplicas, sem a necessidade de modificações
significativas.

6. Segurança em containers

​ Após a implementação da nova solução, levantou-se a seguinte questão. Como
inspecionar o tráfego passante aos containers? E neste ponto, surge a possibilidade de
utilizar a ferramenta Wazuh, que já era utilizada para logs de eventos de segurança.

​ E assim, foram adaptados alguns procedimentos que eram utilizados no modelo
monolítico para o contexto dos container, garantindo maior segurança neste ambiente.

6.1. Segmentação, isolamento da rede e controle de acesso

​ Para prevenir a expansão lateral de ataques, cada container opera em sua própria
rede isolada. Portas internas de serviços, como bancos de dados, não são expostas,
reduzindo assim drasticamente o risco de acesso não autorizado ao host. Além disso,
todo o tráfego externo destinado aos container em produção é inspecionado por um
proxy reverso com Wazuh e um firewall de camada de aplicação, garantindo uma
barreira de proteção robusta.

​ A segurança do container é garantida pelo seu isolamento. É fundamental que
um container seja isolado do sistema hospedeiro e das outras aplicações para evitar
ataques. Por exemplo, um atacante não deve conseguir executar comandos que afetem o
sistema principal. Para evitar isso, os containers não devem ter permissões de
administrador, o que restringe significativamente as oportunidades de ataque. Cada
contêiner funciona com sua própria rede isolada, o que significa que cada um tem seu
próprio endereço IP (Internet Protocol) [Jensen e Miers 2020].

​ Para criação de novos containers, apenas imagens criadas pela equipe ou de
projetos amplamente reconhecidos são implementadas e configuradas com privilégios
mínimos (rootless). Ao gerar um novo container, a imagem “minimal” é utilizada, na
sequência são instalados apenas os pacotes necessários para utilização da aplicação.
Essa prática reduz a superfície de ataque e garante que os container rodem apenas o
essencial para a aplicação. Todas as imagens são gravadas em registro privado.

​ Para acesso restrito e controlado, estes foram limitados apenas aos hosts de
produção, permitindo acesso apenas via SSH (Secure Shell) com chaves RSA
(Rivest-Shamir-Adleman) dos desenvolvedores. Além disso, o deploy de projetos em
ambientes de produção foi feito exclusivamente por meio da solução GitLab, garantindo
que as mesmas políticas de segurança e acesso “sudo” sejam aplicadas.

​ A implementação do proxy reverso em um container com Nginx dentro do
cluster de Swarm, que recebe requisições de clientes e repassa para os serviços internos
que não tem comunicação direta com a internet, traz mais segurança para o aplicativo
hospedado.

6.2. Integração com ferramentas de HIDS

​ Pensando na otimização e automatização do monitoramento do ambiente, a
integração de uma ferramenta de HIDS (Host-based Intrusion Detection System) foi
implementada intitulada Wazuh. Com a utilização desta ferramenta é possível exportar
os logs dos containers para o host, o que permite que a ferramenta inspecione os logs
em tempo real e tome ações de resposta automática a possíveis ameaças.

​ Ao implementar a ferramenta Wazuh nos hosts de um Cluster Swarm é possível
tomar ações sobre os acessos a determinados serviços que trafegam através de um proxy
reverso, de forma a inspecionar e bloquear conexões maliciosas e/ou suspeitas, gerar
alertas e histórico de tentativas de acesso sobre um determinado conteúdo exposto.

​ A estratégia teve como base um cluster de Swarm com proxy reverso usando
Nginx com a imagem da comunidade e pequenas alterações. O Docker Swarm é uma
solução nativa do Docker, com isso, a ferramenta expõe a API padrão da plataforma
sobre o cluster, possibilitando que as aplicações e ferramentas interajam com o
ambiente como se fosse uma única instância Docker, viabilizando o balanceamento de
carga e a alta disponibilidade das aplicações conteinerizadas. [Turnbull 2016].​

​ No docker compose foram externados os logs do Nginx para uma partição do
host hospedeiro ao qual existe a ferramenta do Wazuh instalada, conforme demonstra o
código de configuração YML na Figura 2.

Figura 2. Compose YML do container no Nginx

​ Com estas exportação, os logs de “access.log” e “error.log” são visíveis no host
da aplicação e podem ser inspecionados pela ferramenta. Com isso, é possível ter uma
visibilidade de todo tráfego passante pelo proxy reverso bem como das demais
aplicações que usam o proxy como rota para seus containers. A Figura 3 apresenta o
dashboard com os eventos da ferramenta Wazuh.

Figura 3. Tela de eventos do Wazuh

A ferramenta Wazuh classifica os eventos em 15 níveis, sendo o nível 1 como
nível de notificação baixo de segurança e o 15 como nível severo. Na Figura 4 é
apresentado um exemplo do “erro 400”, sendo que a ferramenta elencou o evento como
nível 10 para um acesso retornando este erro. Neste caso não tomou nenhuma ação,
apenas alertando sobre o evento, sendo esse um problema conhecido na aplicação.

Figura 4. Tela de eventos em detalhes do Wazuh

Forçando um comportamento malicioso para elucidar o tratamento feito pela
ferramenta, gerando um ataque de shell shock por meio de uma estação de forma remota
em com o IP 177.131.124.254. Na Figura 6 é possível verificar que a primeira tentativa
chegou ao destino e obteve uma resposta do host, não foi efetiva pois o host não está
vulnerável a este tipo de ataque, entretanto ajuda a visualizar o funcionamento da
proteção. Já a segunda tentativa apresentada, também apresentada na Figura 5, resultou
em timeout, pois o bloqueio já foi executado pela ação do software.

Figura 5. Executando um ataque Shell Shock contra o cluster

Um ataque de shell shock é um ataque que busca obter informações do SO
(Sistema Operacional) por meio de um ataque “HTTPS”, caso este esteja vulnerável,
neste caso, buscava-se pelo arquivo “passwd” contendo os usuário do sistema onde a
aplicação estava hospedada.

Para essa simulação, a equipe recebe e-mails de notificações e neste caso em
específico, uma notificação de nível 15 foi indicada, ao qual está configurado para tomar
ações no host de destino. Na ferramenta Wazuh também é possível visualizar o alerta
gerado, sendo que a conexão foi interceptada, conforme representa a Figura 6.

Figura 6. Tela com detalhes do incidente no Wazuh

A Figura 7 apresenta a regra criada para essa ação, bloqueando qualquer acesso
por 3600 segundos.

Figura 7. Configuração de ação no agente

Além destas ferramentas, a verificação periódica das falhas de segurança dos
containers é fundamental. A busca em portais de segurança da informação, a fim de
localizar CVEs (Common Vulnerabilities and Exposures), é um procedimento
importante para encontrar problemas e vulnerabilidades conhecidas na comunidade,
para em seguida, aplicar os patches de segurança no ambiente.

7. Conclusão

​ Este trabalho teve como objetivo principal apresentar técnicas e tecnologias para
a implementação segura de container em uma organização, com foco na
confidencialidade, integridade e disponibilidade das aplicações hospedadas. Por meio de
um estudo de caso prático em ambiente de produção na IES, demonstrou-se como a
adoção de tecnologias de conteinerização, como o Docker Swarm, pode otimizar
recursos e aumentar a escalabilidade, ao mesmo tempo em que políticas de segurança
proativas são aplicadas para mitigar riscos.

A metodologia de pesquisa-ação permitiu a identificação de lacunas de
segurança na migração de aplicações monolíticas para a arquitetura de microsserviços.
Em resposta, implementou-se uma solução robusta que integra segmentação de rede,
controle de acesso restrito e a ferramenta Wazuh como um HIDS. A segmentação de
rede, combinada com a utilização de um proxy reverso e a execução de container com
privilégios mínimos, demonstrou ser eficaz na redução da superfície de ataque e na
prevenção de movimentos laterais.

A integração do Wazuh, em particular, provou ser um diferencial para a
segurança do ambiente. Ao exportar logs de acesso do proxy reverso, a ferramenta
possibilitou o monitoramento em tempo real do tráfego, a detecção de comportamentos
maliciosos e a tomada de ações automáticas de resposta, como o bloqueio de IPs de
origem de ataques. O teste de shell shock simulado evidenciou a capacidade do sistema
em detectar e neutralizar tentativas de intrusão, garantindo a resiliência do ambiente.

Além disso, a definição de políticas de atualização e continuidade da solução é
um fator importante para o bom funcionamento das aplicações.

8. Referências

Aramuni, J. P., Maia, L. C. (2020). O impacto da Engenharia Social na Segurança da
Informação: uma abordagem orientada à Gestão Corporativa. AtoZ: novas práticas
em informação e conhecimento, v. 7, n. 1, p. 31, 10 jan. 2020.

Arasu E. A. (2023). The Importance of Container Security in Preventing Cyber Threats.
ISSA Journal. p 20-24.

Chandramouli, R. (2019). Security in Microservices Architecture (NIST Special
Publication 800-204). National Institute of Standards and Technology.

Docker (2025) https://docs.docker.com/. Acesso em 03 de agosto de 2025.

Hannousse, A., Yahiouche, S. (2021). Securing Microservices and Microservice
Architectures: A Systematic Mapping Study. Computer Science Review, 40, 100378.

Jensen N., Miers C. C. (2020). Segurança de contêineres: taxonomia baseada na
arquitetura. In: Escola Regional de Redes de Computadores (ERRC), 18. Evento
Online. Porto Alegre: Sociedade Brasileira de Computação, 2020. p. 128-134.

Kothapalli, M. (2021). Securing Microservices Architecture: Best Practices and
Challenges. Journal of Scientific and Engineering Research, 2021, 8(10):187-192

Pereira-Vale, A., Márquez, G., Astudillo, H., Fernandez, E. B. (2019). Security
Mechanisms Used in Microservices-Based Systems: A Systematic Mapping. XLV
Latin American Computing Conference (CLEI), Panama, Panama, 2019, pp. 01-10,
doi: 10.1109/CLEI47609.2019.235060.

Ponce, F., Soldani, J., Astudillo, H., Brogi A. (2022). Smells and Refactorings for
Microservices Security: A Multivocal Literature Review. Journal of Systems and
Software, 187, 111162.

Potdar A. M., Narayan D. G., Kengond S., Mulla M. M. (2020). Performance
Evaluation of Docker Container and Virtual Machine. Third International Conference
on Computing and Network Communications.

Turnbull, J. (2016). The Docker Book: Containerization is the new virtualization.
Disponível em: <https://www.academia.edu/34912717/The_docker_book>.

Wan, X., Guan X., Wang T., Bai G., Choi B. (2018). Application deployment using
Microservice and Docker containers: Framework and optimization. Department of
Computer Science and Technology, Nanjing Tech University, Nanjing, 211816.

