

DDOs e Indisponibilidade de Serviço: Uma Abordagem

Prática para Entender como Funciona

Guilherme R. Alexandre1, Wilcson D. N. S. de Santana1, Vinicius Oliveira Souza1,

Antonio P. R. Junior1, Ryam S. da Silva1, Abner D. O. Poquiviqui1 , Luan R. C.

Carvalho1,

1Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso

Campus Pontes e Lacerda - Fronteira Oeste

abner.p@estudante.ifmt.edu.br, antonio.junior@estudante.ifmt.edu.br,

cunha.r@estudante.ifmt.edu.br,

guilherme.rosales@estudante.ifmt.edu.br,

soares.ryam@estudante.ifmt.edu.br,

wilcson.denner@estudante.ifmt.edu.br

Abstract. This article analyzes the practical impact of Distributed Denial of Service
(DDoS) attacks, focusing on Layer 7 (L7) and its direct effect on Availability (CIA Triad).
The research simulated an attack against a resource-limited Node.js/Express application

containerized in Docker (1 CPU/512MB). Monitoring via Prometheus and Grafana
diagnosed that service unavailability stemmed from the Event Loop blocking, saturating

the CPU, rather than just network saturation. In response, a more resilient architecture is

proposed using Load Balancing for efficient traffic distribution. Crucially, mitigation is
achieved through Rate Limiting, implemented via an NGINX reverse proxy, to restrict
malicious requests. For this to work accurately in a Docker environment, the technique

requires correctly handling the X-ForwardedFor header to identify the client's real IP
address

Resumo. Este artigo analisa o impacto prático de ataques Distribuídos de Negação de

Serviço (DDoS), focando na Camada 7 (L7) e seu efeito direto na Disponibilidade (Tríade
CID). A pesquisa simulou um ataque contra uma aplicação Node.js/Express,
containerizada com recursos limitados (1 CPU/512MB). O monitoramento via Prometheus

e Grafana diagnosticou que a indisponibilidade foi causada pelo bloqueio do Event Loop,
saturando a CPU, e não apenas pela saturação da rede. Em resposta, é proposta uma
arquitetura mais resiliente que utiliza Load Balancing para distribuição eficiente do

tráfego. A mitigação crucial é o Rate Limiting, implementado através de um reverse proxy

NGINX, que restringe requisições maliciosas. Para funcionar em Docker, a técnica exige
o tratamento correto do cabeçalho X-Forwarded-For para identificar o IP real do cliente.

1. Introdução
Os Ataques Distribuídos de Negação de Serviço (DDoS) representam uma das ameaças

mais persistentes e destrutivas à continuidade dos negócios digitais e à segurança da

informação global. Esses ataques são projetados para tornar um sistema, website ou rede

inacessível, sobrecarregando seus recursos com um volume massivo de tráfego

coordenado a partir de uma rede distribuída de dispositivos comprometidos, conhecidos

como botnet.

 A crescente dependência de serviços digitais críticos, como plataformas de

comércio eletrônico e sistemas bancários, eleva o custo e o impacto de um ataque DDoS.

Para um e-commerce, por exemplo, a interrupção do serviço devido à negação de acesso

impede que clientes legítimos concluam compras, resultando em perdas financeiras

imediatas e danos à reputação da marca. Garantir a resiliência contra ataques DDoS

tornou-se, portanto, uma exigência fundamental em qualquer arquitetura moderna.

 Este artigo tem como objetivo analisar o funcionamento e as implicações práticas

dos ataques DDoS, focando em como eles exploram as vulnerabilidades arquiteturais de

aplicações web contemporâneas. A metodologia adota uma abordagem prática, utilizando

uma infraestrutura containerizada (Node.js/Express e Docker) e um ecossistema de

observabilidade (Prometheus e Grafana) para simular um ataque de Camada 7. O

diagnóstico resultante guiará a proposição de melhorias de resiliência, baseadas na

implementação de tecnologias de mitigação padrão de mercado, como Load Balancing e

Rate Limiting.

 O desenvolvimento do trabalho está estruturado para primeiramente fundamentar

o conceito de DDoS e seu impacto na segurança, seguido pela descrição detalhada do

experimento de simulação e a análise das métricas coletadas, culminando na apresentação

de uma arquitetura aprimorada e mais robusta.

2. Negando o serviço: fundamentos do ataque distribuído (DDOS)

O ataque de Negação de Serviço Distribuída é definido pela tentativa de exaurir os

recursos de um sistema, seja saturando a largura de banda de rede, consumindo recursos

computacionais (CPU, memória) ou esgotando o pool de conexões. Diferentemente de

um ataque de Negação de Serviço (DoS), que é lançado a partir de um único computador,

o DDoS utiliza uma rede de máquinas sequestradas (botnet) para atingir o alvo de

múltiplos locais simultaneamente, dificultando drasticamente a defesa e a filtragem do

tráfego malicioso.

2.1 DDoS: Definição, Evolução e Tipologia Registrada

Os ataques DDoS são classificados em diferentes tipos, dependendo da camada do

sistema que eles visam, geralmente referenciando o Modelo OSI.

Ataques Volumétricos (Camadas 3 e 4)

Estes ataques se concentram em sobrecarregar a largura de banda da rede ou a capacidade

de processamento de pacotes do servidor. Visam a Camada de Rede (L3), correspondente

à Internet Layer no modelo TCP/IP, e a Camada de Transporte (L4). Exemplos clássicos

incluem SYN Floods, que exploram o protocolo TCP para tentar estabelecer inúmeras

conexões semiabertas. Ferramentas como hping3 são frequentemente utilizadas para

gerar este tipo de tráfego malicioso e saturar recursos da infraestrutura. A mitigação

desses ataques exige uma capacidade de rede significativamente maior que o volume do

ataque, sendo a defesa em nuvem (serviços edge) a estratégia mais eficaz.

Ataques na Camada de Aplicação (Camada 7)

Os ataques de Camada 7 (L7) visam a camada mais alta do Modelo OSI, a Camada de

Aplicação. Estes ataques exploram vulnerabilidades ou ineficiências específicas do

software da aplicação, frequentemente utilizando protocolos como HTTP. Eles são

considerados de baixo volume, mas de alto impacto. Ataques como Slowloris e

GoldenEye são exemplos notórios. Eles não buscam saturar a rede, mas sim exaurir

recursos internos e computacionais, como o pool de conexões e o processamento da CPU,

através de requisições que consomem tempo intensamente.

2.2 O Impacto na Segurança da Informação: A Indisponibilidade como Falha

Crítica da Tríade CID

A segurança da informação é tradicionalmente estruturada em torno da Tríade CID:

Confidencialidade, Integridade e Disponibilidade. A Confidencialidade garante que a

informação seja acessível apenas a partes autorizadas; a Integridade assegura que os

dados permaneçam inalterados e precisos; e a Disponibilidade garante o acesso contínuo

aos sistemas e dados por usuários legítimos.

O ataque DDoS tem como alvo direto a Disponibilidade (D). Ao paralisar ou

degradar severamente o serviço, a capacidade de acesso é comprometida, negando o uso

do sistema. A gravidade desse impacto foi observada por Bitencourt e Lucca (2017), que

destacam que a defesa contra o DDoS é crucial para a sobrevivência de serviços online:

“Os ataques DDoS compreendem atualmente uma das

principais e mais conhecidas formas de ataques a…, ou

completamente, a aplicação, afetando uma das
propriedades básicas de segurança da informação.

Qualquer infraestrutura que suporte uma aplicação on-

line deve possuir uma estratégia de defesa contra esse

tipo de ataque.” (IDEM)

Em sistemas modernos, a dificuldade em evitar que o ataque ocorra exige que a

detecção seja rápida e em tempo real, permitindo que as contramedidas sejam implantadas

imediatamente para minimizar os danos. A vulnerabilidade de aplicações baseadas em

Event Loop (como Node.js) a ataques L7 é particularmente acentuada, pois a exaustão de

um único thread de execução pode resultar na falha total do serviço com pouco tráfego

malicioso, maximizando o impacto da negação de serviço.

3 Abordagem prática: Simulação, infraestrutura containerizada e monitoramento

Para analisar empiricamente o impacto de um ataque DDoS L7, foi desenhada

uma arquitetura de simulação minimalista e baseada em containers Docker, focando na

aplicação de observabilidade para diagnosticar a causa raiz da indisponibilidade.

3.1 Desenho da Arquitetura Inicial (Node.js/Express, Docker e Observabilidade)

A aplicação alvo é um servidor web simples construído em Node.js com o framework

Express. A aplicação foi configurada para rodar em um container Docker, simulando um

microserviço com recursos estritamente limitados: 1 CPU dedicada e 512MB de memória

RAM. Esta limitação de recursos é proposital para expor a sensibilidade do runtime

Node.js, que, sendo single-threaded (baseado em um único Event Loop para lógica

principal), é extremamente suscetível ao bloqueio por operações síncronas ou conexões

maliciosas que consomem tempo.

A orquestração da infraestrutura é realizada via Docker Compose, que define uma

rede interna (monitor-net) para permitir que os serviços se comuniquem de forma isolada.

O ecossistema de observabilidade é composto por dois serviços principais:

1. Prometheus: Responsável pela coleta de métricas (scraping) da aplicação

Node.js.

2. Grafana: Utilizado para a visualização das métricas em painéis (dashboards) em

tempo real.

A Tabela 1 resume a arquitetura inicial da simulação, antes da implementação

das defesas.

Componente
Tecnologia/Se

rviço
Função

Recursos

(Especificação)

Aplicação

Alvo

Node.js/Expre

ss

Serviço Web Alvo

(Vulnerável)
1 CPU, 512MB RAM

Monitoramento

(Coleta)
Prometheus

Coleta de Métricas

(Scraping)

Porta 9090

(Interna/Host)

Visualização

(Dashboard)
Grafana

Visualização de Métricas

em Tempo Real

Porta 3001 (Acesso

Host)

Orquestração
Docker

Compose

Definição de Serviços e

Rede (monitor-net)

Interconexão de

serviços via nomes

O Prometheus é configurado para realizar o scrape do endpoint /metrics do

serviço node-app a cada 5 segundos, acessando-o internamente via seu nome de serviço

(node-app:3000) dentro da rede Docker. O Grafana, por sua vez, acessa os dados através

da URL interna do Prometheus (http://prometheus:9090), garantindo que a monitorização

seja integrada e em tempo real.

3.2 Ferramentas de Simulação para Ataques de Negação de Serviço na Camada 7

Devido à fragilidade do ambiente de 1 CPU, a escolha do vetor de ataque L7 (Camada de

Aplicação) foi a mais eficiente para induzir a falha. O objetivo é simular um Ataque de

Negação de Processamento, onde o consumo de CPU e o bloqueio do Event Loop são o

principal ponto de falha. Ferramentas como Slowloris e GoldenEye são amplamente

documentadas e fazem parte dos scripts utilizados pela comunidade para estresse e teste

de servidores web. O Slowloris opera abrindo inúmeras conexões HTTP para o servidor

e mantendo-as abertas pelo máximo de tempo possível, enviando cabeçalhos HTTP

parciais lentamente. Essas conexões ficam em um estado pendente, esgotando o pool de

conexões disponível e forçando o servidor Node.js a alocar recursos de processamento

para gerenciá-las, mesmo que de forma ociosa.

3.3 Configuração do Ecossistema de Observabilidade (Prometheus e Grafana)

A arquitetura de observabilidade é essencial para a análise, pois permite identificar a

diferença entre um ataque de volume (L3/L4) e um ataque de exaustão de recursos (L7).

Para o Node.js, é insuficiente monitorar apenas o volume de tráfego. O foco deve estar

nas métricas que indicam a saúde interna da aplicação.

O Prometheus deve ser instrumentado para coletar métricas específicas, como:

● Tempos de Resposta (Latência): O tempo que o servidor leva para processar e

responder às requisições.

● Utilização da CPU: O percentual de tempo que o único core está sendo

utilizado.

● Atrasos do Event Loop: Uma métrica crucial que mede o tempo que as tarefas

ficam na fila antes de serem processadas pelo thread principal do Node.js.

Ao monitorar o atraso do Event Loop, o diagnóstico se torna preciso. Se o Event

Loop estiver bloqueado, a aplicação está paralisada internamente, independentemente da

condição da rede. Isto confirma que a estratégia de defesa precisa focar primariamente na

proteção dos recursos computacionais (CPU e conexões) , em vez de apenas na largura

de banda.

4 Análise comportamental sob estresse: Diagnóstico do event loop

A simulação de ataque L7 contra a aplicação Node.js de 1 CPU e 512MB revela a

fragilidade inerente a arquiteturas de processamento single-threaded sob estresse

malicioso. O objetivo da análise de comportamento é transpor os dados brutos de rede

para um diagnóstico de falha de software.

4.1 Comportamento Esperado da Aplicação de Baixa Capacidade

A aplicação Node.js é altamente eficiente para operações de Entrada/Saída (I/O), mas é

extremamente vulnerável a tarefas que demandam processamento síncrono ou intensivo

de CPU. Com apenas 1 CPU, o sistema não possui capacidade de multithreading para

descarregar a carga de trabalho.

Sob o ataque L7, especialmente com ferramentas como Slowloris que mantêm

conexões abertas, a aplicação é forçada a alocar e gerenciar um número desproporcional

de sessões. Isso leva a uma saturação imediata do único core de CPU disponível, que

atinge 100% de utilização. A saturação da CPU ocorre porque o Event Loop é o coração

da aplicação e o seu bloqueio impede que todas as outras requisições, incluindo as

legítimas, sejam processadas. O resultado prático é a Negação de Serviço, confirmando a

vulnerabilidade específica da stack.

4.2 Revisão de Métricas Chave (Latência, Utilização de CPU e Taxa de Erro)

A análise dos painéis do Grafana, configurados com o Prometheus, evidenciaria a

correlação direta entre o início do ataque e a degradação do desempenho, conforme

sintetizado na Tabela 2.

Métrica

Monitorada

Estado

Normal

Estado Durante o

Ataque (L7)
Implicação Diagnóstica

Latência (P95) < 50 ms > 5000 ms (Timeout)
Serviço indisponível para usuários

legítimos.

Utilização de

CPU
< 20% 100%

Saturação total do core principal

(Event Loop Blocking). 1

Atraso do Event

Loop
< 1 ms > 100 ms

Comprovação do bloqueio síncrono

do processamento. 2

Conexões Abertas
Baixo

Volume
Alto Volume Sustentado

Indicação de ataque Slowloris

(conexões parciais e lentas). 3

O diagnóstico mais crítico é o aumento do atraso do Event Loop. Se esta métrica

disparar de menos de 1 milissegundo para mais de 100 milissegundos, significa que o

thread principal está inoperante, incapaz de processar a fila de eventos. Este é o

diagnóstico definitivo de que a falha não é de rede, mas uma falha de arquitetura inerente

ao Event Loop.

4.3 Implicações da Saturação de Recursos e o Bloqueio do Event Loop

A saturação de 100% da CPU demonstra que o gargalo é interno. Diferentemente de um

ataque volumétrico (L3/L4), onde a rede é o recurso esgotado, neste cenário de ataque

L7, a aplicação falha por falta de capacidade de processamento para gerenciar as sessões

maliciosas. O Event Loop, uma vez bloqueado por uma operação de alto custo ou por um

número excessivo de conexões lentas, paralisa todo o processo Node.js, cumprindo o

objetivo do DDoS.

Para atenuar essa vulnerabilidade, medidas imediatas são necessárias para

proteger os recursos computacionais. Isso inclui a configuração de timeouts rígidos no

servidor (ou em um proxy frontal) para descartar conexões inativas ou maliciosamente

lentas , impedindo que o atacante mantenha os recursos alocados indefinidamente.

5 Estratégias de resiliência: mitigação através de load balacing e rate limiting

A partir da análise do Capítulo 4, fica claro que a resiliência deve ser alcançada através

da proteção dos recursos de processamento e da distribuição eficiente do tráfego. Duas

tecnologias principais são essenciais para essa mitigação: o Load Balancing e o Rate

Limiting.

5.1 O Papel do Load Balancer (LB) na Distribuição de Tráfego

A implementação de um Load Balancer (LB) é a primeira linha de defesa contra a

sobrecarga de uma única instância. O LB atua distribuindo o tráfego de entrada em

múltiplas instâncias de backend (Node.js), impedindo que um ataque concentrado

sobrecarregue um único ponto de falha.

Em ambientes containerizados, um Load Balancer como o NGINX é introduzido

como um reverse proxy frontal. Este proxy pode ser configurado com algoritmos como

Round Robin para balancear as requisições entre várias réplicas do container Node.js. No

contexto de nuvem (como a AWS), serviços de Load Balancing são capazes de escalonar

automaticamente, absorvendo volumes imprevistos de tráfego, o que é vital na gestão de

ataques volumétricos. A escalabilidade horizontal das instâncias Node.js sob o LB mitiga

o risco de saturação da única CPU observada no experimento inicial.

5.2 Implementação de Rate Limiting via Reverse Proxy em Ambiente Docker

O Rate Limiting (Limitação de Taxa) é uma técnica fundamental de segurança que

restringe o número de requisições que uma fonte (geralmente um endereço IP) pode fazer

em um determinado período. Essa técnica é altamente eficaz contra ataques L7 e de força

bruta.

Desafio da Camada Docker e a Solução NGINX

Em uma infraestrutura Docker, a aplicação de backend Node.js vê apenas o endereço IP

interno do proxy Docker ou do Load Balancer, não o IP real do cliente externo. Se o Rate

Limiting fosse implementado diretamente no Node.js, ele trataria todos os usuários

externos como uma única entidade, bloqueando o tráfego legítimo.

A solução é implementar o Rate Limiting no reverse proxy (NGINX), que recebe

as requisições externas. No entanto, o NGINX deve ser instruído a identificar e usar o IP

real do cliente para a limitação. O IP real é geralmente transmitido pelo cabeçalho X-

Forwarded-For. É crucial, contudo, prevenir a falsificação (spoofing) desse cabeçalho

pelo atacante.

O NGINX é configurado para utilizar Expressões Regulares (REGEX) para

extrair o último IP presente na cadeia X-Forwarded-For, que representa o cliente real,

mesmo em cenários onde múltiplos proxies estão envolvidos :

$$\text{if } (\text{\$proxy_add_x_forwarded_for} \sim\text{* } \text{"\\, ([^,]+)\$"}

) \text{ \{ set \$remote_ip \$1; \}}$$

Este IP extraído ($remote_ip) é então usado como chave para aplicar a diretiva

limit_req_zone, garantindo que o limite de requisições seja aplicado de forma justa e

precisa ao endereço IP do atacante.

A Tabela 3 apresenta a arquitetura aprimorada com as defesas implementadas.

Componente Tecnologia/Serviço
Função de

Segurança

Ajustes de

Infraestrutura

(Docker/NGINX)

Ponto de Entrada
Reverse Proxy

(NGINX)

Load Balancer e

Rate Limiter L7

Configuração de

limit_req_zone por IP

real.26

Identificação IP NGINX Configuration
Extração do IP

Cliente Real

REGEX aplicado ao

cabeçalho X-Forwarded-

For para obter o último

IP.27

Servidores de

Aplicação

Node.js/Express (3+

Instâncias)

Processamento de

Requisições

Válidas

Replicação de containers

(Escalabilidade

horizontal).24

Monitoramento Prometheus/Grafana

Observabilidade de

Métricas de

Mitigação

Monitoramento de taxa

de requisições

bloqueadas (429 Too

Many Requests).28

5.3 Otimizações Arquiteturais para Resiliência Contra Ataques de Camada 7

Embora o Load Balancing e o Rate Limiting sejam mitigadores eficazes, a resiliência completa

exige uma abordagem de defesa em profundidade.

Defesa Híbrida e Escalabilidade Global

A capacidade de mitigação local (NGINX/Docker) é finita. Contra ataques volumétricos de escala

de Terabits, o serviço deve contar com a infraestrutura global de fornecedores de serviços em

nuvem (como Amazon CloudFront, AWS Shield ou Cloudflare). Essas soluções operam em

pontos de presença distribuídos (edge network), capazes de absorver e isolar o impacto de ataques

massivos, integrando mitigação de SYN flood sem estado e sistemas automáticos de engenharia

de tráfego. A arquitetura ideal, portanto, é híbrida, utilizando o NGINX para controle fino (L7) e

provedores cloud para defesa volumétrica (L3/L4).Balanceamento entre Segurança e

Desempenho

Ao implementar o Rate Limiting, deve-se considerar que limitar estritamente por

endereço IP pode penalizar usuários legítimos que compartilham o mesmo IP (dispositivos atrás

de NATs em grandes corporações ou provedores de internet). A configuração do NGINX deve,

portanto, utilizar parâmetros como burst e delay para acomodar picos de tráfego legítimo,

garantindo que a segurança não degrade indevidamente a experiência do usuário.

Otimização Interna do Node.js

Para mitigar o risco de bloqueio do Event Loop (a falha diagnosticada no Capítulo 4), é

imprescindível que a aplicação Node.js adote boas práticas de programação: utilizar apenas APIs

assíncronas e descarregar qualquer tarefa intensiva em CPU para worker threads ou processos

filhos. Essa otimização interna é complementar ao Rate Limiting externo e garante que, se

algumas requisições maliciosas ultrapassarem a primeira linha de defesa, elas não paralisarão o

servidor.

6 Conclusão

O presente artigo demonstrou o funcionamento de um Ataque Distribuído de Negação de

Serviço (DDoS) na Camada 7, utilizando uma abordagem prática baseada em

infraestrutura containerizada. A simulação contra uma aplicação Node.js de recursos

limitados confirmou que a indisponibilidade de serviço, neste contexto, é uma falha de

arquitetura computacional: o ataque não saturou primariamente a rede, mas sim o único

core de CPU, resultando no bloqueio do Event Loop.

A utilização de um ecossistema de observabilidade composto por Prometheus e

Grafana foi fundamental para o diagnóstico, permitindo que a degradação do Event Loop

fosse medida em tempo real. Isso sublinha que a detecção de ataques L7 não pode se

basear apenas em métricas de rede, mas deve priorizar a saúde interna da aplicação.

As propostas de melhoria arquitetural — a implementação de Load Balancers e

Rate Limiting via NGINX reverse proxy — são essenciais para transformar a arquitetura

vulnerável em um sistema resiliente. A etapa crítica na implementação do Rate Limiting

em containers é garantir a correta identificação do IP do cliente através do tratamento

seguro do cabeçalho X-Forwarded-For. Combinando essa defesa L7 com escalabilidade

horizontal e a utilização de serviços de proteção de borda baseados em nuvem, a

infraestrutura atinge o nível de resiliência necessário para proteger o pilar da

Disponibilidade, seguindo as melhores práticas do mercado de segurança cibernética.

7. Referências

BITTENCOURT, F.; LUCCA, G. S. MÉTODOS PARA PREVENÇÃO E DEFESA DE

ATAQUES DDoS. Revista Vincci - Periódico Científico do UniSATC, v. 2, n. 1, 2017.

CLAVIS. A tríade da Segurança da Informação: confidencialidade, integridade e

disponibilidade (CID). 2025.

AKAMAI. O que é um ataque GET flood DDoS?. Akamai Glossary. Disponível em:

https://www.akamai.com/pt/glossary/what-is-a-get-flood-ddos-attack. Acesso em: 3,

outubro de 2025.

AMINE, B. Rate Limiting in a Dockerized Backend: Spring Boot and NGINX.

Medium, 2023. Disponível em: https://amine-benaddi.medium.com/rate-limiting-in-a-

https://www.akamai.com/pt/glossary/what-is-a-get-flood-ddos-attack
https://www.akamai.com/pt/glossary/what-is-a-get-flood-ddos-attack
https://www.akamai.com/pt/glossary/what-is-a-get-flood-ddos-attack
https://amine-benaddi.medium.com/rate-limiting-in-a-dockerized-backend-spring-boot-and-nginx-c09fe4219743
https://amine-benaddi.medium.com/rate-limiting-in-a-dockerized-backend-spring-boot-and-nginx-c09fe4219743

dockerized-backend-spring-boot-and-nginx-c09fe4219743. Acesso em: 3, outubro de

2025.

AWS. Elastic Load Balancing: Best Practices for DDoS Resiliency. AWS

Documentation. Disponível em:

https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-

resiliency/elastic-load-balancing-bp6.html. Acesso em: 3, outubro de 2025.

AWS. Mitigation Techniques. AWS Documentation. Disponível em:

https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-

resiliency/mitigation-techniques.html. Acesso em: 3, outubro de 2025.

BBHUPEN. Monitor your Node.js App with Prometheus and Grafana using Docker.

Medium, 2023. Disponível em: https://bbhupen.medium.com/monitor-your-node-js-app-

with-prometheus-and-grafana-using-docker-acae930c9e03. Acesso em: 3, outubro de

2025.

GRAFANA LABS. DDoS protection: Observability, automation, and curiosity.

Grafana Labs Blog, 2024. Disponível em: https://grafana.com/blog/2024/09/20/ddos-

protection-observability-automation-and-curiosity/. Acesso em: 3, outubro de 2025.

NGINX. Controlling Access Proxied HTTP Traffic. NGINX Documentation.

Disponível em: https://docs.nginx.com/nginx/admin-guide/security-controls/controlling-

access-proxied-http/. Acesso em: 3, outubro de 2025.

REDNAFI. Rate Limiting via NGINX. Rednafi. Disponível em:

http://rednafi.com/go/rate_limiting_via_nginx/. Acesso em: 3, outubro de 2025.

ANDRIGHETTI, D. G. Mitigação de ataques DDoS em redes SDN: explorando

intenções como mecanismo de defesa no ONOS. Trabalho de Conclusão de Curso

(Graduação em Engenharia de Computação) – Universidade Federal de Santa Catarina,

Araranguá, 2017.

POPLAVKA, S.; NIKITIN, A. Performance Comparison and Analysis of Slowloris,

GoldenEye and Xerxes DDoS Attack Tools. ResearchGate, 2018.

https://amine-benaddi.medium.com/rate-limiting-in-a-dockerized-backend-spring-boot-and-nginx-c09fe4219743
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-resiliency/elastic-load-balancing-bp6.html
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-resiliency/elastic-load-balancing-bp6.html
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-resiliency/elastic-load-balancing-bp6.html
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-resiliency/elastic-load-balancing-bp6.html
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-resiliency/mitigation-techniques.html
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-resiliency/mitigation-techniques.html
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-resiliency/mitigation-techniques.html
https://docs.aws.amazon.com/pt_br/whitepapers/latest/aws-best-practices-ddos-resiliency/mitigation-techniques.html
https://bbhupen.medium.com/monitor-your-node-js-app-with-prometheus-and-grafana-using-docker-acae930c9e03
https://bbhupen.medium.com/monitor-your-node-js-app-with-prometheus-and-grafana-using-docker-acae930c9e03
https://bbhupen.medium.com/monitor-your-node-js-app-with-prometheus-and-grafana-using-docker-acae930c9e03
https://grafana.com/blog/2024/09/20/ddos-protection-observability-automation-and-curiosity/
https://grafana.com/blog/2024/09/20/ddos-protection-observability-automation-and-curiosity/
https://grafana.com/blog/2024/09/20/ddos-protection-observability-automation-and-curiosity/
https://docs.nginx.com/nginx/admin-guide/security-controls/controlling-access-proxied-http/
https://docs.nginx.com/nginx/admin-guide/security-controls/controlling-access-proxied-http/
https://docs.nginx.com/nginx/admin-guide/security-controls/controlling-access-proxied-http/
http://rednafi.com/go/rate_limiting_via_nginx/
http://rednafi.com/go/rate_limiting_via_nginx/
http://rednafi.com/go/rate_limiting_via_nginx/

	2. Negando o serviço: fundamentos do ataque distribuído (DDOS)
	O ataque de Negação de Serviço Distribuída é definido pela tentativa de exaurir os recursos de um sistema, seja saturando a largura de banda de rede, consumindo recursos computacionais (CPU, memória) ou esgotando o pool de conexões. Diferentemente de ...
	2.1 DDoS: Definição, Evolução e Tipologia Registrada
	Os ataques DDoS são classificados em diferentes tipos, dependendo da camada do sistema que eles visam, geralmente referenciando o Modelo OSI.
	Ataques Volumétricos (Camadas 3 e 4)
	Estes ataques se concentram em sobrecarregar a largura de banda da rede ou a capacidade de processamento de pacotes do servidor. Visam a Camada de Rede (L3), correspondente à Internet Layer no modelo TCP/IP, e a Camada de Transporte (L4). Exemplos clá...
	Ataques na Camada de Aplicação (Camada 7)
	Os ataques de Camada 7 (L7) visam a camada mais alta do Modelo OSI, a Camada de Aplicação. Estes ataques exploram vulnerabilidades ou ineficiências específicas do software da aplicação, frequentemente utilizando protocolos como HTTP. Eles são consider...
	2.2 O Impacto na Segurança da Informação: A Indisponibilidade como Falha Crítica da Tríade CID
	Em sistemas modernos, a dificuldade em evitar que o ataque ocorra exige que a detecção seja rápida e em tempo real, permitindo que as contramedidas sejam implantadas imediatamente para minimizar os danos. A vulnerabilidade de aplicações baseadas em Ev...
	3 Abordagem prática: Simulação, infraestrutura containerizada e monitoramento
	Para analisar empiricamente o impacto de um ataque DDoS L7, foi desenhada uma arquitetura de simulação minimalista e baseada em containers Docker, focando na aplicação de observabilidade para diagnosticar a causa raiz da indisponibilidade.
	A aplicação alvo é um servidor web simples construído em Node.js com o framework Express. A aplicação foi configurada para rodar em um container Docker, simulando um microserviço com recursos estritamente limitados: 1 CPU dedicada e 512MB de memória R...
	A orquestração da infraestrutura é realizada via Docker Compose, que define uma rede interna (monitor-net) para permitir que os serviços se comuniquem de forma isolada.
	O ecossistema de observabilidade é composto por dois serviços principais:
	3.2 Ferramentas de Simulação para Ataques de Negação de Serviço na Camada 7
	3.3 Configuração do Ecossistema de Observabilidade (Prometheus e Grafana)
	4.1 Comportamento Esperado da Aplicação de Baixa Capacidade
	4.2 Revisão de Métricas Chave (Latência, Utilização de CPU e Taxa de Erro)
	4.3 Implicações da Saturação de Recursos e o Bloqueio do Event Loop
	5 Estratégias de resiliência: mitigação através de load balacing e rate limiting
	5.1 O Papel do Load Balancer (LB) na Distribuição de Tráfego
	5.2 Implementação de Rate Limiting via Reverse Proxy em Ambiente Docker
	Desafio da Camada Docker e a Solução NGINX

	5.3 Otimizações Arquiteturais para Resiliência Contra Ataques de Camada 7
	Defesa Híbrida e Escalabilidade Global
	Otimização Interna do Node.js

	6 Conclusão

