DDOs e Indisponibilidade de Servico: Uma Abordagem
Pratica para Entender como Funciona

Guilherme R. Alexandre!, Wilcson D. N. S. de Santana?, Vinicius Oliveira Souza®
Antonio P. R. Junior!, Ryam S. da Silva?, Abner D. O. Poquiviqui®, Luan R. C.
Carvalho?,

LInstituto Federal de Educacdo, Ciéncia e Tecnologia de Mato Grosso
Campus Pontes e Lacerda - Fronteira Oeste

abner.p@estudante.ifmt.edu.br, antonio.junior@estudante.ifmt.edu.br,
cunha.r@estudante.ifmt.edu.br,
guilherme.rosales@estudante.ifmt.edu.br,
soares.ryam@estudante.ifmt.edu.br,
wilcson.denner@estudante.ifmt.edu.br

Abstract. This article analyzes the practical impact of Distributed Denial of Service
(DDoS) attacks, focusing on Layer 7 (L7) and its direct effect on Availability (CIA Triad).
The research simulated an attack against a resource-limited Node.js/Express application
containerized in Docker (1 CPU/512MB). Monitoring via Prometheus and Grafana
diagnosed that service unavailability stemmed from the Event Loop blocking, saturating
the CPU, rather than just network saturation. In response, a more resilient architecture is
proposed using Load Balancing for efficient traffic distribution. Crucially, mitigation is
achieved through Rate Limiting, implemented via an NGINX reverse proxy, to restrict
malicious requests. For this to work accurately in a Docker environment, the technique
requires correctly handling the X-ForwardedFor header to identify the client's real IP
address

Resumo. Este artigo analisa o impacto pratico de ataques Distribuidos de Negacéo de
Servico (DDoS), focando na Camada 7 (L7) e seu efeito direto na Disponibilidade (Triade
CID). A pesquisa simulou um ataque contra uma aplicacdo Node.js/Express,
containerizada com recursos limitados (1 CPU/512MB). O monitoramento via Prometheus
e Grafana diagnosticou que a indisponibilidade foi causada pelo bloqueio do Event Loop,
saturando a CPU, e ndo apenas pela saturagéo da rede. Em resposta, é proposta uma
arquitetura mais resiliente que utiliza Load Balancing para distribuicdo eficiente do
trafego. A mitigacdo crucial é o Rate Limiting, implementado através de um reverse proxy
NGINX, que restringe requisicdes maliciosas. Para funcionar em Docker, a técnica exige
o tratamento correto do cabegalho X-Forwarded-For para identificar o IP real do cliente.

1. Introducéo

Os Ataques Distribuidos de Negacdo de Servico (DDoS) representam uma das ameacas
malis persistentes e destrutivas a continuidade dos negdcios digitais e a seguranca da
informacao global. Esses ataques sdo projetados para tornar um sistema, website ou rede
inacessivel, sobrecarregando seus recursos com um volume massivo de trafego
coordenado a partir de uma rede distribuida de dispositivos comprometidos, conhecidos
como botnet.

A crescente dependéncia de servigcos digitais criticos, como plataformas de
comércio eletrbnico e sistemas bancarios, eleva o custo e o impacto de um ataque DDoS.

Para um e-commerce, por exemplo, a interrupcéo do servigo devido a negacéo de acesso
impede que clientes legitimos concluam compras, resultando em perdas financeiras
imediatas e danos a reputacdo da marca. Garantir a resiliéncia contra ataques DDoS
tornou-se, portanto, uma exigéncia fundamental em qualquer arquitetura moderna.

Este artigo tem como objetivo analisar o funcionamento e as implicacfes préaticas
dos ataques DDoS, focando em como eles exploram as vulnerabilidades arquiteturais de
aplicacdes web contemporaneas. A metodologia adota uma abordagem prética, utilizando
uma infraestrutura containerizada (Node.js/Express e Docker) e um ecossistema de
observabilidade (Prometheus e Grafana) para simular um ataque de Camada 7. O
diagndstico resultante guiard a proposicdo de melhorias de resiliéncia, baseadas na
implementacao de tecnologias de mitigacdo padrdo de mercado, como Load Balancing e
Rate Limiting.

O desenvolvimento do trabalho esta estruturado para primeiramente fundamentar
0 conceito de DDoS e seu impacto na seguranca, seguido pela descri¢cdo detalhada do
experimento de simulacdo e a analise das métricas coletadas, culminando na apresentacao
de uma arquitetura aprimorada e mais robusta.

2. Negando o servico: fundamentos do ataque distribuido (DDOS)

O ataque de Negacdo de Servico Distribuida é definido pela tentativa de exaurir 0s
recursos de um sistema, seja saturando a largura de banda de rede, consumindo recursos
computacionais (CPU, memdria) ou esgotando o pool de conexdes. Diferentemente de
um ataque de Negacao de Servico (DoS), que é lancado a partir de um Gnico computador,
0 DDoS utiliza uma rede de maquinas sequestradas (botnet) para atingir o alvo de
multiplos locais simultaneamente, dificultando drasticamente a defesa e a filtragem do
trafego malicioso.

2.1 DDoS: Definicao, Evolucédo e Tipologia Registrada

Os ataques DDoS sao classificados em diferentes tipos, dependendo da camada do
sistema que eles visam, geralmente referenciando o Modelo OSI.

Ataques Volumétricos (Camadas 3 e 4)

Estes ataques se concentram em sobrecarregar a largura de banda da rede ou a capacidade
de processamento de pacotes do servidor. Visam a Camada de Rede (L3), correspondente
a Internet Layer no modelo TCP/IP, e a Camada de Transporte (L4). Exemplos classicos
incluem SYN Floods, que exploram o protocolo TCP para tentar estabelecer inGmeras
conexdes semiabertas. Ferramentas como hping3 sdo frequentemente utilizadas para
gerar este tipo de trafego malicioso e saturar recursos da infraestrutura. A mitigacao
desses ataques exige uma capacidade de rede significativamente maior que o volume do
ataque, sendo a defesa em nuvem (servicos edge) a estratégia mais eficaz.

Ataques na Camada de Aplicacdo (Camada 7)

Os ataques de Camada 7 (L7) visam a camada mais alta do Modelo OSI, a Camada de
Aplicacdo. Estes ataques exploram vulnerabilidades ou ineficiéncias especificas do
software da aplicacdo, frequentemente utilizando protocolos como HTTP. Eles sé&o
considerados de baixo volume, mas de alto impacto. Ataques como Slowloris e
GoldenEye sdo exemplos notérios. Eles ndo buscam saturar a rede, mas sim exaurir
recursos internos e computacionais, como o pool de conexdes e o processamento da CPU,
através de requisi¢fes que consomem tempo intensamente.

2.2 O Impacto na Seguranga da Informacgédo: A Indisponibilidade como Falha
Critica da Triade CID

A seguranca da informacdo é tradicionalmente estruturada em torno da Triade CID:
Confidencialidade, Integridade e Disponibilidade. A Confidencialidade garante que a
informacao seja acessivel apenas a partes autorizadas; a Integridade assegura que 0S
dados permanecam inalterados e precisos; e a Disponibilidade garante o acesso continuo
aos sistemas e dados por usuarios legitimos.

O ataque DDoS tem como alvo direto a Disponibilidade (D). Ao paralisar ou
degradar severamente o servico, a capacidade de acesso é comprometida, negando 0 uso
do sistema. A gravidade desse impacto foi observada por Bitencourt e Lucca (2017), que
destacam que a defesa contra 0 DDoS € crucial para a sobrevivéncia de servicos online:

“Os ataques DDoS compreendem atualmente uma das
principais ¢ mais conhecidas formas de ataques a..., ou
completamente, a aplicacdo, afetando uma das
propriedades basicas de seguranca da informacéo.
Qualquer infraestrutura gue suporte uma aplicacdo on-
line deve possuir uma estratégia de defesa contra esse
tipo de ataque.” (IDEM)

Em sistemas modernos, a dificuldade em evitar que o ataque ocorra exige que a
deteccdo seja rapida e em tempo real, permitindo que as contramedidas sejam implantadas
imediatamente para minimizar os danos. A vulnerabilidade de aplicac6es baseadas em
Event Loop (como Node.js) a ataques L7 ¢ particularmente acentuada, pois a exaustdo de
um dnico thread de execucdo pode resultar na falha total do servico com pouco trafego
malicioso, maximizando o impacto da negacéo de servico.

3 Abordagem pratica: Simulacgdo, infraestrutura containerizada e monitoramento

Para analisar empiricamente o impacto de um ataque DDoS L7, foi desenhada
uma arquitetura de simulacdo minimalista e baseada em containers Docker, focando na
aplicacdo de observabilidade para diagnosticar a causa raiz da indisponibilidade.

3.1 Desenho da Arquitetura Inicial (Node.js/Express, Docker e Observabilidade)

A aplicacdo alvo é um servidor web simples construido em Node.js com o framework

Express. A aplicagéo foi configurada para rodar em um container Docker, simulando um
microservigo com recursos estritamente limitados: 1 CPU dedicada e 512MB de memdria
RAM. Esta limitacdo de recursos é proposital para expor a sensibilidade do runtime
Node.js, que, sendo single-threaded (baseado em um Unico Event Loop para ldgica
principal), é extremamente suscetivel ao bloqueio por operagdes sincronas ou conexdes
maliciosas que consomem tempo.

A orquestragdo da infraestrutura é realizada via Docker Compose, que define uma
rede interna (monitor-net) para permitir que 0s servigos se comuniquem de forma isolada.

O ecossistema de observabilidade € composto por dois servigos principais:

1. Prometheus: Responsavel pela coleta de métricas (scraping) da aplicacao
Node.js.

2. Grafana: Utilizado para a visualizacdo das metricas em painéis (dashboards) em
tempo real.

A Tabela 1 resume a arquitetura inicial da simulacdo, antes da implementacgéo
das defesas.

Tecnologia/Se . Recursos
Componente . Funcao e o

rvico (Especificacédo)
Aplicacdo Node.js/Expre = Servico Web Alvo 1 CPU, 512MB RAM
Alvo sS (Vulneravel)
Monitoramento Prometheus Coleta de Metricas Porta 9090
(Coleta) (Scraping) (Interna/Host)
Visualizacao Grafana Visualizacdo de Métricas = Porta 3001 (Acesso
(Dashboard) em Tempo Real Host)

x Docker Definicdo de Servigos e Interconexao de

Orquestracao . . .

Compose Rede (monitor-net) Servigos via nomes

O Prometheus é configurado para realizar o scrape do endpoint /metrics do
servico node-app a cada 5 segundos, acessando-o0 internamente via seu home de servico
(node-app:3000) dentro da rede Docker. O Grafana, por sua vez, acessa 0s dados através
da URL interna do Prometheus (http://prometheus:9090), garantindo que a monitorizacédo
seja integrada e em tempo real.

3.2 Ferramentas de Simulacdo para Ataques de Negacado de Servi¢co na Camada 7

Devido a fragilidade do ambiente de 1 CPU, a escolha do vetor de ataque L7 (Camada de
Aplicacdo) foi a mais eficiente para induzir a falha. O objetivo é simular um Ataque de
Negacéo de Processamento, onde o consumo de CPU e o bloqueio do Event Loop séo o
principal ponto de falha. Ferramentas como Slowloris e GoldenEye sdo amplamente

documentadas e fazem parte dos scripts utilizados pela comunidade para estresse e teste
de servidores web. O Slowloris opera abrindo inimeras conexdes HTTP para o servidor
e mantendo-as abertas pelo maximo de tempo possivel, enviando cabecalhos HTTP
parciais lentamente. Essas conexdes ficam em um estado pendente, esgotando o pool de
conexdes disponivel e forcando o servidor Node.js a alocar recursos de processamento
para gerencia-las, mesmo que de forma ociosa.

3.3 Configuracéo do Ecossistema de Observabilidade (Prometheus e Grafana)

A arquitetura de observabilidade é essencial para a andlise, pois permite identificar a
diferenca entre um ataque de volume (L3/L4) e um ataque de exaustdo de recursos (L7).
Para o Node.js, é insuficiente monitorar apenas o volume de trafego. O foco deve estar
nas métricas que indicam a satde interna da aplicacao.

O Prometheus deve ser instrumentado para coletar métricas especificas, como:

e Tempos de Resposta (Laténcia): O tempo que o servidor leva para processar e
responder as requisicoes.

e Utilizacdo da CPU: O percentual de tempo que o Unico core esta sendo
utilizado.

e Atrasos do Event Loop: Uma métrica crucial que mede o tempo que as tarefas
ficam na fila antes de serem processadas pelo thread principal do Node.js.

Ao monitorar o atraso do Event Loop, o diagnostico se torna preciso. Se o Event
Loop estiver bloqueado, a aplicacdo esta paralisada internamente, independentemente da
condicdo da rede. Isto confirma que a estratégia de defesa precisa focar primariamente na
protecdo dos recursos computacionais (CPU e conexdes) , em vez de apenas na largura
de banda.

4 Analise comportamental sob estresse: Diagndstico do event loop

A simulacdo de ataque L7 contra a aplicacdo Node.js de 1 CPU e 512MB revela a
fragilidade inerente a arquiteturas de processamento single-threaded sob estresse
malicioso. O objetivo da analise de comportamento € transpor os dados brutos de rede
para um diagnostico de falha de software.

4.1 Comportamento Esperado da Aplicacdo de Baixa Capacidade

A aplicacdo Node.js é altamente eficiente para operacGes de Entrada/Saida (1/O), mas é
extremamente vulneravel a tarefas que demandam processamento sincrono ou intensivo
de CPU. Com apenas 1 CPU, o sistema ndo possui capacidade de multithreading para
descarregar a carga de trabalho.

Sob o ataque L7, especialmente com ferramentas como Slowloris que mantém
conexdes abertas, a aplicagdo é forgcada a alocar e gerenciar um nimero desproporcional
de sessdes. 1sso leva a uma saturagdo imediata do Unico core de CPU disponivel, que
atinge 100% de utilizagdo. A saturacdo da CPU ocorre porque o Event Loop € o coracao
da aplicacdo e o seu blogueio impede que todas as outras requisi¢Ges, incluindo as

legitimas, sejam processadas. O resultado pratico é a Negacao de Servigo, confirmando a
vulnerabilidade especifica da stack.

4.2 Revisdo de Métricas Chave (Laténcia, Utilizacdo de CPU e Taxa de Erro)

A andlise dos painéis do Grafana, configurados com o Prometheus, evidenciaria a
correlacdo direta entre o inicio do ataque e a degradacdo do desempenho, conforme
sintetizado na Tabela 2.

Métrica Estado Estado Durante o

Implicacdo Diagnostica

Monitorada Normal Ataque (L7)

- . rvico indisponivel par ari
Laténcia (P95) <50 ms > 5000 ms (Timeout) Se] _(;0 disponivel para usuarios
legitimos.

Utilizagéo de < 20% 100% Saturacéo total do core principal
CPU (Event Loop Blocking). 1
Atraso do Event <1ms > 100 ms Comprovacéo do blogqueio sincrono
Loop do processamento. 2

~ Baixo Indicacdo de ataque Slowloris
Conexoes Abertas Alto Volume Sustentado Q~ . q

Volume (conexdes parciais e lentas). 3

O diagndstico mais critico € o aumento do atraso do Event Loop. Se esta metrica
disparar de menos de 1 milissegundo para mais de 100 milissegundos, significa que o
thread principal esta inoperante, incapaz de processar a fila de eventos. Este € o
diagnostico definitivo de que a falha ndo € de rede, mas uma falha de arquitetura inerente
ao Event Loop.

4.3 ImplicacGes da Saturacédo de Recursos e o0 Blogueio do Event Loop

A saturacdo de 100% da CPU demonstra que o gargalo €é interno. Diferentemente de um
ataque volumeétrico (L3/L4), onde a rede é o recurso esgotado, neste cenario de ataque
L7, a aplicacdo falha por falta de capacidade de processamento para gerenciar as sessdes
maliciosas. O Event Loop, uma vez blogueado por uma operacao de alto custo ou por um
namero excessivo de conexdes lentas, paralisa todo o processo Node.js, cumprindo o
objetivo do DDoS.

Para atenuar essa vulnerabilidade, medidas imediatas sdo necessarias para
proteger 0s recursos computacionais. 1sso inclui a configuracdo de timeouts rigidos no
servidor (ou em um proxy frontal) para descartar conexdes inativas ou maliciosamente
lentas , impedindo que o atacante mantenha os recursos alocados indefinidamente.

5 Estratégias de resiliéncia: mitigacéo através de load balacing e rate limiting

A partir da analise do Capitulo 4, fica claro que a resiliéncia deve ser alcangada através
da protecdo dos recursos de processamento e da distribuigdo eficiente do trafego. Duas

tecnologias principais sdo essenciais para essa mitigacdo: o Load Balancing e o Rate
Limiting.

5.1 O Papel do Load Balancer (LB) na Distribuicao de Trafego

A implementacdo de um Load Balancer (LB) é a primeira linha de defesa contra a
sobrecarga de uma Unica instancia. O LB atua distribuindo o trafego de entrada em
multiplas instdncias de backend (Node.js), impedindo que um ataque concentrado
sobrecarregue um Unico ponto de falha.

Em ambientes containerizados, um Load Balancer como o NGINX ¢é introduzido
como um reverse proxy frontal. Este proxy pode ser configurado com algoritmos como
Round Robin para balancear as requisi¢fes entre varias réplicas do container Node.js. No
contexto de nuvem (como a AWS), servicos de Load Balancing séo capazes de escalonar
automaticamente, absorvendo volumes imprevistos de trafego, o que € vital na gestao de
ataques volumetricos. A escalabilidade horizontal das instancias Node.js sob o LB mitiga
0 risco de saturacgdo da unica CPU observada no experimento inicial.

5.2 Implementacédo de Rate Limiting via Reverse Proxy em Ambiente Docker

O Rate Limiting (Limitacdo de Taxa) € uma técnica fundamental de seguranca que
restringe o numero de requisi¢cdes que uma fonte (geralmente um endereco IP) pode fazer
em um determinado periodo. Essa técnica € altamente eficaz contra ataques L7 e de forca
bruta.

Desafio da Camada Docker e a Solugdo NGINX

Em uma infraestrutura Docker, a aplicacdo de backend Node.js vé apenas o endereco IP
interno do proxy Docker ou do Load Balancer, ndo o IP real do cliente externo. Se o Rate
Limiting fosse implementado diretamente no Node.js, ele trataria todos os usuarios
externos como uma Unica entidade, blogueando o trafego legitimo.

A solucdo é implementar o Rate Limiting no reverse proxy (NGINX), que recebe
as requisicdes externas. No entanto, 0 NGINX deve ser instruido a identificar e usar o IP
real do cliente para a limitacdo. O IP real é geralmente transmitido pelo cabecalho X-
Forwarded-For. E crucial, contudo, prevenir a falsificacio (spoofing) desse cabecalho
pelo atacante.

O NGINX é configurado para utilizar Expressdes Regulares (REGEX) para
extrair o ultimo IP presente na cadeia X-Forwarded-For, que representa o cliente real,
mesmo em cenarios onde multiplos proxies estdo envolvidos :

$P\text{if } (\text{\$proxy\ add\ x_ forwarded\ for} \sim\text{* } \text{"\\, ([*]+)\$"}
) \text{ \{ set \$remote\ ip \$1; \}}$$

Este IP extraido ($remote_ip) é entdo usado como chave para aplicar a diretiva
limit_req_zone, garantindo que o limite de requisi¢cOes seja aplicado de forma justa e
precisa ao endereco IP do atacante.

A Tabela 3 apresenta a arquitetura aprimorada com as defesas implementadas.

Ajustes de
Infraestrutura
(Docker/NGINX)

Configuracéo de

Funcéo de
Seguranca

Componente Tecnologia/Servigo

Reverse Proxy Load Balancer e .
Ponto de Entrada . limit_req_zone por IP
(NGINX) Rate Limiter L7 —_reqzonep
real.26
REGEX aplicado ao
e o . . Extracdo do IP cabecalho X-Forwarded-
Identifi IP NGINX Configuration . -
dentificacdo G Configuratio Cliente Real For para obter o ultimo
IP.27
. . Processamento de Replicacdo de containers
Servidores de Node.js/Express (3+ L P 9..
Aplicacio Instancias) Requisicdes (Escalabilidade
plicag Vélidas horizontal).24

Monitoramento de taxa
de requisicdes
bloqueadas (429 Too
Many Requests).28

Observabilidade de
Monitoramento Prometheus/Grafana Meétricas de
Mitigacéo

5.3 Otimizag6es Arquiteturais para Resiliéncia Contra Ataques de Camada 7

Embora o Load Balancing e o Rate Limiting sejam mitigadores eficazes, a resiliéncia completa
exige uma abordagem de defesa em profundidade.

Defesa Hibrida e Escalabilidade Global

A capacidade de mitigacdo local (NGINX/Docker) é finita. Contra ataques volumétricos de escala
de Terabits, o servigo deve contar com a infraestrutura global de fornecedores de servigos em
nuvem (como Amazon CloudFront, AWS Shield ou Cloudflare). Essas solu¢Bes operam em
pontos de presenca distribuidos (edge network), capazes de absorver e isolar o impacto de ataques
massivos, integrando mitigacdo de SYN flood sem estado e sistemas automaticos de engenharia
de trafego. A arquitetura ideal, portanto, é hibrida, utilizando o NGINX para controle fino (L7) e
provedores cloud para defesa volumétrica (L3/L4).Balanceamento entre Seguranca e
Desempenho

Ao implementar o Rate Limiting, deve-se considerar que limitar estritamente por
endereco IP pode penalizar usuarios legitimos que compartilham o mesmo IP (dispositivos atras
de NATs em grandes corporacdes ou provedores de internet). A configuracdo do NGINX deve,
portanto, utilizar parametros como burst e delay para acomodar picos de trafego legitimo,
garantindo que a seguranca ndo degrade indevidamente a experiéncia do usuério.

Otimizacéo Interna do Node.js

Para mitigar o risco de bloqueio do Event Loop (a falha diagnosticada no Capitulo 4), é

imprescindivel que a aplicacdo Node.js adote boas praticas de programacao: utilizar apenas APIs
assincronas e descarregar qualquer tarefa intensiva em CPU para worker threads ou processos
filhos. Essa otimizacdo interna ¢ complementar ao Rate Limiting externo e garante que, se
algumas requisi¢cbes maliciosas ultrapassarem a primeira linha de defesa, elas n&o paralisaréo o
servidor.

6 Conclusdo

O presente artigo demonstrou o funcionamento de um Ataque Distribuido de Negacéo de
Servico (DDoS) na Camada 7, utilizando uma abordagem pratica baseada em
infraestrutura containerizada. A simulacdo contra uma aplicacdo Node.js de recursos
limitados confirmou que a indisponibilidade de servico, neste contexto, é uma falha de
arquitetura computacional: o ataque ndo saturou primariamente a rede, mas sim o Unico
core de CPU, resultando no bloqueio do Event Loop.

A utilizacdo de um ecossistema de observabilidade composto por Prometheus e
Grafana foi fundamental para o diagnostico, permitindo que a degradagédo do Event Loop
fosse medida em tempo real. 1sso sublinha que a deteccdo de ataques L7 ndo pode se
basear apenas em métricas de rede, mas deve priorizar a saide interna da aplicacao.

As propostas de melhoria arquitetural — a implementacdo de Load Balancers e
Rate Limiting via NGINX reverse proxy — sdo essenciais para transformar a arquitetura
vulneravel em um sistema resiliente. A etapa critica na implementacdo do Rate Limiting
em containers € garantir a correta identificacdo do IP do cliente através do tratamento
seguro do cabecalho X-Forwarded-For. Combinando essa defesa L7 com escalabilidade
horizontal e a utilizacdo de servicos de protecdo de borda baseados em nuvem, a
infraestrutura atinge o nivel de resiliéncia necessario para proteger o pilar da
Disponibilidade, seguindo as melhores préaticas do mercado de seguranca cibernética.

7. Referéncias

BITTENCOURT, F.; LUCCA, G. S. METODOS PARA PREVENCAO E DEFESA DE
ATAQUES DDoS. Revista Vincci - Periddico Cientifico do UniSATC, v. 2, n. 1, 2017.

CLAVIS. A triade da Seguranca da Informacédo: confidencialidade, integridade e
disponibilidade (CID). 2025.

AKAMAI. O que é um atague GET flood DDo0S?. Akamai Glossary. Disponivel em:
https://www.akamai.com/pt/glossary/what-is-a-get-flood-ddos-attack. Acesso em: 3,
outubro de 2025.

AMINE, B. Rate Limiting in a Dockerized Backend: Spring Boot and NGINX.
Medium, 2023. Disponivel em: https://amine-benaddi.medium.com/rate-limiting-in-a-

https://www.akamai.com/pt/glossary/what-is-a-get-flood-ddos-attack
https://www.akamai.com/pt/glossary/what-is-a-get-flood-ddos-attack
https://www.akamai.com/pt/glossary/what-is-a-get-flood-ddos-attack
https://amine-benaddi.medium.com/rate-limiting-in-a-dockerized-backend-spring-boot-and-nginx-c09fe4219743
https://amine-benaddi.medium.com/rate-limiting-in-a-dockerized-backend-spring-boot-and-nginx-c09fe4219743

dockerized-backend-spring-boot-and-nginx-c09fe4219743. Acesso em: 3, outubro de
2025.

AWS. Elastic Load Balancing: Best Practices for DDoS Resiliency. AWS
Documentation. Disponivel em:
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-
resiliency/elastic-load-balancing-bp6.html. Acesso em: 3, outubro de 2025.

AWS. Mitigation Techniques. =~ AWS Documentation. Disponivel em:
https://docs.aws.amazon.com/pt br/whitepapers/latest/aws-best-practices-ddos-
resiliency/mitigation-techniques.html. Acesso em: 3, outubro de 2025.

BBHUPEN. Monitor your Node.js App with Prometheus and Grafana using Docker.
Medium, 2023. Disponivel em: https://bbhupen.medium.com/monitor-your-node-js-app-
with-prometheus-and-grafana-using-docker-acae930c9e03. Acesso em: 3, outubro de
2025.

GRAFANA LABS. DDoS protection: Observability, automation, and curiosity.
Grafana Labs Blog, 2024. Disponivel em: https://grafana.com/blog/2024/09/20/ddos-
protection-observability-automation-and-curiosity/. Acesso em: 3, outubro de 2025.

NGINX. Controlling Access Proxied HTTP Traffic. NGINX Documentation.
Disponivel em: https://docs.nginx.com/nginx/admin-guide/security-controls/controlling-
access-proxied-http/. Acesso em: 3, outubro de 2025.

REDNAFI. Rate Limiting via NGINX. Rednafi. Disponivel em:
http://rednafi.com/go/rate limiting via nginx/. Acesso em: 3, outubro de 2025.

ANDRIGHETTI, D. G. Mitigacdo de ataques DDoS em redes SDN: explorando
intengdes como mecanismo de defesa no ONOS. Trabalho de Conclusdo de Curso
(Graduacdo em Engenharia de Computacao) — Universidade Federal de Santa Catarina,
Ararangud, 2017.

POPLAVKA, S.; NIKITIN, A. Performance Comparison and Analysis of Slowloris,
GoldenEye and Xerxes DDoS Attack Tools. ResearchGate, 2018.

https://amine-benaddi.medium.com/rate-limiting-in-a-dockerized-backend-spring-boot-and-nginx-c09fe4219743
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-resiliency/elastic-load-balancing-bp6.html
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-resiliency/elastic-load-balancing-bp6.html
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-resiliency/elastic-load-balancing-bp6.html
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-resiliency/elastic-load-balancing-bp6.html
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-resiliency/mitigation-techniques.html
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-resiliency/mitigation-techniques.html
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-resiliency/mitigation-techniques.html
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-resiliency/mitigation-techniques.html
https://bbhupen.medium.com/monitor-your-node-js-app-with-prometheus-and-grafana-using-docker-acae930c9e03
https://bbhupen.medium.com/monitor-your-node-js-app-with-prometheus-and-grafana-using-docker-acae930c9e03
https://bbhupen.medium.com/monitor-your-node-js-app-with-prometheus-and-grafana-using-docker-acae930c9e03
https://grafana.com/blog/2024/09/20/ddos-protection-observability-automation-and-curiosity/
https://grafana.com/blog/2024/09/20/ddos-protection-observability-automation-and-curiosity/
https://grafana.com/blog/2024/09/20/ddos-protection-observability-automation-and-curiosity/
https://docs.nginx.com/nginx/admin-guide/security-controls/controlling-access-proxied-http/
https://docs.nginx.com/nginx/admin-guide/security-controls/controlling-access-proxied-http/
https://docs.nginx.com/nginx/admin-guide/security-controls/controlling-access-proxied-http/
http://rednafi.com/go/rate_limiting_via_nginx/
http://rednafi.com/go/rate_limiting_via_nginx/
http://rednafi.com/go/rate_limiting_via_nginx/

	2. Negando o serviço: fundamentos do ataque distribuído (DDOS)
	O ataque de Negação de Serviço Distribuída é definido pela tentativa de exaurir os recursos de um sistema, seja saturando a largura de banda de rede, consumindo recursos computacionais (CPU, memória) ou esgotando o pool de conexões. Diferentemente de ...
	2.1 DDoS: Definição, Evolução e Tipologia Registrada
	Os ataques DDoS são classificados em diferentes tipos, dependendo da camada do sistema que eles visam, geralmente referenciando o Modelo OSI.
	Ataques Volumétricos (Camadas 3 e 4)
	Estes ataques se concentram em sobrecarregar a largura de banda da rede ou a capacidade de processamento de pacotes do servidor. Visam a Camada de Rede (L3), correspondente à Internet Layer no modelo TCP/IP, e a Camada de Transporte (L4). Exemplos clá...
	Ataques na Camada de Aplicação (Camada 7)
	Os ataques de Camada 7 (L7) visam a camada mais alta do Modelo OSI, a Camada de Aplicação. Estes ataques exploram vulnerabilidades ou ineficiências específicas do software da aplicação, frequentemente utilizando protocolos como HTTP. Eles são consider...
	2.2 O Impacto na Segurança da Informação: A Indisponibilidade como Falha Crítica da Tríade CID
	Em sistemas modernos, a dificuldade em evitar que o ataque ocorra exige que a detecção seja rápida e em tempo real, permitindo que as contramedidas sejam implantadas imediatamente para minimizar os danos. A vulnerabilidade de aplicações baseadas em Ev...
	3 Abordagem prática: Simulação, infraestrutura containerizada e monitoramento
	Para analisar empiricamente o impacto de um ataque DDoS L7, foi desenhada uma arquitetura de simulação minimalista e baseada em containers Docker, focando na aplicação de observabilidade para diagnosticar a causa raiz da indisponibilidade.
	A aplicação alvo é um servidor web simples construído em Node.js com o framework Express. A aplicação foi configurada para rodar em um container Docker, simulando um microserviço com recursos estritamente limitados: 1 CPU dedicada e 512MB de memória R...
	A orquestração da infraestrutura é realizada via Docker Compose, que define uma rede interna (monitor-net) para permitir que os serviços se comuniquem de forma isolada.
	O ecossistema de observabilidade é composto por dois serviços principais:
	3.2 Ferramentas de Simulação para Ataques de Negação de Serviço na Camada 7
	3.3 Configuração do Ecossistema de Observabilidade (Prometheus e Grafana)
	4.1 Comportamento Esperado da Aplicação de Baixa Capacidade
	4.2 Revisão de Métricas Chave (Latência, Utilização de CPU e Taxa de Erro)
	4.3 Implicações da Saturação de Recursos e o Bloqueio do Event Loop
	5 Estratégias de resiliência: mitigação através de load balacing e rate limiting
	5.1 O Papel do Load Balancer (LB) na Distribuição de Tráfego
	5.2 Implementação de Rate Limiting via Reverse Proxy em Ambiente Docker
	Desafio da Camada Docker e a Solução NGINX

	5.3 Otimizações Arquiteturais para Resiliência Contra Ataques de Camada 7
	Defesa Híbrida e Escalabilidade Global
	Otimização Interna do Node.js

	6 Conclusão

