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Abstract. This article analyzes the practical impact of Distributed Denial of Service 
(DDoS) attacks, focusing on Layer 7 (L7) and its direct effect on Availability (CIA Triad). 
The research simulated an attack against a resource-limited Node.js/Express application 

containerized in Docker (1 CPU/512MB). Monitoring via Prometheus and Grafana 
diagnosed that service unavailability stemmed from the Event Loop blocking, saturating 

the CPU, rather than just network saturation. In response, a more resilient architecture is 

proposed using Load Balancing for efficient traffic distribution. Crucially, mitigation is 
achieved through Rate Limiting, implemented via an NGINX reverse proxy, to restrict 
malicious requests. For this to work accurately in a Docker environment, the technique 

requires correctly handling the X-ForwardedFor header to identify the client's real IP 
address 

Resumo. Este artigo analisa o impacto prático de ataques Distribuídos de Negação de 

Serviço (DDoS), focando na Camada 7 (L7) e seu efeito direto na Disponibilidade (Tríade 
CID). A pesquisa simulou um ataque contra uma aplicação Node.js/Express, 
containerizada com recursos limitados (1 CPU/512MB). O monitoramento via Prometheus 

e Grafana diagnosticou que a indisponibilidade foi causada pelo bloqueio do Event Loop, 
saturando a CPU, e não apenas pela saturação da rede. Em resposta, é proposta uma 
arquitetura mais resiliente que utiliza Load Balancing para distribuição eficiente do 

tráfego. A mitigação crucial é o Rate Limiting, implementado através de um reverse proxy 

NGINX, que restringe requisições maliciosas. Para funcionar em Docker, a técnica exige 
o tratamento correto do cabeçalho X-Forwarded-For para identificar o IP real do cliente. 

 

1. Introdução 
Os Ataques Distribuídos de Negação de Serviço (DDoS) representam uma das ameaças 

mais persistentes e destrutivas à continuidade dos negócios digitais e à segurança da 

informação global. Esses ataques são projetados para tornar um sistema, website ou rede 

inacessível, sobrecarregando seus recursos com um volume massivo de tráfego 

coordenado a partir de uma rede distribuída de dispositivos comprometidos, conhecidos 

como botnet.  

 A crescente dependência de serviços digitais críticos, como plataformas de 

comércio eletrônico e sistemas bancários, eleva o custo e o impacto de um ataque DDoS. 



 

 

Para um e-commerce, por exemplo, a interrupção do serviço devido à negação de acesso 

impede que clientes legítimos concluam compras, resultando em perdas financeiras 

imediatas e danos à reputação da marca. Garantir a resiliência contra ataques DDoS 

tornou-se, portanto, uma exigência fundamental em qualquer arquitetura moderna.    

 Este artigo tem como objetivo analisar o funcionamento e as implicações práticas 

dos ataques DDoS, focando em como eles exploram as vulnerabilidades arquiteturais de 

aplicações web contemporâneas. A metodologia adota uma abordagem prática, utilizando 

uma infraestrutura containerizada (Node.js/Express e Docker) e um ecossistema de 

observabilidade (Prometheus e Grafana) para simular um ataque de Camada 7. O 

diagnóstico resultante guiará a proposição de melhorias de resiliência, baseadas na 

implementação de tecnologias de mitigação padrão de mercado, como Load Balancing e 

Rate Limiting. 

 O desenvolvimento do trabalho está estruturado para primeiramente fundamentar 

o conceito de DDoS e seu impacto na segurança, seguido pela descrição detalhada do 

experimento de simulação e a análise das métricas coletadas, culminando na apresentação 

de uma arquitetura aprimorada e mais robusta. 

 

2. Negando o serviço: fundamentos do ataque distribuído (DDOS) 

O ataque de Negação de Serviço Distribuída é definido pela tentativa de exaurir os 

recursos de um sistema, seja saturando a largura de banda de rede, consumindo recursos 

computacionais (CPU, memória) ou esgotando o pool de conexões. Diferentemente de 

um ataque de Negação de Serviço (DoS), que é lançado a partir de um único computador, 

o DDoS utiliza uma rede de máquinas sequestradas (botnet) para atingir o alvo de 

múltiplos locais simultaneamente, dificultando drasticamente a defesa e a filtragem do 

tráfego malicioso. 

 

2.1 DDoS: Definição, Evolução e Tipologia Registrada 

Os ataques DDoS são classificados em diferentes tipos, dependendo da camada do 

sistema que eles visam, geralmente referenciando o Modelo OSI.  

Ataques Volumétricos (Camadas 3 e 4) 

Estes ataques se concentram em sobrecarregar a largura de banda da rede ou a capacidade 

de processamento de pacotes do servidor. Visam a Camada de Rede (L3), correspondente 

à Internet Layer no modelo TCP/IP, e a Camada de Transporte (L4). Exemplos clássicos 

incluem SYN Floods, que exploram o protocolo TCP para tentar estabelecer inúmeras 

conexões semiabertas. Ferramentas como hping3 são frequentemente utilizadas para 

gerar este tipo de tráfego malicioso e saturar recursos da infraestrutura. A mitigação 

desses ataques exige uma capacidade de rede significativamente maior que o volume do 

ataque, sendo a defesa em nuvem (serviços    edge) a estratégia mais eficaz.    

Ataques na Camada de Aplicação (Camada 7) 



 

 

Os ataques de Camada 7 (L7) visam a camada mais alta do Modelo OSI, a Camada de 

Aplicação. Estes ataques exploram vulnerabilidades ou ineficiências específicas do 

software da aplicação, frequentemente utilizando protocolos como HTTP. Eles são 

considerados de baixo volume, mas de alto impacto. Ataques como Slowloris e 

GoldenEye  são exemplos notórios. Eles não buscam saturar a rede, mas sim exaurir 

recursos internos e computacionais, como o pool de conexões e o processamento da CPU, 

através de requisições que consomem tempo intensamente. 

 

2.2 O Impacto na Segurança da Informação: A Indisponibilidade como Falha 

Crítica da Tríade CID 

A segurança da informação é tradicionalmente estruturada em torno da Tríade CID: 

Confidencialidade, Integridade e Disponibilidade. A Confidencialidade garante que a 

informação seja acessível apenas a partes autorizadas; a Integridade assegura que os 

dados permaneçam inalterados e precisos; e a Disponibilidade garante o acesso contínuo 

aos sistemas e dados por usuários legítimos.   

O ataque DDoS tem como alvo direto a Disponibilidade (D). Ao paralisar ou 

degradar severamente o serviço, a capacidade de acesso é comprometida, negando o uso 

do sistema. A gravidade desse impacto foi observada por Bitencourt e Lucca (2017), que 

destacam que a defesa contra o DDoS é crucial para a sobrevivência de serviços online:  

“Os ataques DDoS compreendem atualmente uma das 

principais e mais conhecidas formas de ataques a…, ou 

completamente, a aplicação, afetando uma das 
propriedades básicas de segurança da informação. 

Qualquer infraestrutura que suporte uma aplicação on-

line deve possuir uma estratégia de defesa contra esse 

tipo de ataque.” (IDEM) 

Em sistemas modernos, a dificuldade em evitar que o ataque ocorra exige que a 

detecção seja rápida e em tempo real, permitindo que as contramedidas sejam implantadas 

imediatamente para minimizar os danos. A vulnerabilidade de aplicações baseadas em 

Event Loop (como Node.js) a ataques L7 é particularmente acentuada, pois a exaustão de 

um único thread de execução pode resultar na falha total do serviço com pouco tráfego 

malicioso, maximizando o impacto da negação de serviço. 

 

3 Abordagem prática: Simulação, infraestrutura containerizada e monitoramento 

Para analisar empiricamente o impacto de um ataque DDoS L7, foi desenhada 

uma arquitetura de simulação minimalista e baseada em containers Docker, focando na 

aplicação de observabilidade para diagnosticar a causa raiz da indisponibilidade. 

3.1 Desenho da Arquitetura Inicial (Node.js/Express, Docker e Observabilidade) 

A aplicação alvo é um servidor web simples construído em Node.js com o framework 



 

 

Express. A aplicação foi configurada para rodar em um container Docker, simulando um 

microserviço com recursos estritamente limitados: 1 CPU dedicada e 512MB de memória 

RAM. Esta limitação de recursos é proposital para expor a sensibilidade do runtime 

Node.js, que, sendo single-threaded (baseado em um único Event Loop para lógica 

principal), é extremamente suscetível ao bloqueio por operações síncronas ou conexões 

maliciosas que consomem tempo.   

A orquestração da infraestrutura é realizada via Docker Compose, que define uma 

rede interna (monitor-net) para permitir que os serviços se comuniquem de forma isolada. 

O ecossistema de observabilidade é composto por dois serviços principais: 

1. Prometheus: Responsável pela coleta de métricas (scraping) da aplicação 

Node.js. 

2. Grafana: Utilizado para a visualização das métricas em painéis (dashboards) em 

tempo real. 

A Tabela 1 resume a arquitetura inicial da simulação, antes da implementação 

das defesas. 

Componente 
Tecnologia/Se

rviço 
Função 

Recursos 

(Especificação) 

Aplicação 

Alvo 

Node.js/Expre

ss 

Serviço Web Alvo 

(Vulnerável) 
1 CPU, 512MB RAM 

Monitoramento 

(Coleta) 
Prometheus 

Coleta de Métricas 

(Scraping) 

Porta 9090 

(Interna/Host) 

Visualização 

(Dashboard) 
Grafana 

Visualização de Métricas 

em Tempo Real 

Porta 3001 (Acesso 

Host) 

Orquestração 
Docker 

Compose 

Definição de Serviços e 

Rede (monitor-net) 

Interconexão de 

serviços via nomes 

O Prometheus é configurado para realizar o scrape do endpoint /metrics do 

serviço node-app a cada 5 segundos, acessando-o internamente via seu nome de serviço 

(node-app:3000) dentro da rede Docker. O Grafana, por sua vez, acessa os dados através 

da URL interna do Prometheus (http://prometheus:9090), garantindo que a monitorização 

seja integrada e em tempo real.  

3.2 Ferramentas de Simulação para Ataques de Negação de Serviço na Camada 7 

Devido à fragilidade do ambiente de 1 CPU, a escolha do vetor de ataque L7 (Camada de 

Aplicação) foi a mais eficiente para induzir a falha. O objetivo é simular um Ataque de 

Negação de Processamento, onde o consumo de CPU e o bloqueio do Event Loop são o 

principal ponto de falha. Ferramentas como Slowloris e GoldenEye são amplamente 



 

 

documentadas e fazem parte dos scripts utilizados pela comunidade para estresse e teste 

de servidores web. O  Slowloris opera abrindo inúmeras conexões HTTP para o servidor 

e mantendo-as abertas pelo máximo de tempo possível, enviando cabeçalhos HTTP 

parciais lentamente. Essas conexões ficam em um estado pendente, esgotando o  pool de 

conexões disponível e forçando o servidor Node.js a alocar recursos de processamento 

para gerenciá-las, mesmo que de forma ociosa. 

3.3 Configuração do Ecossistema de Observabilidade (Prometheus e Grafana) 

A arquitetura de observabilidade é essencial para a análise, pois permite identificar a 

diferença entre um ataque de volume (L3/L4) e um ataque de exaustão de recursos (L7). 

Para o Node.js, é insuficiente monitorar apenas o volume de tráfego. O foco deve estar 

nas métricas que indicam a saúde interna da aplicação.   

O Prometheus deve ser instrumentado para coletar métricas específicas, como: 

● Tempos de Resposta (Latência): O tempo que o servidor leva para processar e 

responder às requisições.   

● Utilização da CPU: O percentual de tempo que o único core está sendo 

utilizado.   

● Atrasos do Event Loop: Uma métrica crucial que mede o tempo que as tarefas 

ficam na fila antes de serem processadas pelo thread principal do Node.js. 

Ao monitorar o atraso do Event Loop, o diagnóstico se torna preciso. Se o Event 

Loop estiver bloqueado, a aplicação está paralisada internamente, independentemente da 

condição da rede. Isto confirma que a estratégia de defesa precisa focar primariamente na 

proteção dos recursos computacionais (CPU e conexões) , em vez de apenas na largura 

de banda.   

4 Análise comportamental sob estresse: Diagnóstico do event loop 

A simulação de ataque L7 contra a aplicação Node.js de 1 CPU e 512MB revela a 

fragilidade inerente a arquiteturas de processamento single-threaded sob estresse 

malicioso. O objetivo da análise de comportamento é transpor os dados brutos de rede 

para um diagnóstico de falha de software. 

4.1 Comportamento Esperado da Aplicação de Baixa Capacidade 

A aplicação Node.js é altamente eficiente para operações de Entrada/Saída (I/O), mas é 

extremamente vulnerável a tarefas que demandam processamento síncrono ou intensivo 

de CPU. Com apenas 1 CPU, o sistema não possui capacidade de  multithreading para 

descarregar a carga de trabalho. 

Sob o ataque L7, especialmente com ferramentas como Slowloris que mantêm 

conexões abertas, a aplicação é forçada a alocar e gerenciar um número desproporcional 

de sessões. Isso leva a uma saturação imediata do único core de CPU disponível, que 

atinge 100% de utilização. A saturação da CPU ocorre porque o Event Loop é o coração 

da aplicação e o seu bloqueio impede que todas as outras requisições, incluindo as 



 

 

legítimas, sejam processadas. O resultado prático é a Negação de Serviço, confirmando a 

vulnerabilidade específica da stack. 

4.2 Revisão de Métricas Chave (Latência, Utilização de CPU e Taxa de Erro) 

A análise dos painéis do Grafana, configurados com o Prometheus, evidenciaria a 

correlação direta entre o início do ataque e a degradação do desempenho, conforme 

sintetizado na Tabela 2. 

 

Métrica 

Monitorada  

Estado 

Normal 

Estado Durante o 

Ataque (L7) 
Implicação Diagnóstica 

Latência (P95) < 50 ms > 5000 ms (Timeout) 
Serviço indisponível para usuários 

legítimos. 

Utilização de 

CPU 
< 20% 100% 

Saturação total do core principal 

(Event Loop Blocking). 1 

Atraso do Event 

Loop 
< 1 ms > 100 ms 

Comprovação do bloqueio síncrono 

do processamento. 2 

Conexões Abertas 
Baixo 

Volume 
Alto Volume Sustentado 

Indicação de ataque Slowloris 

(conexões parciais e lentas). 3 

O diagnóstico mais crítico é o aumento do atraso do Event Loop. Se esta métrica 

disparar de menos de 1 milissegundo para mais de 100 milissegundos, significa que o 

thread principal está inoperante, incapaz de processar a fila de eventos. Este é o 

diagnóstico definitivo de que a falha não é de rede, mas uma falha de arquitetura inerente 

ao Event Loop. 

4.3 Implicações da Saturação de Recursos e o Bloqueio do Event Loop 

A saturação de 100% da CPU demonstra que o gargalo é interno. Diferentemente de um 

ataque volumétrico (L3/L4), onde a rede é o recurso esgotado, neste cenário de ataque 

L7, a aplicação falha por falta de capacidade de processamento para gerenciar as sessões 

maliciosas. O Event Loop, uma vez bloqueado por uma operação de alto custo ou por um 

número excessivo de conexões lentas, paralisa todo o processo Node.js, cumprindo o 

objetivo do DDoS.   

Para atenuar essa vulnerabilidade, medidas imediatas são necessárias para 

proteger os recursos computacionais. Isso inclui a configuração de timeouts rígidos no 

servidor (ou em um proxy frontal) para descartar conexões inativas ou maliciosamente 

lentas , impedindo que o atacante mantenha os recursos alocados indefinidamente.   

5 Estratégias de resiliência: mitigação através de load balacing e rate limiting 

A partir da análise do Capítulo 4, fica claro que a resiliência deve ser alcançada através 

da proteção dos recursos de processamento e da distribuição eficiente do tráfego. Duas 



 

 

tecnologias principais são essenciais para essa mitigação: o Load Balancing e o Rate 

Limiting. 

5.1 O Papel do Load Balancer (LB) na Distribuição de Tráfego 

A implementação de um Load Balancer (LB) é a primeira linha de defesa contra a 

sobrecarga de uma única instância. O LB atua distribuindo o tráfego de entrada em 

múltiplas instâncias de backend (Node.js), impedindo que um ataque concentrado 

sobrecarregue um único ponto de falha. 

Em ambientes containerizados, um Load Balancer como o NGINX é introduzido 

como um reverse proxy frontal. Este proxy pode ser configurado com algoritmos como 

Round Robin para balancear as requisições entre várias réplicas do container Node.js. No 

contexto de nuvem (como a AWS), serviços de Load Balancing são capazes de escalonar 

automaticamente, absorvendo volumes imprevistos de tráfego, o que é vital na gestão de 

ataques volumétricos. A escalabilidade horizontal das instâncias Node.js sob o LB mitiga 

o risco de saturação da única CPU observada no experimento inicial.  

5.2 Implementação de Rate Limiting via Reverse Proxy em Ambiente Docker 

O Rate Limiting (Limitação de Taxa) é uma técnica fundamental de segurança que 

restringe o número de requisições que uma fonte (geralmente um endereço IP) pode fazer 

em um determinado período. Essa técnica é altamente eficaz contra ataques L7 e de força 

bruta.    

Desafio da Camada Docker e a Solução NGINX 

Em uma infraestrutura Docker, a aplicação de backend Node.js vê apenas o endereço IP 

interno do proxy Docker ou do Load Balancer, não o IP real do cliente externo. Se o Rate 

Limiting fosse implementado diretamente no Node.js, ele trataria todos os usuários 

externos como uma única entidade, bloqueando o tráfego legítimo. 

A solução é implementar o Rate Limiting no reverse proxy (NGINX), que recebe 

as requisições externas. No entanto, o NGINX deve ser instruído a identificar e usar o IP 

real do cliente para a limitação. O IP real é geralmente transmitido pelo cabeçalho X-

Forwarded-For. É crucial, contudo, prevenir a falsificação (spoofing) desse cabeçalho 

pelo atacante. 

O NGINX é configurado para utilizar Expressões Regulares (REGEX) para 

extrair o último IP presente na cadeia X-Forwarded-For, que representa o cliente real, 

mesmo em cenários onde múltiplos proxies estão envolvidos :   

$$\text{if } ( \text{\$proxy\_add\_x\_forwarded\_for} \sim\text{* } \text{"\\, ([^,]+)\$"} 

) \text{ \{ set \$remote\_ip \$1; \}}$$ 

Este IP extraído ($remote_ip) é então usado como chave para aplicar a diretiva 

limit_req_zone, garantindo que o limite de requisições seja aplicado de forma justa e 

precisa ao endereço IP do atacante.   



 

 

A Tabela 3 apresenta a arquitetura aprimorada com as defesas implementadas. 

 

Componente Tecnologia/Serviço 
Função de 

Segurança 

Ajustes de 

Infraestrutura 

(Docker/NGINX) 

Ponto de Entrada 
Reverse Proxy 

(NGINX) 

Load Balancer e 

Rate Limiter L7 

Configuração de 

limit_req_zone por IP 

real.26 

Identificação IP NGINX Configuration 
Extração do IP 

Cliente Real 

REGEX aplicado ao 

cabeçalho X-Forwarded-

For para obter o último 

IP.27 

Servidores de 

Aplicação 

Node.js/Express (3+ 

Instâncias) 

Processamento de 

Requisições 

Válidas 

Replicação de containers 

(Escalabilidade 

horizontal).24 

Monitoramento Prometheus/Grafana 

Observabilidade de 

Métricas de 

Mitigação 

Monitoramento de taxa 

de requisições 

bloqueadas (429 Too 

Many Requests).28 

 

5.3 Otimizações Arquiteturais para Resiliência Contra Ataques de Camada 7 

Embora o Load Balancing e o Rate Limiting sejam mitigadores eficazes, a resiliência completa 

exige uma abordagem de defesa em profundidade. 

Defesa Híbrida e Escalabilidade Global 

A capacidade de mitigação local (NGINX/Docker) é finita. Contra ataques volumétricos de escala 

de Terabits, o serviço deve contar com a infraestrutura global de fornecedores de serviços em 

nuvem (como Amazon CloudFront, AWS Shield ou Cloudflare). Essas soluções operam em 

pontos de presença distribuídos (edge network), capazes de absorver e isolar o impacto de ataques 

massivos, integrando mitigação de SYN flood sem estado e sistemas automáticos de engenharia 

de tráfego. A arquitetura ideal, portanto, é híbrida, utilizando o NGINX para controle fino (L7) e 

provedores cloud para defesa volumétrica (L3/L4).Balanceamento entre Segurança e 

Desempenho 

Ao implementar o Rate Limiting, deve-se considerar que limitar estritamente por 

endereço IP pode penalizar usuários legítimos que compartilham o mesmo IP (dispositivos atrás 

de NATs em grandes corporações ou provedores de internet). A configuração do NGINX deve, 

portanto, utilizar parâmetros como burst e delay para acomodar picos de tráfego legítimo, 

garantindo que a segurança não degrade indevidamente a experiência do usuário.  

Otimização Interna do Node.js 

Para mitigar o risco de bloqueio do Event Loop (a falha diagnosticada no Capítulo 4), é 



 

 

imprescindível que a aplicação Node.js adote boas práticas de programação: utilizar apenas APIs 

assíncronas e descarregar qualquer tarefa intensiva em CPU para worker threads ou processos 

filhos. Essa otimização interna é complementar ao Rate Limiting externo e garante que, se 

algumas requisições maliciosas ultrapassarem a primeira linha de defesa, elas não paralisarão o 

servidor. 

6 Conclusão 

O presente artigo demonstrou o funcionamento de um Ataque Distribuído de Negação de 

Serviço (DDoS) na Camada 7, utilizando uma abordagem prática baseada em 

infraestrutura containerizada. A simulação contra uma aplicação Node.js de recursos 

limitados confirmou que a indisponibilidade de serviço, neste contexto, é uma falha de 

arquitetura computacional: o ataque não saturou primariamente a rede, mas sim o único 

core de CPU, resultando no bloqueio do Event Loop.   

A utilização de um ecossistema de observabilidade composto por Prometheus e 

Grafana foi fundamental para o diagnóstico, permitindo que a degradação do Event Loop 

fosse medida em tempo real. Isso sublinha que a detecção de ataques L7 não pode se 

basear apenas em métricas de rede, mas deve priorizar a saúde interna da aplicação.   

As propostas de melhoria arquitetural — a implementação de Load Balancers e 

Rate Limiting via NGINX reverse proxy — são essenciais para transformar a arquitetura 

vulnerável em um sistema resiliente. A etapa crítica na implementação do Rate Limiting 

em containers é garantir a correta identificação do IP do cliente através do tratamento 

seguro do cabeçalho X-Forwarded-For. Combinando essa defesa L7 com escalabilidade 

horizontal e a utilização de serviços de proteção de borda baseados em nuvem, a 

infraestrutura atinge o nível de resiliência necessário para proteger o pilar da 

Disponibilidade, seguindo as melhores práticas do mercado de segurança cibernética. 
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