
MCRMiner: a Tool to Support Empirical Studies on
Modern Code Review

Igor Ferreira and Ingrid Nunes

1Instituto de Infomática, Universidade Federal do Rio Grande do Sul (UFRGS)
Porto Alegre, Brazil

{ipferreira,ingridnunes}@inf.ufrgs.br

Abstract. Modern Code Review (MCR) has been increasingly adopted in the
industry and open source development. It is a lightweight code review process,
being asynchronous and tool-supported. Due to the use of tools and their under-
lying databases, much data associated with MCR has become available, leading
to many research studies to understand and improve this process. The first step
in these studies typically requires learning and accessing the API of an MCR
repository, and exporting it to a particular format to be analyzed. In this paper,
we introduce a tool, named MCRMiner, which automates this step to ease the
conduction of empirical studies in the context of MCR. The framework provides
a graphical interface and the infrastructure needed to access an MCR reposi-
tory, import its data, and export them to formats typically used to process this
kind of data. MCRMiner allows accessing repositories from Gerrit, an MCR
tool, but is implemented as a framework so that it can be instantiated to work
with other MCR tools.

1. Introduction
To improve software quality, many static verification techniques can be performed. Code
review is one of them, which gained popularity with the inspection process proposed by
Fagan [Fagan 1986] to minimize the existence of software problems such as defects, low
maintainability, and high coupling. Code inspections are performed following a formal
process composed of a specific set of phases that must be followed and checklists to
analyze the code, with evidence of being effective [Johnson 1998]. As the software de-
velopment process evolved, with a growing number of developers working on the same
project, possibly in different locations, the formal process became less well-suited for the
new reality and, likewise, underwent transformations, leading to the so-called Modern
Code Review.

Modern Code Review (MCR) [Bacchelli and Bird 2013] is a lightweight and asyn-
chronous process, in which authors submit their work for being reviewed employing sup-
porting tools. Reviewers are invited to contribute, who can vote accepting or rejecting the
code change as well as make comments, e.g. reporting bugs or suggesting code improve-
ments. The main original motivation for adopting code review was the early detection of
bugs. However, MCR has been reported to provide other benefits, such as improving code
maintainability and legibility, knowledge sharing, and learning.

MCR supporting tools store code review data in repositories containing, e.g.,
code changes, authors, reviewers, and comments. Based on these data, many empir-
ical studies, e.g. [Yang et al. 2016, Santos and Nunes 2017, Thongtanunam et al. 2015],



have been carried out to understand the outcomes of MCR, what influences them, and
lessons learned that can be used to improve MCR. The first step in these studies requires
extracting data from an MCR repository and exporting them to a particular format to be
analyzed. Although there are APIs to collect data from MCR tools, there is a need for
learning such APIs, implementing code to access it, which is a recurrent activity that can
be automated reducing the effort of performing studies based on MCR data.

In response, in this work, we present MCRMiner, a tool to support the analysis of
MCR data through the automation of its extraction. The tool provides a graphical user
interface that allows accessing and importing data from repositories of Gerrit1, a widely
known MCR supporting tool. Imported repositories can be exported to particular formats,
such as comma-separated values (CSV) files, which can be easily loaded to be mined
in many programming languages and tools. It also provides basic statistics of imported
project repositories, which are useful to decide whether a project is suitable for a particular
study. MCRMiner is implemented as a framework, so that it can be extended to import
data from other MCR supporting tools, e.g. Review Board2, CodeFlow3, Crucible4 and
GitLab5. We show, as an evaluation, how the tool performs while importing data from a
set of open-source projects, demonstrating that MCRMiner facilitates research on MCR
by eliminating the manual steps required to gather MCR data.

In the next section, we introduce existing tools to support MCR and discuss how
they are related to MCRMiner. Then, in Section 3, we overview our tool and describe
its architecture, including used technologies and its domain model. In Section 4, the
MCRMiner features are introduced in more detail. Section 5 shows our tool in action,
with details of its use to obtain data of different open software projects. Finally, we
present conclusions in Section 6.

2. Related Work
Gerrit and ReviewBoard, mentioned in the introduction, are code review systems to sup-
port the MCR process, which store MCR data that can be extracted. To analyze these
data, there are two existing tools, which are discussed in this section.

BugTracking [Rodrı́guez-Pérez et al. 2016] is a tool whose purpose is to help re-
searchers in the process of analysing registered issues in issue-tracking systems and iden-
tifying those that correspond to bug reports. Datasets containing commits that are bugs are
used for a wide range of purposes, such as building bug predictors [Araújo et al. 2017].
BugTracking gathers not only information from issue-tracking systems to help make such
a classification, but also discussions from code review systems. Although it handles code
review data, as MCRMiner, it does not extract data and make them available in a suitable
format for posterior analysis.

With a goal similar to ours, that is, the goal of supporting researchers that need
to mine MCR data, Review Data Analyzer (ReDA) [Thongtanunam et al. 2014] has been
proposed. It is a web-based visualization tool to help visualize and understand code re-

1https://www.gerritcodereview.com/
2https://www.reviewboard.org/
3https://www.getcodeflow.com/
4https://www.atlassian.com/software/crucible
5https://about.gitlab.com/



Figure 1. Domain Model.

view data, providing three visualizations: review statistics, activity statistics, and contrib-
utor activities. In its current version, ReDA uses data extracted from the Android Open
Source Project (AOSP), extracted from Gerrit, i.e., it neither provides a means of import-
ing data from other projects, nor exports them to files that can be loaded and mined by,
e.g., R (a software environment for statistical computing and graphics). ReDA can be
used in a complementary way to MCRMiner because the latter extracts data while the
former ease their analysis using visualizations.

3. MCRMiner Overview and Design
MCRMiner is a tool to support researchers by obtaining MCR data by means of a graph-
ical user interface. The tool has three main features: (i) repository importing; (ii) reposi-
tory exporting; and (iii) basic statistics. It is implemented as a framework, with hotspots
implemented with design patterns, so that it can be instantiated to code review systems
other than Gerrit (our current implementation) by the extension of classes that are part
of the core of the framework. We next detail the MCRMiner domain model and how the
framework (and its instantiation) is structured.

3.1. Domain Model
In order to provide MCRMiner with the flexibility to be instantiated to different code
review systems, we analyzed the REST APIs (and their documentation) of Gerrit and
Review Board. This allows the data obtained from different code review systems to be
mapped to our common domain model. Extracted data can then be an instance of our
domain model and persisted in the MCRMiner database.

In Figure 1, we present the MCRMiner domain model. A project can have mul-
tiple review requests, which are submitted by a user and has a status. A request is also
associated with a “diff”, which corresponds to a code change. A diff is associated with a
set of files, with information about the code change.

Both review requests and diffs can be reviewed. This is to accommodate reviews
from both our analyzed code review systems. Reviews can have a description and an



Database 

Persistence 

Business 

UI 

Controller Localization Tasks 

Exception Model 
Service 

Import Export Statistics 

Repository 

Figure 2. MCRMiner Architecture. Figure 3. Repository Import.

approval status, and are associated with reviewable entities and a user who made the
review. As part of the review, users can add comments to files.

3.2. Architecture and Adopted Technologies
The MCRMiner architecture is structured using a typical three-layered structure, as can
be seen in Figure 2. The adopted programming language is Java 8 and Spring6 was used
as the main framework. We also used Gradle7 to manage build automation tasks and
application dependencies. In addition, several unit and integration tests were developed
with the support of the JUnit and Mockito tools. In order to control the quality and
stability of the project builds, we used the Travis CI8 server.

The graphical user interface through which end users can use the MCRMiner fea-
tures is implemented in the UI layer. End-user operations are received in this layer which
calls services from the business layer. The UI layer was built upon the JavaFX9 and
JavaFX Scene Builder technologies. The latter allows applications to be built using visual
aids that increase developer productivity.

The Business layer is composed of six modules. The model module implements
our domain model, while the exception module has the implementations of exceptions
that can be thrown by the different services offered in the business layer. The service
module is a Facade to the core MCRMiner services, namely import, export, and statistics.
In the import module, there is the logic for importing data from code review systems. The
import module makes extensive use of inheritance and polymorphism so that interfaces
can be implemented and abstract classes extended to different code review systems, being
a hotspot of our framework. Details of how to instantiate this and the other framework
hotspots can be seen elsewhere [Ferreira 2018]. We already provide an implementation
for Gerrit, using its REST API, accessed using the gerrit-rest-java-client10 open source
library.

The export module implements the export feature of imported data under different
6https://spring.io/
7https://gradle.org/
8https://travis-ci.org/
9http://javafx.com/

10https://github.com/uwolfer/gerrit-rest-java-client



perspectives of the code review process, while the statistics module is responsible for
calculating the statistics of a given imported project. The export and statistics modules
also include hotspots, so that additional data can be exported and metrics can be added,
respectively. Therefore, MCRMiner is extensible and customizable.

Finally, the persistence layer is responsible for all logic related to data access and
the object-relational mapping. For its implementation, the data module of the Spring
framework was used. The current MCRMiner implementation uses the H211 database.
However, other databases can be used as long as they are a relational database.

4. MCRMiner Features
The previous section introduced MCRMiner and overviewed its architecture. We now
detail the features provided by our tool, which are repository import, repository export,
and project statistics.

4.1. Repository Import

The import feature, depicted in Figure 3, allows importing data from project repositories
stored in code review systems. With it, it is possible to gather information about a partic-
ular project, such as all the patches submitted for review along with their modified files
and the feedback submitted by the reviewers. As aforementioned, the current MCRMiner
implementation is able to retrieve data only from Gerrit.

To import a project, users must provide its URL along with a username and pass-
word to access it. They must also assign a name to the project to be used within the scope
of MCRMiner. After providing the required data, users can request to fetch the project.

4.2. Repository Export

Imported projects that are stored in MCRMiner can be visualized in the export feature, as
can be seen on the left-hand side of Figure 4. When selecting a particular project, users
can export it and visualize its statistics (detailed in the next section).

The export feature allows the imported data from code review systems be exported
using one of five different possible perspectives: file, author, comment, reviewer and
reviewable. Exported data is given in a text file in which each line corresponds to an
entity of the selected perspective. Then, each line contains a set of values, separated
using a selected separator. Therefore, if a comma is used as a separator, the export file is
in the CSV format; and if a tab is used as a separator, the export file is in the tab-separated
values (TSV) format. As said, this type of file can be loaded in programming languages
and tools easily (i.e. with a single command).

The values of each line correspond to attributes of the selected entity (perspective)
as well as its relationships. When there is a 1:1 relationship, it is also possible to include
attributes of the related entity. When there is a 1:N relationship, it is possible to include
attributes in an aggregated form (such as a counter or a sum). Before exporting data, users
can select the values to be included in the exported file.

11http://www.h2database.com



Figure 4. Repository Export and Project Statistics.

4.2.1. Project Statistics

Lastly, the statistics feature, shown on the right-hand side of Figure 4, allows the ex-
traction of basic statistics of a given project to provide additional data about them. This
information can be used by a researcher to, e.g., decide to use a project in an empirical
study. The provided statistics are: average comments per review, mean review time in
minutes, modified lines of code, number of reviewers, number of comments, number of
reviews, percentage of commented files, average comment size in characters and number
of modified files.

5. Evaluation
To validate MCRMiner, in particular its instance to import data from Gerrit, we imported a
set of repositories. In total, we selected seven repositories, considering different amounts
of data, as well as different values of the parameters measured, such as the number of
revisions and files. The data was extracted from repositories using a notebook with an
Intel c© CoreTM i5-7200U processor, with 4 cores and 2.50 GHz, 4 GB RAM memory,
and 10 Mbps of internet connection. All repositories that had its data extracted are hosted
in the repository located at the Gerrit’s official address12. The imported projects, as well as
the time taken to fetch data and calculate statistics of the projects, can be seen in Table 1.
Note that some of the projects have no comments (which are associated with files). In
these projects, the feedback was always given as reviews (with a description and a status).

It can be observed, based on the results presented in Table 1, that the execution

12https://gerrit-review.googlesource.com



Table 1. Imported MCR Repositories.

Project Execution Reviewers Reviews Comments Changed Changed
Time LOC Files

bazlets 1h 10m 9s 5 1490 0 22052 2533
gerrit-switch 15m 17s 6 152 456 1311 247
gitfs 3h 28m 9s 2 1116 2604 235724 8060
gwtjsonrpc 50m 48s 3 1728 0 3888 1296
plugins/analytics 3h 55m 17s 4 532 7220 121524 5282
plugins/github 1h 32m 45s 3 2592 0 15552 3456
zoekt 8h 13m 55s 2 2982 5467 1083460 25844

time is directly proportional to the number of revisions, comments and changed files, and
this is due to the fact that each of these corresponds to entities that must be downloaded
from the Gerrit repository, mapped to our domain model and stored in the local database.
Due to this, the number of changed lines of code or the number of reviewers does not
impact on the time results. The number of reviewers could impact the execution time if
it was directly proportional to the number of comments, but it was not always the case.
During the MCRMiner execution, we observed that the most significant bottleneck in
the performance of the import feature is the latency time of the network. However, the
time of reading and writing operations in the database and the speed of the processor also
influenced the results.

6. Conclusion
Modern Code Review (MCR) had its popularity increased over the past years due to its
benefits of improving product and code quality as well as promoting knowledge sharing
and team cooperation. To improve this practice, much research has been carried out
including empirical studies that analyze data stored in code review systems and derive
lessons learned to improve MCR. Although such data is available by means of APIs, a
recurrent step in these studies is to write code to extract data and store it in a format to be
processed—an effort that can be reduced.

In this paper, we presented MCRMiner, a tool that extracts data from code reviews
systems, currently supporting only Gerrit, and exports them to files that can be loaded in
a single command in many programming languages and statistical tools. MCRMiner
is implemented as a framework on top of up-to-date technologies, following a typical
layered architecture. Its domain model was built taking into account two known code
review systems so that it can be used to store information from systems other than Gerrit.
MCRMiner includes a set of hotspots that can be extended to customize and adapt the
framework. Its import feature requires only to indicate a project repository to be imported.
Imported projects can have basic statistics visualized, such as the number of reviews and
reviewers, and its data exported in CSV or other similar file formats, with data displayed
according to a selected from five different perspectives. MCRMiner is an open-source
project, which has additional information and source code available on the web.13

13http://www.inf.ufrgs.br/prosoft/tools/mcrminer



MCRMiner serves as a tool to support the starting point of many empirical studies
on MCR. However, it can be further extended to include other features, leading to future
work. First, it can be extended to import data from other code review systems. Second,
it can include additional data processing before exporting data, such as filtering a subset
of data that is of interest. Finally, it can be integrated to other tools, such as ReDA, to
provide visualizations.

Acknowledgements
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brasil (CAPES) - Finance Code 001. The authors would like to thank
CNPq for grants ref. 313357/2018-8 and 428157/2018-1.

References
Araújo, C. W., Nunes, I., and Nunes, D. (2017). On the effectiveness of bug predictors

with procedural systems: A quantitative study. In Proceedings of the 20th International
Conference on Fundamental Approaches to Software Engineering - Volume 10202,
pages 78–95, New York, NY, USA. Springer-Verlag New York, Inc.

Bacchelli, A. and Bird, C. (2013). Expectations, outcomes, and challenges of modern
code review. In 2013 35th International Conference on Software Engineering (ICSE),
pages 712–721.

Fagan, M. E. (1986). Advances in software inspections. IEEE Transactions on Software
Engineering, SE-12(7):744–751.

Ferreira, I. P. (2018). MCRMiner: um framework de mineração de repositórios de code
review. Technical report, Porto Alegre, BR.

Johnson, P. M. (1998). Reengineering inspection. Commun. ACM, 41(2):49–52.

Rodrı́guez-Pérez, G., Gonzalez-Barahona, J. M., Robles, G., Dalipaj, D., and Sekitoleko,
N. (2016). Bugtracking: A tool to assist in the identification of bug reports. In Crow-
ston, K., Hammouda, I., Lundell, B., Robles, G., Gamalielsson, J., and Lindman, J., ed-
itors, Open Source Systems: Integrating Communities, pages 192–198, Cham. Springer
International Publishing.

Santos, E. W. d. and Nunes, I. (2017). Investigating the effectiveness of peer code review
in distributed software development. In Proceedings of the 31st Brazilian Symposium
on Software Engineering, SBES’17, pages 84–93, New York, NY, USA. ACM.

Thongtanunam, P., Tantithamthavorn, C., Kula, R. G., Yoshida, N., Iida, H., and Mat-
sumoto, K. (2015). Who should review my code? a file location-based code-reviewer
recommendation approach for modern code review. In IEEE 22nd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER), pages 141–150.

Thongtanunam, P., Yang, X., Yoshida, N., Kula, R. G., Cruz, A. E. C., Fujiwara, K.,
and Iida, H. (2014). Reda: A web-based visualization tool for analyzing modern code
review dataset. In 2014 IEEE International Conference on Software Maintenance and
Evolution, pages 605–608.

Yang, X., Kula, R. G., Yoshida, N., and Iida, H. (2016). Mining the modern code re-
view repositories: A dataset of people, process and product. In 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories (MSR), pages 460–463.


