
Software Development Practices Patterns:
from Pair to Mob Programming

Herez Moise Kattan1

1Department of Computer Science - University of Sao Paulo (IME-USP),
Sao Paulo, Sao Paulo, Brazil

herez@ime.usp.br

Abstract. Software development is a social activity. A positive aspect of tech-
niques of software development like Pair Programming and Mob Programming,
as collaborative approaches empathize those social aspects. Some benefits are,
e.g., an increase in the technical level of the team, related with the dissemina-
tion of knowledge, collective responsibility, a cutback of the number of system
defects, an increase of satisfaction, of motivation, on the collaboration, in the
communication, and trust among the team members. This paper reviews the li-
terature of Pair Programming and Mob Programming cataloging the variations
of pairing and mobbing for developers with different expertise levels on distinct
tasks with diverse complexity levels grouped by context.

1. Introduction

Products developed by pair programming have generally a higher quality compared with
ones developed by solo programming. However, a literature review of pair program-
ming revealed some drawbacks, such as a possible loss of productivity when using the
technique, especially for experienced programmers and simple tasks [Kattan et al. 2018b]
[Kattan et al. 2018c]. It is observed that when using pair programming, there might be an
increase in the effort in the project [Nosek 1998].

Loss of productivity is a common criticism of pair programming since it de-
votes two professionals to perform the same job simultaneously on a single computer.
There is a constant debate in academic and professional circles if the technical advanta-
ges justify this possible loss of productivity [Allen Parrish and Hale 2004] [Kattan 2015]
[Kattan and Goldman 2017] [Kattan 2018] [Kattan et al. 2018b] [Kattan et al. 2018c].

There are related techniques, such as mob programming, where the whole team
participates in around a computer [Kattan et al. 2018a]. Also, there is code review,
another well know and applied alternative, which might increase productivity compared to
pair programming [Rajendran Swamidurai and Kannan 2014]. So, this is the motivation
of to do a more broad study in the context of these related techniques that allow colla-
boration. It is reviewed the literature about Pair Programming and related techniques.
Through this review, It is identified Software Development Practices Patterns related to
these collaborative software development techniques.

Following is the literature review including the protocol, the descriptions of the
Software Development Practices Patterns and it is finalized describing the limitations and
conclusion.



2. Literature Review

2.1. Protocol

It is reviewed the literature on Pair Programming and Mob Programming looking for reli-
ability, avoiding trends in papers selection or interpretation bias made when summarizing
them [Kattan 2016] [Kattan 2017].

The sources of academic studies for this paper are IEEE Xplore (ieeex-
plore.ieee.org), ACM Digital Library (dl.acm.org) and SpringerLink (springerlink.com).
As Mob Programming is still an emerging software development technique, early adopters
publish experiences reports, for this reason, the inclusion criteria only to Mob Program-
ming accept gray literature (not controlled by commercial publishers), although some-
times peer-reviewed, are only experiences reports, possibly without a rigorous research
method. The search string used was ’Pair Programming’ or ’Mob Programming’. The
complete reading of all studies was performed. To try to avoid bias, the author performed
an entire reading of the literature and of the interpretations four times.

Based on this literature review It is proposing a catalog of software development
practices patterns, it is based on preliminary finding and heuristics to help software deve-
lopment teams in the choice of a more appropriate approach for their job context.

2.2. Pair Programming

Although it has been known as a technique associated with the eXtreme Programming
method, the creation of pair programming precedes the XP method. There are many old
tech-savvy reports, such as [Brooks 1975] report. It describes a situation when program-
ming in college between 1953 and 1956, he and his pair wrote 1500 lines of code, which
they executed without any error on the first attempt.

[Coplien and Harrison 2004] defend the advantages of making pairing compatible
designs work together. In this way, they can produce more than the sum of the two
individually.

2.2.1. Definition

A definition of pair programming is: two programmers working collaboratively at
the same activity using a single computer. While one person is programming, the
partner is observing with attention looking for defects or suggesting improvements
[Begel and Nagappan 2008]. There are similar approaches [Al-Jarrah and Pontelli 2016],
where two monitors and mouses are used, but there is no conceptual difference.

2.2.2. Dissemination of knowledge, quality, and reduction of defects

To help to spread the knowledge among the team pair rotation was also introduced. In
this technique, a balance among the pairs of each individual is reached. As an impor-
tant side effect I also have the sharing of skills and competencies among team members
[Williams and Kessler 2000] [Cockburn and Williams 2001] [Nosek 1998].



[Constantine 1995] has published about the reduction on the number of defects
when programming in pairs. Nosek [Nosek 1998] found that pair programming improves
code and algorithm quality, but also noted the increased development effort, as it observed
that the pair spent more working hours than if a single programmer worked alone.

[di Bella et al. 2013] have published a case study, conducted to evaluate the effect
of pair programming on the quality and efficiency of defect corrections. A software de-
velopment project was studied at a large Italian company for a period of fourteen months.
Compared with existing case studies of pair programming, the longer period makes the
study more realistic. In an exploratory analysis, the effectiveness of the pair programming
was investigated in the context of defect corrections and implementations of the user sto-
ries. The analysis showed that the introduction of new defects tends to decrease when pair
programming is used. The results are consistent for both contexts.

2.2.3. Informal review, inspection process and communication

The use of the pair programming technique acts as an informal review process because
each line of code is read by at least two people. Code inspections help a lot in finding a
high percentage of software errors. However, they are time-consuming to organize and
often represent delays in the development process [Williams et al. 2000].

For [Cockburn and Williams 2000] [Cockburn and Williams 2001] pair program-
ming is a less formal review process and probably does not encounter as many errors as
code inspections, but it is much cheaper than a formal inspection process.

[Williams et al. 2000] observed that productivity when using pair programming,
seems to be comparable to that of two people working independently. The reason is that
programming in pairs will discuss the system before developing it, so there will probably
be fewer errors and less rework. In addition, the number of errors avoided by informal
inspection is such that less time is spent repairing discovered bugs during the testing
process.

[Du et al. 2015] performed a basic programming experiment using the C program-
ming language. The results are analyzed through interviews after the experiment and the
conclusion is that pair programming is effective in improving communication in a basic
exercise using the C language.

2.3. Simultaneous Style Pair Programming

A possibility to increase the productivity of pair programming is the use of parallelism
and multidisciplinary teams of Concurrent Engineering of [Pithon 2004]. Another alter-
native is the incorporation of a process of pair code review, and a stage for projecting pai-
ring simultaneous development. In the pairing project, whether or not adopting pair/mob
programming is defined collaboratively and if it is adopted, define in which software re-
quirements each programming technique will be used [Kattan 2019b].

As [Coplien and Harrison 2004] argue, the design is adopted compatible with the
pairing of working together. In this way, they can produce more than the sum of the two
individually. The selection of pairs depends on the project, the task to be performed, the
availability of the team members, the need to disseminate knowledge, the pair rotation



and the experience of each one. When incorporating Concurrent Engineering practices
into pair programming, one should note the importance of communication, even if the
activity is performed in different physical dependencies. It is also important to stress that
the more the activity is developed simultaneously, the greater the productivity gain.

Communication and collaboration are the pillars to join the work performed si-
multaneously on different computers successfully, without compromising with mistakes
during the joining of the work, the productivity gain obtained by the parallelism during
its execution according to [Pithon 2004].

Developers work in pairs to accomplish their tasks to promotes collective, collabo-
rative work, uniting the team, improving communication and the quality of the code. The
work is developed simultaneously and if there is more than one team pair, the iterations
are designed to be simultaneous.

The Programming and Review Simultaneous in Pairs (PRSP) of [Kattan 2015]
[Kattan et al. 2018b] [Kattan et al. 2018c] is also known as Simultaneous Style Pair Pro-
gramming or as pair development. PRSP has the following definition:

”A programming activity wherein planning is at the beginning including the pair
selection, the pairing of tasks is collaboratively designed and based on this two program-
mers work collaboratively in the same activity. Only in the beginning of one activity
sitting side by side to exchange experiences (this way there are more algorithms and solu-
tions) or communicate in the beginning, if they are working in a distributed way (different
locations). Still, in this initial phase, they decide how to divide the task, and do not need
to sit together all the time on a single computer, or communicate at all times if they are
working in a distributed way, only when necessary and useful. Whenever possible, the
work should be performed simultaneously on separate computers. Unlike traditional pair
programming, in PrsP each programmer revises the work of the other one simultaneously
using two computers if an error is found then the task returns to the programmer fix it. In
the end, they unite the work of the pair. During the rest, it is suggested to speak or to think
about the best way for the accomplishment of the work, mindset zero defect, adoption of
a process of stress reduction and for resolution of conflicts”.

2.4. Mob Programming

The idea of mob programming originated from technical meetings where a team mem-
ber presented a code he knew. The group could work together, exchange information
on design, architecture and programming techniques, encourage change in the code and
provide feedback [Hohman and Slocum ].

The main difference, comparing to pair programming, is that the whole team
works together as part of the pairing. In addition to software coding, Mob Program-
ming teams works together on almost all tasks that a typical software development team
tackles, such as defining stories, designing, testing, deploying software, and collaborating
with the customer [Kattan et al. 2018a] [Kattan 2019a].

Mob Programming can be seen as an evolution of the learning environment of a
Dojo Setting to a production environment [Bravo and Goldman 2010]. The whole team
stays around a single workstation, but with only one member having the possession of the
keyboard and mouse, to actually modify the code. The coder is changed every 5 minutes,



thus, with a group of 4-6 people, a member must wait 15-25 minutes to use the keyboard
again [Zuill 2014].

Among the difficulties in adopting the mob programming, Hohman and Slocum
[Hohman and Slocum ] report that it is difficult to keep in focus, especially for those who
are not with keyboard possession. Wilson [Wilson 2015] shows the concern of managers
about the difficulty of having the whole team working together in a single requirement,
while is more productive and effective to have peers working on different tasks. On the
other hand, Zuill [Zuill and Meadows 2016] highlights the benefits for communication,
collaboration and team alignment.

Concerning weaknesses, Hohman and Slocum [Hohman and Slocum ] report that
it is difficult keep focus, especially for those who are not in the possession of the keyboard.
Wilson [Wilson 2015] cites two problems, the effect of dominant personalities within the
Group and appearance of Groupthink.

Among the strengths Zuill [Zuill 2014][Zuill and Meadows 2016] emphasizes
that it strengthens communication, team alignment, collaboration and self-organized.
Wilson [Wilson 2015] note that the dissemination of knowledge was stimulated and the
technique worked well for critical codes and complex.

There are two points of convergence in the conclusion of Hohman and Slocum
[Hohman and Slocum ] and Wilson [Wilson 2015], when using two projectors or moni-
tors, the technique works best and it is advantageous to switch the use of group program-
ming with other techniques, if the particular problem stem from the team not having a sha-
red understanding of the project, using a collaborative method that involve the entire team
is a great approach [Zuill 2014] [Wilson 2015] [Hohman and Slocum ] [Lilienthal 2017].

The initial evidence for the effectiveness of mob programming by its early adop-
ters is quite encouraging, it still requires validation through rigorously designed empirical
research, so that more organizations could adopt it fully understanding the conditions that
accentuate its benefits and minimize potential risks [Balijepally et al. 2017].

3. Software Development Practices Patterns grouped by context

Based on the literature review it is proposed the following Software Development Practi-
ces Patterns.

3.1. Pair Coaching

When a company grows, it is normal to hire new collaborators or when one collaborator
leaves the team, frequently is necessary to hire a new one. Another usual situation is when
a software developer goes to work in a different department of the company or goes to
work in an unknown part of the system. The inclusion of a new member in the team that
does not know the system creates the problem of the first contact with the code.

How to reduce the time for a team member to get familiar with the application
code and software architecture of a part of the system that he or she did not work
yet?

By the use of pair coaching that is one more senior member of the team in training
the new member. It is not necessary to be someone more experienced, but with familiarity



with the code. In this case, the choice of who is more appropriate to work in pair with the
new member depends on availability and familiarity with the code of the team members.
It is important to give developers freedom of choice on how they conduct the work. When
she or he talk that is ready, the team gets conscience that the new member already has the
autonomy to new challenges.

Typically, the more senior member starts being the pilot to show how the system
really is. When the new member feels confident is appropriate do the rotation to she or he
starts being the pilot with the keyboard possession.

Training the novice of the team is one positive consequence, his or her integration
with the whole team is another, but it is necessary to have available one senior professional
to help the newcomer. Training one novice is an investment of work effort because the
senior could work in another more complicated task, but this transfer of knowledge occurs
when the pair is working on something productive.

3.2. Metrics and Practices to share knowledge
In a professional environment, usually, directors and managers say that, if there are only
one professional with knowledge of something, so there are not any, because unexpected
problems occur and sometimes obstructs the only one professional to collaborate, impe-
ding the team makes delivery the software with quality. The problem typically is how to
know the highest probability of changes in specific system parts that only one professional
has knowledge.

There are metrics available nowadays as open-source software tools and patented
that are useful in this situation. Mob Programming and Coding Dojo are a possibility to
detect points where only one Professional has knowledge.

Metrics to the complexity of code, crusades with who is updating the source code
repository is a possibility to guide the pair selection in a more efficient way for transfer
knowledge. Another possibility is collaboratively in a Mob Programming detect who
exclusively knows a specific part of the system and immediately share this knowledge.

Collaboratively, using metrics or Mob Programming to the detecting of lacks in
team knowledge about only one professional with knowledge in a specific system part,
carefully are chosen the pairs.

A positive consequence is to avoid bad intend of a professional in the creation of
dependency of him or her through getting exclusively knowledge of a system part. Typi-
cally, the professionals who looking for creating dependency, when is created an adequate
work environment, they admit transferring the knowledge with benefits of enjoying more
the weekends and holidays.

3.3. Cognitive Learning
When the pair is composed by one Senior member working with one Junior. The Senior
usually is not learning very much, only teaching. The Junior learn much more but some-
times only watch. Considering learning outcomes how a factor of productivity, only the
Junior is learning.

The senior developer verbalizes his teaching and the novice being supported by
the senior when he is developing a task are teaching methods used in cognitive learning.



The suggestion is the Junior with the possession of the keyboard (driver/pilot) and
the Senior not only being a simple navigator/co-pilot but teaching and verbalizing. Thus,
the Junior is programming with the possession of keyboard and listening to the teachings
of Senior.

While seniors make an additional effort to transfer knowledge to the newbie by
raising awareness about knowledge transfer practices, it generates a learning opportunity
for the senior. A negative consequence could be a decrease in productivity in the short
term. The learning could be motivational and bring satisfaction to the programmers, in-
creasing the productivity of the team as a whole. This heuristic too could be useful to
reduce the rate at which developers leave the team, yielding the next heuristic.

3.4. Reducing the rate at which developers leave the team
[Williams and Kessler 2003] apud [Weinberg 1971] ’If a programmer is indispensable,
get rid of him as quickly as possible’. Although this contextualization works very well to
talk about avoiding build a house of cards, we are talking about an important productivity
factor: the problem of if your team has a ’key’ person and this person leave the team. We
hope you could say ’Houston, We’ve Had a Problem and we’re looking at it through this
heuristics’. The problem is to retain talented people.

The incentive to the Programmers to adopted the technique of Pair Program-
ming or Mob Programming ideally needs have the support of the president. Sharing
and recognizing competencies must be appreciated by the organization culture. Fighting
against bad programming practices too. Creating an environment-friendly to the conver-
sation between programmers.

Change the culture of the organization to collaboration could stimulate the pro-
grammers to use it and get the motivation to stay working to your company.

A very positive consequence is the retaining of the top talent. In the long term
increase in productivity and in the short term could increase the cost and maybe decrease
the productivity are negative consequences.

3.5. Sharing operational and domain problem knowledge
When you get in a taxi, you need to inform the driver where you wanna go if you intend
to go to the location that you need. Agile is about adaptation on changes, not about de-
veloper without domain knowledge, the customer always present remember? Developers
usually know more about programming and technical tasks than business domain pro-
blem knowledge. Thus, developers need learning about operational and business domain
problem.

The solution suggest is have a planning phase to collaboratively detect the points
at which are need sharing operational and domain problem knowledge. After, work using
the Mob Programming.

An example is if in the planning phase is detected some tasks could be useful to
share operational and domain problem knowledge, the decision made by the team is using
Mob Programming. But, to the other’s tasks could use other Programming Technique.

A positive consequence is in the long term this learning of domain problem and
operational knowledge help to improve the productivity of the organization. A negative



aspect could be the cost to have rooms and projectors adequate to Mob Programming.

3.6. Programming of complex and critical code
Metaphorically, in determinant situations, the cops call reinforcements. Sometimes, de-
velopers need help to review code or to develop a complex part of the software system.

The solution is to work using the Pair Programming, Simultaneous Style Pair Pro-
gramming or Mob Programming.

An example is in the planning phase was to detect the complex and critical parts,
facilitating the choice of Programming Technique. Another example is the team chose
work using Pair Programming or Simultaneous Style Pair Programming but unexpectedly
happens a critical problem at a complex part of the code of the software, immediately the
team decides use Mob Programming and after come back to work in pairs.

The positive consequence is taking all the advantage of working in pairs and mob
programming together. The negative could be the cost to have rooms and projectors ade-
quate to Mob Programming.

4. Limitations and Conclusion
The limitation founded in the literature reviewed of Simultaneous Style Pair Programming
is the reduced number of case studies, only eight involving fifty-five developers and in
that empirical part, it was not possible to make all possible combinations regarding the
level of developer experience with the complexity of the task. The limitation founded
in the publications related to Mob programming is the lack of an empirical validation
using research methods because the major part of the literature is composed of experience
reports.

The main conclusion is Mob Programming could be an advantage technique for
complex and critical codes and works combine with Pair Programming and Simultaneous
Style Pair Programming. The secondary contributions are software development practices
patterns describing a context which could be advantage use each approach.

Referências
Al-Jarrah, A. and Pontelli, E. (2016). On the Effectiveness of a Collaborative Virtual

Pair-Programming Environment, pages 583–595. Springer International Publishing.

Allen Parrish, Randy Smith, D. H. and Hale, J. (2004). A field study of developer pairs:
productivity impacts and implications. IEEE Software, 21(5):76 – 79.

Balijepally, V., Chaudhry, S., and Nerur, S. P. (2017). Mob programming - A promising
innovation in the agile toolkit. In 23rd Americas Conference on Information Systems,
AMCIS 2017, Boston, MA, USA, August 10-12, 2017.

Begel, A. and Nagappan, N. (2008). Pair programming: What’s in it for me? In Pro-
ceedings of the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’08, pages 120 – 128, New York, NY, USA.
ACM.

Bravo, M. and Goldman, A. (2010). Reinforcing the Learning of Agile Practices Using
Coding Dojos, pages 379–380. Springer Berlin Heidelberg, Berlin, Heidelberg.



Brooks, Jr., F. P. (1975). The mythical man-month. SIGPLAN Not., 10(6):193–.

Cockburn, A. and Williams, L. (2000). The costs and benefits of pair programming. In In
eXtreme Programming and Flexible Processes in Software Engineering XP2000, pages
223–247. Addison-Wesley.

Cockburn, A. and Williams, L. (2001). Extreme programming examined. chapter The
Costs and Benefits of Pair Programming, pages 223–243. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Constantine, L. L. (1995). Constantine on Peopleware. Yourdon Press Computing Series.
Prentice Hall Ptr, Englewood Cliffs, N.J., 1 edition edition. Paperback: 219 pages.

Coplien, J. O. and Harrison, N. B. (2004). Organizational Patterns of Agile Software
Development. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

di Bella, E., Fronza, I., Phaphoom, N., Sillitti, A., Succi, G., and Vlasenko, J. (2013). Pair
programming and software defects–a large, industrial case study. IEEE Transactions
on Software Engineering, 39(7):930–953.

Du, W., Ozeki, M., Nomiya, H., Murata, K., and Araki, M. (2015). Pair programming for
enhancing communication in the fundamental c language exercise. In 2015 IEEE 39th
Annual Computer Software and Applications Conference, volume 3, pages 664–665.

Hohman, M. M. and Slocum, A. C. Mob Programming and the Transition to XP. Tech-
nical report.

Kattan, H. M. (2015). Programming and review simultaneous in pairs: a pair program-
ming extension. Master’s thesis, Institute for Technological Research of the Sao Paulo
State, Brazil.

Kattan, H. M. (2016). Illuminated arrow: a research method to software engineering
based on action research, systematic review and grounded theory. In 13th International
Conference on Information Systems and Technology Management. Paper submission in
1 Dec 2015. Presented at Session4A. Pages: 1971-1978. Sao Paulo, SP, Brazil.

Kattan, H. M. (2017). Those who fail to learn from history are doomed to repeat it. In
Agile Processes in Software Engineering and Extreme Programming: poster presented
at the 18th International Conference on Agile Software Development, XP 2017, held
in Cologne, Germany, in May 22-26.

Kattan, H. M. (2018). Theory of altruism on software development practices patterns.
In Proceedings of the 19th International Conference on Agile Software Development:
Companion, XP ’18, pages 44:1–44:4, New York, NY, USA. ACM.

Kattan, H. M. (2019a). Mob programming and simultaneous style pair programming in
the development of a battle royale game: an action research. In Agile Methods, Cham.
Springer International Publishing.

Kattan, H. M. (2019b). Pair programming: a step beyond. In Agile Methods, Cham.
Springer International Publishing.

Kattan, H. M. and Goldman, A. (2017). Software development practices patterns. In
Baumeister, H., Lichter, H., and Riebisch, M., editors, Agile Processes in Software
Engineering and Extreme Programming, pages 298–303. Springer International Pu-
blishing.



Kattan, H. M., Oliveira, F., Goldman, A., and Yoder, J. W. (2018a). Mob programming:
The state of the art and three case studies of open source software. In Santos, V. A. d.,
Pinto, G. H. L., and Serra Seca Neto, A. G., editors, Agile Methods, pages 146–160,
Cham. Springer International Publishing.

Kattan, H. M., Soares, F., Goldman, A., Deboni, E., and Guerra, E. (2018b). Swarm or
pair? strengths and weaknesses of pair programming and mob programming). Poster -
DOI: 10.13140/RG.2.2.18105.06249, XP’18, Porto, Portugal. May 21-25.

Kattan, H. M., Soares, F., Goldman, A., Deboni, E., and Guerra, E. (2018c). Swarm
or pair?: Strengths and weaknesses of pair programming and mob programming. In
Proceedings of the 19th International Conference on Agile Software Development:
Companion, XP ’18, pages 43:1–43:4, New York, NY, USA. ACM.

Lilienthal, C. (2017). From Pair Programming to Mob Programming to Mob Architecting,
pages 3–12. Springer International Publishing, Cham.

Nosek, J. T. (1998). The case for collaborative programming. Commun. ACM, 41(3):105–
108.

Pithon, A. J. C. (2004). Projeto organizacional para a engenharia concorrente no am-
bito das empresas virtuais. Doctoral thesis, Escola de Engenharia da Universidade do
Minho Departamento de Produção e Sistemas, Portugal.

Rajendran Swamidurai, B. D. and Kannan, U. (2014). Investigating the impact of peer
code review and pair programming on test-driven development. In IEEE SOUTHE-
ASTCON 2014, SOUTHEASTCON ’14, Conference Location: Lexington, KY, USA.
IEEE.

Weinberg, G. (1971). The Psychology of Computer Programming. Wiley - Van Nostrand,
New York, NY.

Williams, L. and Kessler, R. (2000). The effects of ”pair-pressure”and ”pair-learning”on
software engineering education. In Proceedings of the 13th Conference on Software
Engineering Education & Training, CSEET ’00, pages 59–65, Washington, DC, USA.
IEEE Computer Society.

Williams, L. and Kessler, R. (2003). Pair programming illuminated. Pearson Education,
Boston, MA.

Williams, L., Kessler, R. R., Cunningham, W., and Jeffries, R. (2000). Strengthening the
case for pair programming. IEEE Softw., 17(4):19–25.

Wilson, A. (2015). Mob Programming - What Works, What Doesn’t, pages 319–325.
Springer International Publishing, Cham.

Zuill, W. (2014). Mob programming: A whole team approach. In Experience report,
Agile ’14.

Zuill, W. and Meadows, K. (2016). Mob Programming. A Whole Team Approach. Lean-
Pub, this book is 95% complete - last updated on 2016-10-29 edition.


