
Validação de uma Infraestrutura Computacional Elástica com
K3s em Dispositivos de Borda para Monitoramento Industrial

Luis Feliphe da Silva Batista, Edie C. Santana

Instituto de Computação – Universidade Federal de Mato Grosso (UFMT)
Cuiabá – MT – Brasil

Secretaria de Ciência, Tecnologia e Inovação de Mato Grosso
Cuiabá – MT – Brasil

luisfelipe66@gmail.com, edie.santana@secitec.mt.gov.br

Abstract. This paper proposes and validates the implementation of a scalable
computational infrastructure for real-time monitoring of electric boilers, using
Kubernetes (K3s) clusters on low-cost devices (Raspberry Pi). The central pro-
blem addresses how to provide a monitoring solution that is both energy-efficient
and capable of dynamically adapting to workload variations. The main objec-
tive is to deploy and validate a solution that optimizes the use of computatio-
nal resources through container orchestration and horizontal autoscaling. The
methodology includes defining a use case, describing the hardware and soft-
ware architecture, and conducting a case study to analyze the effectiveness of
the solution’s horizontal scalability. The results demonstrate the feasibility and
efficiency of the approach, confirming that the cluster responded adequately to
increases and decreases in load, adjusting resources autonomously.

Resumo. Este trabalho propõe e valida a implantação de uma infraestrutura
computacional escalável para o monitoramento em tempo real de caldeiras
elétricas, utilizando clusters Kubernetes (K3s) em dispositivos de baixo custo
(Raspberry Pi). A problemática central aborda como prover uma solução de
monitoramento que seja ao mesmo tempo energeticamente eficiente e capaz de
se adaptar dinamicamente a variações na carga de trabalho. O objetivo geral é
implantar e validar uma solução que otimize o uso de recursos computacionais
através da orquestração de contêineres e do autoescalonamento horizontal. A
metodologia inclui a definição de um cenário de uso, a descrição da arquitetura
de hardware e software, e a realização de um estudo de caso para analisar a
eficácia da escalabilidade horizontal da solução. Os resultados demonstram a
viabilidade e a eficiência da abordagem, confirmando que o cluster respondeu
adequadamente aos aumentos e diminuições de carga, ajustando os recursos de
forma autônoma.

1. Introdução
A demanda por sistemas de monitoramento industrial que aliem alta disponibilidade,
baixo custo e eficiência energética é crescente. Tradicionalmente, o monitoramento de
ativos como caldeiras elétricas depende de servidores locais robustos, que operam com
capacidade provisionada para picos de carga. Embora confiáveis, essas arquiteturas apre-
sentam desafios significativos, como o alto custo de aquisição e manutenção, o consumo



elevado de energia e uma complexidade inerente para escalar [2]. A necessidade de adi-
cionar mais pontos de monitoramento exige um planejamento de capacidade que nem
sempre é ágil ou economicamente viável.

É neste ponto que a tecnologia de orquestração de contêineres, liderada pelo Ku-
bernetes [5], oferece uma mudança de paradigma. Ao abstrair a aplicação da infraestru-
tura, o Kubernetes permite a criação de sistemas distribuı́dos, resilientes e, fundamental-
mente, elásticos. Esta capacidade de adaptação abre portas para o uso de hardware de
baixo custo, como o Raspberry Pi, em cenários industriais antes dominados por servi-
dores de alto desempenho, alinhando-se aos princı́pios da Computação de Borda (Edge
Computing).

Diante desse cenário, a problemática investigada é: como prover uma infraestru-
tura computacional escalável, de baixo custo e energeticamente eficiente para o monito-
ramento em tempo real de caldeiras elétricas? A lacuna existente está na dificuldade de
alocar e desalocar dinamicamente os recursos de processamento para atender às variações
de demanda sem comprometer a eficiência operacional.

Com base nisso, o objetivo geral deste trabalho consiste em implantar e validar
uma solução computacional escalável utilizando Kubernetes, sobre dispositivos de baixo
custo (Raspberry Pi), para o monitoramento da temperatura de caldeiras elétricas, bus-
cando aliar economia de energia à alocação dinâmica e eficiente de recursos computacio-
nais.

Para alcançar o objetivo maior, os seguintes passos especı́ficos foram definidos:
1. Investigar as soluções de monitoramento de caldeiras, compreendendo as arquite-

turas tradicionais e seus desafios.
2. Analisar as tecnologias de implantação de Kubernetes em dispositivos de baixo

custo, com foco no Raspberry Pi.
3. Implantar uma solução computacional funcional com Kubernetes (K3s) para a

coleta e processamento de dados de temperatura.
4. Validar a escalabilidade horizontal do cluster em um estudo de caso que simula a

variação no número de caldeiras monitoradas.

2. Fundamentação Teórica
2.1. Virtualização e Contêineres
A virtualização tradicional, baseada em hipervisores, permite que um servidor fı́sico hos-
pede múltiplas máquinas virtuais (VMs), cada uma com seu próprio sistema operacional.
Em contraste, os contêineres oferecem virtualização a nı́vel de sistema operacional, onde
múltiplos contêineres compartilham o mesmo kernel do host, tornando-os significativa-
mente mais leves, rápidos e portáteis [9].

2.2. Orquestração com Kubernetes e Escalabilidade Horizontal
Gerenciar o ciclo de vida de centenas de contêineres manualmente é impraticável. O Ku-
bernetes surge como a solução para este desafio, orquestrando contêineres em um cluster
de máquinas. Sua função crucial é a escalabilidade. A escalabilidade horizontal (ou scale-
out) consiste em aumentar ou diminuir o número de réplicas (pods) de uma aplicação em
resposta a métricas predefinidas, como o uso de CPU, sendo o cerne da elasticidade do
sistema [10].



2.3. Kubernetes na Computação de Borda

A aplicação de Kubernetes em dispositivos de recursos limitados, como o Raspberry Pi,
tornou-se um campo de pesquisa ativo. Distribuições leves como o K3s foram desenvolvi-
das para minimizar o consumo de recursos, tornando viável a criação de clusters de borda
para aplicações de IoT e monitoramento [6]. Estudos comparativos demonstram que, para
cargas de trabalho de baixa a média intensidade, clusters de Raspberry Pi gerenciados por
K3s apresentam um desempenho satisfatório com um custo energético e financeiro dras-
ticamente reduzido em comparação com soluções em nuvem ou servidores tradicionais
[3]. O autoescalonamento nestes ambientes é chave para garantir a responsividade sem
esgotar os recursos limitados dos dispositivos [1].

3. Proposta da Solução e Metodologia
Esta seção apresenta a solução proposta, detalhando a arquitetura de monitoramento cons-
truı́da sobre um cluster de Raspberry Pi com K3s. Descreve também os componentes de
hardware e software utilizados e a metodologia de validação focada no autoescalonamento
horizontal.

3.1. Cenário de Uso

O cenário simula um ambiente de monitoramento industrial onde um cluster de disposi-
tivos Raspberry Pi deve escalar dinamicamente os processos (pods) de análise de dados,
conforme a demanda de sensores de temperatura. A arquitetura da solução (Figura 1)
utiliza um ciclo de controle onde um Avaliador, com base em um modelo preditivo, de-
termina o número de réplicas necessárias, enquanto um Atualizador retreina o modelo
periodicamente para garantir a alocação proativa de recursos.

Figura 1. Arquitetura da solução proposta, ilustrando o fluxo de dados e o me-
canismo de autoescalonamento.

3.2. Ambiente Experimental

O ambiente experimental foi construı́do com hardware de baixo custo e software open-
source. O cluster foi formado por três nós Raspberry Pi 4 (4GB RAM, CPU Quad-core
Cortex-A72) [8] rodando Raspberry Pi OS (64-bit), com um nó atuando como master



K3s e dois como workers. Sensores de temperatura DS18B20 foram conectados às portas
GPIO para a coleta de dados. A arquitetura de software utilizou K3s [4] como orquestra-
dor de contêineres, RabbitMQ [7] como message broker para desacoplar os dados, e uma
aplicação em Python conteinerizada (Docker) para processar as informações da fila.

3.3. Estudo de Caso: Análise de Escalabilidade
Para validar a elasticidade da solução, a aplicação de monitoramento foi implantada no
cluster K3s com um limite de ‘500m‘ (meio core de CPU) e configurada com um Hori-
zontal Pod Autoscaler (HPA). O gatilho para o escalonamento foi o uso de CPU, definido
para ser ativado quando a utilização média atingisse 70% da capacidade alocada. O HPA
foi configurado para manter no mı́nimo 1 pod e no máximo 4 pods.

4. Resultados e Análise
O estudo de caso foi dividido em dois cenários para observar o comportamento de scale-
out (escalar para cima) e scale-in (escalar para baixo).

4.1. Cenário 1: Escalabilidade Horizontal Incremental (Scale-Out)
O teste iniciou com um simulador enviando dados equivalentes a uma caldeira para a fila
do RabbitMQ. O K3s manteve uma única réplica (pod) da aplicação, cujo consumo de
CPU estabilizou em aproximadamente 35% do recurso alocado (cerca de 175m de CPU).

Em seguida, a carga foi aumentada para simular três caldeiras ativas. O consumo
de CPU do único pod saltou para aproximadamente 85% (cerca de 425m), ultrapassando
o limite de 70% definido no HPA.

Análise: Conforme esperado, após o perı́odo de observação padrão do Kuber-
netes, o HPA iniciou o processo de escalonamento. Em aproximadamente 40 segundos,
um segundo pod foi provisionado e entrou em estado Running. A carga de trabalho foi
então distribuı́da pelo balanceador de carga do Kubernetes entre os dois pods, e o con-
sumo de CPU em cada um deles estabilizou em torno de 43%, demonstrando a eficácia
do scale-out para lidar com o aumento da demanda.

4.2. Cenário 2: Escalabilidade Horizontal Decremental (Scale-In)
Partindo do estado anterior (dois pods ativos), a carga de trabalho foi reduzida de volta
para o equivalente a uma caldeira. A utilização de CPU em ambos os pods caiu para
aproximadamente 18% cada.

Análise: O HPA mantém um perı́odo de estabilização para evitar o flapping (esca-
lar para cima e para baixo repetidamente). Após a janela de estabilização padrão do K3s
(padrão de 5 minutos) com a carga consistentemente baixa, o HPA identificou o pod como
ocioso e iniciou o processo de scale-in. Um dos pods foi terminado, e o sistema retornou
ao estado inicial com um único pod consumindo aproximadamente 35% de CPU. Este
teste validou a capacidade do sistema de economizar recursos ao reduzir a infraestrutura
em resposta à diminuição da demanda.

4.3. Discussão dos Resultados
Os resultados práticos do estudo de caso confirmam a tese central deste trabalho: é viável
e vantajoso utilizar uma arquitetura baseada em K3s em dispositivos de baixo custo para



monitoramento industrial. A capacidade do HPA de provisionar e remover pods de forma
autônoma, baseada em métricas de uso real, valida a elasticidade da solução. A arqui-
tetura proposta não é apenas uma alternativa mais econômica em termos de hardware,
mas também mais eficiente e sustentável do ponto de vista energético, pois o consumo de
recursos computacionais acompanha dinamicamente a carga de trabalho.

5. Conclusão
Este trabalho demonstrou a concepção, implementação e, crucialmente, a validação de
uma solução escalável e de baixo custo para monitoramento industrial, utilizando Kuber-
netes (K3s) em um cluster de Raspberry Pi. A arquitetura proposta provou ser capaz de
se adaptar dinamicamente às flutuações de carga, atendendo aos requisitos de eficiência e
otimização de recursos por meio da escalabilidade horizontal.

A validação por meio do estudo de caso confirmou que a abordagem é tecnica-
mente robusta e responsiva, posicionando-se como uma alternativa moderna e vantajosa
em relação às infraestruturas centralizadas tradicionais para aplicações de Computação de
Borda. O trabalho abre caminho para futuras investigações, incluindo a análise de outras
métricas de escalonamento (como métricas customizadas via Prometheus) e a integração
de mecanismos de tolerância a falhas no cluster.

Referências
[1] Gama, K. et al. (2021). A Survey on Autonomic Provisioning of Fog Computing Services.

ACM Computing Surveys, 54(5), 1-38.

[2] Ghosh, A. et al. (2021). A Review on Industrial IoT: Applications, Technologies, and
Challenges. IEEE Access, 9, 45939-45973.

[3] Ismail, B. I.; Khan, S. (2021). Performance Evaluation of Lightweight Kubernetes Dis-
tributions for Edge Computing. In: 2021 IEEE International Conference on Edge
Computing (EDGE), pp. 1-8.

[4] K3S. (2025). Lightweight Kubernetes. Disponı́vel em: https://k3s.io/. Acesso em: 10 out.
2025.

[5] Kubernetes. (2025). Official Documentation. Disponı́vel em:
https://kubernetes.io/docs/home/. Acesso em: 10 out. 2025.

[6] Mora, H. et al. (2022). Performance Analysis of K3s, MicroK8s, and Kubeadm for De-
ploying Kubernetes Clusters on the Edge. Sensors, 22(19), 7354.

[7] RabbitMQ. (2025). Messaging that just works. Disponı́vel em:
https://www.rabbitmq.com/. Acesso em: 10 out. 2025.

[8] Raspberry Pi Foundation. (2025). Raspberry Pi Documentation. Disponı́vel em:
https://www.raspberrypi.com/documentation/. Acesso em: 10 out. 2025.

[9] Merkel, D. (2014). Docker: lightweight linux containers for consistent development and
deployment. Linux Journal, 2014(239), 2.

[10] Nguyen, T.-T. et al. (2020). Horizontal Pod Autoscaling in Kubernetes for Elastic Contai-
ner Orchestration. Sensors, 20(16), 4621.


