
Effectiveness evaluation of the synchronization sequence
testing in Java concurrent program

Rodolfo Adamshuk Silva1, Simone do Rocio Senger de Souza2

1Universidade Tecnológica Federal do Paraná
Estrada para Boa Esperança – Dois Vizinhos – PR – Brazil

2Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo
São Carlos – São Paulo – SP – Brazil.

rodolfoa@utfpr.edu.br, srocio@icmc.usp.br

Abstract. Testing activities for concurrent programs are complex due to the non-
determinism in which different synchronization sequences may occur and pro-
duce different outputs for a single input. Testing all synchronization sequences
is impractical due to the high number of possible synchronization sequences
that a concurrent program may perform. This paper presents a case study to
evaluate the effectiveness of different synchronization sequences for a given test
case. The effectiveness was measured using the number of defects founds by
each synchronization sequence in a set of 9 Java multithread programs. The re-
sults demonstrate that the execution of different synchronization sequences leads
to different effectiveness for some test cases. The evidence found demonstrates
the importance of testing different synchronization sequences during testing of
concurrent programs.

Resumo. As atividades de teste para programas concorrentes são complexas
devido ao não-determinismo no qual diferentes sequências de sincronização
podem ocorrer e produzir saı́das diferentes para uma única entrada. Testar
todas as sequências é impraticável devido ao alto número delas que um pro-
grama concorrente pode executar. Este artigo apresenta um estudo de caso
para avaliar a eficácia de diferentes sequências de sincronização para um dado
caso de teste. A eficácia foi medida usando o número de defeitos encontrados
por cada sequência de sincronização em um conjunto de 9 programas Java mul-
tithread. Os resultados demonstram que diferentes sequências de sincronização
têm eficácia diferente para alguns casos de teste. As evidências encontradas
demonstram a importância de testar diferentes sequências de sincronização du-
rante o teste de programas concorrentes.

1. Introduction
Concurrent programming has become an essential paradigm for reductions in computa-
tional time in many application domains. A concurrent program is composed of con-
current and/or parallel processes or threads that interact for solving a complex problem.
The development of concurrent programs requires the use of primitives to define pro-
cesses to be executed in parallel, create, destroy and synchronize concurrent processes
[Almasi and Gottlieb 1989]. Concurrent programs may compete for the same computing
resource, and their interaction may occur in a synchronized way. The communication



and synchronization can be done using shared memory or message-passing paradigms. In
shared-memory paradigm, different processes do write and read operations over a shared
memory space. On the other hand, in the message-passing paradigm, processes use prim-
itives to send and receive messages. Communication, synchronization, and concurrency
among process can produce different and correct outputs when running with a single
input depending on the synchronization sequence (non-determinism). Features as non-
determinism, synchronization, and inter-process communication difficult the validation
and testing and must be regarded in the testing activity, once it is impossible to predict the
synchronization sequence that will run.

Software testing is an activity that aims at identifying errors in software and con-
sists of dynamic analysis for the identification and elimination of defects. This activity in-
volves four steps, namely test planning, test case design, implementation and evaluation of
results that must be applied along the software development process [Myers et al. 2011].
Test criteria are defined for the selection of test cases aiming at a high probability to
find errors and prevent the running of the program with all possible inputs. The testing of
concurrent programs is complex when compared with sequential programs due to the non-
determinism. A problem that arises while testing concurrent programs is the selection of
synchronization sequences. The execution of all feasible synchronization sequences may
be impractical, and consequently, it is necessary to select a subset of synchronization se-
quences to execute. A raised problem in software testing is how to select synchronization
sequences and guarantee that the software is well tested. Therefore, it is necessary the
definition of an approach to select synchronization sequences to be execute.

Studies have been defined approaches to deal with the selection of synchronization
sequences for concurrent programs [Huo Yan Chen et al. 2003, Hong et al. 2012]. How-
ever, there is a lack of studies in the efficiency of each synchronization sequence in a given
test case. This paper presents a case study to investigate and evaluate the ability to reveal
faults (measured by defects found) of different synchronization sequences. It is essential
to understand how to identify them to provide support in the selection of synchronization
sequences to be executed in the testing. The case study considers a set of nine Java multi-
threaded programs, a set of defective programs and a set of test cases taken from Gligoric
et al. [Gligoric et al. 2013].

2. Background

The correctness of a concurrent program using shared-memory paradigm requires mutual
exclusion, in which statements from the critical section of two or more processes must not
be interleaved. A critical section is a segment that must be executed by only one thread
at any time. Therefore, synchronization mechanisms are required to ensure the correct-
ness of the results [Tanenbaum 2007]. Synchronization mechanism, such as semaphores,
barriers, monitors, and condition variables consist of additional statements that are placed
before and after the critical section. Shared-address-space programming paradigms such
as threads (e.g., POSIX and Java) and directives (e.g., OpenMP) support synchronization
using locks and related mechanisms.

Figure 1 presents an example of two concurrent threads competing for a shared
memory resource. Thread 1 (T1) and Thread 2 (T2) compete for the shared variable x.
Each thread executes three operations in x: read, increment and write. The execution



order of Thread 1 and Thread 2 may lead to different outputs as shown in Table 1. For
instance, T1 executes the read function, increments the variable x locally and executes
the write function, the value of x will be 1. After that, T2 executes the read function,
increments the variable x and executes the write function, the value of x will be the correct
value 2. In another scenario, T1 executes the read function and increments the variable
locally. At this moment, a thread preemption occurs, and T2 starts its execution. T2 reads
the value of x (0), increments it and executes the write function (x has the value 1). After
that, T1 returns its execution and executes the write function. At the end of this execution,
x has the incorrect value of 1. If this access to the shared variable is not synchronized, the
synchronization access could lead to an error in the programs. The testing activity in this
context is responsible for identifying thread scheduling that may lead to errors.

Thread
1

Thread
2

read(x) read(x)

write(x) write(x)

x++ x++

x=0

Figure 1. Representation of thread
execution

Table 1. Possible synchronization
sequences

Sync-seq x value Sync-seq x value
T1read(x) x=0 T1read(x) x=0
T1write(x) x=1 T2read(x) x=0
T2read(x) x=1 T1write(x) x=1
T2write(x) x=2 T2write(x) x=1

correct incorrect
T2read(x) x=0 T2read(x) x=0
T2write(x) x=1 T1read(x) x=0
T1read(x) x=1 T1write(x) x=1
T1write(x) x=2 T2write(x) x=1

correct incorrect
T1read(x) x=0 T2read(x) x=0
T2read(x) x=0 T1read(x) x=0
T2write(x) x=1 T2write(x) x=1
T1write(x) x=1 T1write(x) x=1

incorrect incorrect

Different approaches have been defined to select synchronization sequences dur-
ing the test of concurrent programs. The Multiple Execution Testing (MET) approach
consists of executing a program P with the same test input several times and examining
the result of each execution. If one of the executions presents an output not expected,
an error was identified in the program. This approach does not ensure that all possible
synchronization sequences will be executed. Therefore, a non-executed synchronization
sequence can lead the program to an error state. The Deterministic Execution Testing
(DET) approach [Tai et al. 1989] executes the program P with a test case t defined by
an input x and a synchronization sequence s. The execution of x with the sequence s is
forced, and if the result is different from the expected, a fault was found in P . The prob-
lem with this approach lies in finding all synchronization sequences that can be exercised
by P and determining their executability.

Delamaro [Delamaro 2004] developed an approach for the reproduction of a Java
concurrent program using instrumentation. It is based on the technique of Record and
Playback, in which the synchronization sequence occurred during the run of synchro-
nized methods and objects is recorded. In the playback phase, the synchronization se-
quence guides the next event to be run when a thread enters a synchronized point. The
approach was useful for replicating Java concurrent programs with instrumentation. Lei
and Carver [Lei and Carver 2010] proposed the Reachability Test in which all the fea-
sible synchronization sequences are obtained, reducing the number of redundant ones.



Through the identification of “race conditions” between pairs of synchronizations, the ap-
proach determines during execution which synchronizations are possible to occur in a new
run. The prefix-based testing technique is employed to run the program deterministically
until a specific part and, after that point, it allows non-deterministic execution. Synchro-
nization sequences are generated automatically and on-the-fly, without building any static
model. This model presents the problem of the explosion of concurrency states since the
number of states grows exponentially with the number of processes and the number of
synchronizations to be performed.

3. Case study design
Software engineering case studies examine software engineering phenomena in their
real-life settings and require a flexible design, in contrast to the fixed designs of clas-
sic experiments [Runeson et al. 2012]. The case study protocol defined by Runeson et
al. [Runeson et al. 2012] was used as a guidance on the design of this case study. The
Rationale for the study emerges from the fact that the execution of all synchronization se-
quences is impractical due to the time and computational cost necessary to execute them
all. The problem is how to select synchronization sequences and guarantee that the set of
synchronization sequences is reliable to consider the program as well tested? A metric
used in software testing that evaluates a test case is the number of faults caught by its ex-
ecution (well known as mutation testing criteria). The higher the number of faults caught
is, the better is the test case. We undertake this study to observe how different synchro-
nization sequences affect the testing of Java multithread programs. The main research
question being addressed by this study is:

• RQ1: What is the effectiveness of different synchronization sequences in the test-
ing of Java concurrent programs?

The case study will investigate the testing of nine Java multithread programs.
Each program has a set of test case already defined that will be used in the conduc-
tion of the study case. The number of defects revealed by the execution is used as a
metric to evaluate the effectiveness of a synchronization sequence; therefore, a set of
defective programs is used to evaluate the effectiveness of a synchronization sequence.
These defective programs were generated using Mutation operators for Java multithreded
programs [Gligoric et al. 2013]. The set of programs, test cases, and defective programs
were obtained in the experiment conducted by Gligoric et al. [Gligoric et al. 2013]. Table
2 presents the multithread programs, the number of defective programs and the number
of test cases for each program. In the context of this embedded single-case study, each
program is a unit of analysis, the context is the Deterministic Execution Testing.

The conduction of the case study follows the Deterministic Execution Testing
described as follows. (1) For each program, one test case is selected from the test case set.
The program is executed with the test case. If the output of the execution is correct, the
synchronization sequence executed is stored. (2) The synchronization sequence stored is
executed with all defective programs, and the output is stored. (3) The data collected is
analyzed, and the effectiveness (number of defects found) is calculated and stored. This
procedure is performed five times for all test cases for all programs. This is a common
practice used for seeking the execution of different synchronization sequences. Figure 3
presents an overview of each iteration of the procedure.



Table 2. Objects programs used in
the study

Objects #LOC #Defective #Test Case
Account 52 6 22
Accounts 43 6 8
Airline 38 5 18
Allocation 78 5 20
Bubble 37 2 12
Buffer 89 9 8
LinkedList 179 4 32
Shop 113 8 9
Tree 122 38 15

Context: DET
Case

Unit of
analysis:
Account

Unit of
analysis:
Accounts

Unit of
analysis:

Airline

Unit of
analysis:
Allocation

Unit of
analysis:
Bubble

Unit of
analysis:

Buffer

Unit of
analysis:

LinkedList

Unit of
analysis:

Shop

Unit of
analysis:

Tree

Figure 2. Embedded single-case
study

Pseudo-random
execution

Deterministic
execution

Program P

Defective
Program set D

Test case set T
Test

case ti

Defective
Program

 di

Sync

sequence 

si

Data analysisinput/output
control flow

Figure 3. Overview of the case study conduction

JPF-inspector tool1 was used to support the deterministic execution of the pro-
gram and defective programs. The deterministic execution of the original program was
necessary to generate different synchronization sequences once it is impractical to get it
only with freely executions. However, JPF randomly selects threads to be executed, there-
fore we called this execution as pseudo-random. During the first step of the case study,
five synchronization sequences were generated by selecting random threads to execute. A
pilot case study shown that the increase in the number of synchronization sequences did
not increase the number of defects found.

A set of synchronization sequences was generated for each test case of each pro-
gram. After that, defective programs were also executed using the JPF-inspector deter-
ministically, i.e., the thread scheduling follows the synchronization sequences obtained in
the execution of the original program. The defective programs were executed to verify
if the synchronization sequence used was able to identify the defect inserted in the pro-
gram, proving thus, its effectiveness. The defect was considered found if the defective
program presents a result different from the original program or it cannot follow the syn-
chronization sequence. Table 3 presents the total number of executions for each program
for the case study. Column “Exec i” corresponds to the initial execution of the program
to generate the synchronization sequences and “Exec d” corresponds to the execution of
the defective program.

1https://jpf.byu.edu/hg/jpf-inspector



Table 3. Number of executions performed in this case study

Subject #Test #Sync #Defective Exec i Exec d
Account 22 5 6 110 660
Accounts 8 5 6 40 240
Airline 18 5 5 90 450
Allocation 20 5 5 100 500
Bubble 12 5 2 60 120
Buffer 8 5 9 40 360
LinkedList 23 5 4 115 460
Shop 9 5 8 45 360
Tree 15 5 38 75 2 850
Number of executions 675 6 000

4. Data Analysis
DeMillo and Offutt [DeMillo and Offutt 1991] defined three conditions that a test case t
must satisfy to identify a defect in a code. (1) Reachability: the defect must be executed.
(2) Necessity: the state of the defective program after the execution of the defect must be
different from the state of the correct program after the execution of the same point. (3)
Sufficiency: the difference in the state immediately following the execution of the defect
must propagate to the end of execution.

In this case study, defects were considered reveled if the sufficiency condition
is achieved, i.e., it presents an error as output, or it cannot follow the synchronization
sequence. As a result, three errors were identified while applying deterministic testing for
Java multithread programs. Error 1 is related to the output of the program and errors 2
and 3 are related to the synchronization sequence.

1. Error - This error occurs when the inserted defect makes the defective program to
present a different output from the expected.

2. Not enough sync - This error occurs when the synchronization sequence finishes,
however, the defective program is still running.

3. Error sync - This error occurs when the defective program cannot execute the
thread presented in the synchronization sequence.

Table 4 presents the cases in which there is a variation of defects found depending
on the synchronization sequence executed. The first column represents the program under
testing, the second column corresponds to the test case id, the third column presents the
total number of defective programs, and the last column describes the number of defects
found for the five synchronization sequences executed. For the test cases out of the table,
the number of defects found was the same in all executions.

With the data collected, it is possible to answer the research question 1 that in-
vestigates differences in the effectiveness related to the number of defects found by the
execution of synchronization sequences. Therefore, it is essential to execute different syn-
chronization sequences during the testing of Java multithread programs. Figure 4 presents
the best and worst scenarios for test cases that exhibited synchronization sequences with
different effectiveness. For instance, observing the results of test case T11 from Tree pro-
gram, the best synchronization sequence was able to identify 15 defects (39%). On the
other hand, the worst synchronization identified only 11 defects (29%).

Figure 5 presents the number of defects found for each synchronization sequence
of test case T11 in the Tree program. It is noteworthy that each synchronization sequence,



Table 4. Number of defects found per synchronization sequence

Program Test Def Effectiveness
S1 S2 S3 S4 S5

Account T1 6 2 2 2 0 0
T12 2 1 2 2 2

Accounts T1 6 3 3 0 3 3
T3 3 3 0 3 0

Airline

T4

5

2 2 4 2 2
T5 2 4 2 4 3
T11 2 2 4 4 4
T13 4 4 2 4 4
T15 2 4 4 4 4

Bubble T11 2 2 1 0 0 1
Buffer T4 9 5 7 5 6 6

Shop
T1

8
4 3 4 4 3

T2 3 3 4 3 3
T3 3 4 4 4 3

Tree

T6

38

11 12 14 11 12
T7 10 12 12 12 12
T8 14 14 13 11 12
T9 13 14 12 14 14
T11 15 11 13 13 12
T12 14 13 15 12 15

Figure 4. Effectiveness for best and worst synchronization sequences

in this test case, presents different effectiveness. This scenario exemplifies the importance
of testing different synchronization sequences during the testing of concurrent programs.
Analyzing a scenario in which only one synchronization sequence is executed or a non-
deterministic execution is used, if just the synchronization sequence S2 is executed, some
defects may not be revealed, decreasing the quality of the test case set. With these results,
it is possible to identify strong and weak synchronization sequences considering the score,
i.e., there are synchronization sequences that reveal more defects than others.



Figure 5. Defects found for each synchronization sequence of test case T11

5. Summary and discussion
The objective of this case study was to apply the Deterministic Execution Testing in a
set of Java concurrent programs and investigate the effectiveness of synchronization se-
quences. Therefore, the number of defects found was used to evaluate different synchro-
nization sequences. As a result, it was possible to affirm that different synchronization
sequences can achieve different effectiveness, being crucial to the efficiency of the test
case. This result is essential and motivates the investigation about to how to select the
best synchronization sequences to be used in the testing of concurrent programs.

In this case study, we identified three different error situations that can happen in
the execution of defective programs. Moreover, another situation was observed in which
the defective program finished its execution without error, however, it does not follow
the complete synchronization sequence. This situation was called “Early termination”,
once the defective program finishes its execution before the end of the synchronization
sequence. In the literature, there is no definition about how to deal with this error, so that
the defect was considered not revealed.

Some of the error situations can be considered better, regarding the process of
revealing defects. The primary objective of the testing activity is to obtain a different
output from the defective program in comparison with the expected output. In this context,
the error situations found in this study can be classified due to its significance.

The more important is Situation 1, once the output presented by the defective
program is different from the expected output and it means that reachability, necessity,
and sufficiency conditions were reached. Situation 2 is not considered an error, once the
defective program finishes its execution without showing an error even presenting a syn-
chronization sequence shorter than the one presented by an error-free program. Situation
3 is the opposite, in which the synchronization sequence of the defective program is larger
than the one presented by the error-free program. This situation is significant because the
defective program did not finish its execution. Situation 4 is more significant than the
other two, once the defective program cannot follow the synchronization sequence due to
a difference in the possible thread scheduling. This new thread scheduling may represent
a difference in the concurrent characteristic of the program. Table 5 presents the error
situations found in testing of Java multithread programs.

In the testing of concurrent programs, the tester has a predefined set of test cases.
While testing concurrent programs, it is necessary to execute some (or all) synchroniza-



Table 5. Error situations found in testing Java multithread programs

Situation Error Description Significance
1 Error The program presents a different output from the expected 1
2 Early termination The synchronization of the program is shorter than the original 4
3 Not enough sync The synchronization sequence finishes, and the program is still running 3
4 Error sync The program cannot execute the synchronization sequence 2

tion sequences to evaluate the behavior of the programs. As the execution of all sequences
is expensive and time-consuming, a subset of sequences is selected and executed. In this
study, multiple execution testing approach was used to generate and execute different
synchronization sequences, though this approach does not guarantee the execution of ”in-
teresting” sequences. When an interesting synchronization sequence is executed, defects
in the code are more likely to be found.

In this case study, the defective programs were executed five times with each test
case, and as a result, it was demonstrated that different synchronization sequences could
provide different effectiveness. During the execution of synchronization sequences, five
sequences were randomly generated to achieve different scores. The generation and exe-
cution of those sequences were time-consuming, once no heuristic supported this activity.
So, a challenge in this field is how to find interesting sequences.

A threat to validity in this case study is the representativeness of the pro-
grams. Nine programs of different size and complexity were taken from Gligoric
et al. [Gligoric et al. 2013], and that was already used in different studies in the
testing of concurrent programs to mitigate this threat. These programs present dif-
ferent concurrent functions that represent the context of Java multithread programs
[Gligoric et al. 2010, Jagannath et al. 2011, Gligoric et al. 2013].

6. Conclusions
Concurrent programs have characteristics that set them apart from sequential programs
such as communication, synchronization, parallelism, and concurrency. These character-
istics are present in most concurrent programs and must be considered during the testing
activity. The concurrency in Java is achieved by using threads, which are independent
paths of execution through the application code. In the context of concurrent programs,
software testing activity presents itself as challenging, since characteristics such as non-
determinism of concurrent programs must be evaluated using testing techniques.

In this paper, the Deterministic Execution Testing approach was used to evaluate
the effectiveness of a set of synchronization sequences for a set of nine Java multithread
programs. The first step consisted in the deterministic execution of each test case five
times to generate different synchronization sequences. Those sequences were executed in
the set of defective programs. A set of three errors were defined to decide if a defect was
revealed or not. Synchronization sequences were classified based on the effectiveness as
good (high number of defects found) and bad (low number of defects found).

As a result, it was possible to affirm that different synchronization sequences may
reach different effectiveness considering one test case. This conclusion is essential for
future works that aim to identify and select “interesting” synchronization sequences, i.e.,
sequences that may find more faults in the program during the testing activity. It is im-
portant to mention that the choice of synchronization sequence is an issue present in most



testing techniques for concurrent programs. This study is an initial contribution to stud-
ies that propose selection and generation of synchronization sequences during the testing
activity of concurrent programs.

References
Almasi, G. S. and Gottlieb, A. (1989). Highly parallel computing. Benjamin-Cummings

Publishing Co., Inc., Redwood City, CA, USA.

Delamaro, M. E. (2004). Using instrumentation to reproduce the execution of Java con-
current programs. In Simpósio Brasileiro de Qualidade de Software.

DeMillo, R. A. and Offutt, A. J. (1991). Constraint-based automatic test data generation.
IEEE Transactions on Software Engineering, 17(9):900–910.

Gligoric, M., Jagannath, V., and Marinov, D. (2010). Mutmut: Efficient exploration for
mutation testing of multithreaded code. In Software Testing, Verification and Validation
(ICST), 2010 Third International Conference on, pages 55–64.

Gligoric, M., Zhang, L., Pereira, C., and Pokam, G. (2013). Selective mutation testing
for concurrent code. In Proceedings of the 2013 International Symposium on Software
Testing and Analysis, pages 224–234, Lugano, Switzerland.

Hong, S., Ahn, J., Park, S., Kim, M., and Harrold, M. J. (2012). Testing concurrent
programs to achieve high synchronization coverage. In Proceedings of the 2012 Inter-
national Symposium on Software Testing and Analysis, ISSTA 2012, pages 210–220,
New York, NY, USA.

Huo Yan Chen, Yu Xia Sun, and TH Tse (2003). A strategy for selecting synchronization
sequences to test concurrent object-oriented software. In Proceedings 27th Annual
International Computer Software and Applications Conference. COMPAC 2003, pages
198–203.

Jagannath, V., Gligoric, M., Jin, D., Luo, Q., Rosu, G., and Marinov, D. (2011). Improved
multithreaded unit testing. In Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering, ESEC/FSE
’11, pages 223–233. ACM.

Lei, J. and Carver, R. H. (2010). A stateful approach to testing monitors in multithreaded
programs. 9th IEEE International Symposium on High-Assurance Systems Engineer-
ing, 00:54–63.

Myers, G. J., Sandler, C., and Badgett, T. (2011). The Art of Software Testing. Wiley
Publishing, 3rd edition.

Runeson, P., Host, M., Rainer, A., and Regnell, B. (2012). Case Study Research in Soft-
ware Engineering: Guidelines and Examples. Wiley Publishing, 1st edition.

Tai, K., Carver, R., and Obaid, E. (1989). Deterministic execution debugging of con-
current Ada programs. In Proceedings of the Computer Software and Applications
Conference, pages 102–109.

Tanenbaum, A. S. (2007). Organização Estruturada de Computadores. Prentice Hall,
Sao Paulo, Brazil, 5. edition.


