Validacao de uma Infraestrutura Computacional Elastica com
K3s em Dispositivos de Borda para Monitoramento Industrial

Luis Feliphe da Silva Batista, Edie C. Santana

Instituto de Computacdo — Universidade Federal de Mato Grosso (UFMT)
Cuiabd — MT — Brasil

Secretaria de Ciéncia, Tecnologia e Inovacdo de Mato Grosso
Cuiabd — MT — Brasil

luisfelipe66@gmail.com, edie.santana@secitec.mt.gov.br

Abstract. This paper proposes and validates the implementation of a scalable
computational infrastructure for real-time monitoring of electric boilers, using
Kubernetes (K3s) clusters on low-cost devices (Raspberry Pi). The central pro-
blem addresses how to provide a monitoring solution that is both energy-efficient
and capable of dynamically adapting to workload variations. The main objec-
tive is to deploy and validate a solution that optimizes the use of computatio-
nal resources through container orchestration and horizontal autoscaling. The
methodology includes defining a use case, describing the hardware and soft-
ware architecture, and conducting a case study to analyze the effectiveness of
the solution’s horizontal scalability. The results demonstrate the feasibility and
efficiency of the approach, confirming that the cluster responded adequately to
increases and decreases in load, adjusting resources autonomously.

Resumo. Este trabalho propée e valida a implantacdo de uma infraestrutura
computacional escaldvel para o monitoramento em tempo real de caldeiras
elétricas, utilizando clusters Kubernetes (K3s) em dispositivos de baixo custo
(Raspberry Pi). A problemdtica central aborda como prover uma solucdo de
monitoramento que seja ao mesmo tempo energeticamente eficiente e capaz de
se adaptar dinamicamente a variagdes na carga de trabalho. O objetivo geral é
implantar e validar uma solug¢do que otimize o uso de recursos computacionais
através da orquestragcdo de contéineres e do autoescalonamento horizontal. A
metodologia inclui a defini¢cdo de um cendrio de uso, a descri¢do da arquitetura
de hardware e software, e a realizacdo de um estudo de caso para analisar a
eficdcia da escalabilidade horizontal da solugdo. Os resultados demonstram a
viabilidade e a eficiéncia da abordagem, confirmando que o cluster respondeu
adequadamente aos aumentos e diminuicoes de carga, ajustando os recursos de
forma autébnoma.

1. Introducao

A demanda por sistemas de monitoramento industrial que aliem alta disponibilidade,
baixo custo e eficiéncia energética é crescente. Tradicionalmente, o monitoramento de
ativos como caldeiras elétricas depende de servidores locais robustos, que operam com
capacidade provisionada para picos de carga. Embora confidveis, essas arquiteturas apre-
sentam desafios significativos, como o alto custo de aquisi¢ao € manutengdo, 0 consumo

elevado de energia e uma complexidade inerente para escalar [2]. A necessidade de adi-
cionar mais pontos de monitoramento exige um planejamento de capacidade que nem
sempre € agil ou economicamente viavel.

E neste ponto que a tecnologia de orquestragio de contéineres, liderada pelo Ku-
bernetes [5], oferece uma mudanca de paradigma. Ao abstrair a aplica¢do da infraestru-
tura, o Kubernetes permite a criacdo de sistemas distribuidos, resilientes e, fundamental-
mente, elasticos. Esta capacidade de adaptacdo abre portas para o uso de hardware de
baixo custo, como o Raspberry Pi, em cendrios industriais antes dominados por servi-
dores de alto desempenho, alinhando-se aos principios da Computacdo de Borda (Edge
Computing).

Diante desse cenario, a problemadtica investigada é: como prover uma infraestru-
tura computacional escaldvel, de baixo custo e energeticamente eficiente para o monito-
ramento em tempo real de caldeiras elétricas? A lacuna existente estd na dificuldade de
alocar e desalocar dinamicamente os recursos de processamento para atender as variacoes
de demanda sem comprometer a eficiéncia operacional.

Com base nisso, o objetivo geral deste trabalho consiste em implantar e validar
uma solu¢dao computacional escaldvel utilizando Kubernetes, sobre dispositivos de baixo
custo (Raspberry Pi), para o monitoramento da temperatura de caldeiras elétricas, bus-
cando aliar economia de energia a alocacio dindmica e eficiente de recursos computacio-
nais.

Para alcancar o objetivo maior, os seguintes passos especificos foram definidos:

1. Investigar as solu¢des de monitoramento de caldeiras, compreendendo as arquite-
turas tradicionais e seus desafios.

2. Analisar as tecnologias de implantacdo de Kubernetes em dispositivos de baixo
custo, com foco no Raspberry Pi.

3. Implantar uma solu¢do computacional funcional com Kubernetes (K3s) para a
coleta e processamento de dados de temperatura.

4. Validar a escalabilidade horizontal do cluster em um estudo de caso que simula a
variagdo no nimero de caldeiras monitoradas.

2. Fundamentacao Teérica

2.1. Virtualizacao e Contéineres

A virtualizacdo tradicional, baseada em hipervisores, permite que um servidor fisico hos-
pede multiplas maquinas virtuais (VMs), cada uma com seu préprio sistema operacional.
Em contraste, os contéineres oferecem virtualizacdo a nivel de sistema operacional, onde
multiplos contéineres compartilham o mesmo kernel do host, tornando-os significativa-
mente mais leves, rapidos e portateis [9].

2.2. Orquestracao com Kubernetes e Escalabilidade Horizontal

Gerenciar o ciclo de vida de centenas de contéineres manualmente € impraticavel. O Ku-
bernetes surge como a solugdo para este desafio, orquestrando contéineres em um cluster
de maquinas. Sua func¢do crucial € a escalabilidade. A escalabilidade horizontal (ou scale-
out) consiste em aumentar ou diminuir o nimero de réplicas (pods) de uma aplicacdo em
resposta a métricas predefinidas, como o uso de CPU, sendo o cerne da elasticidade do
sistema [10].

2.3. Kubernetes na Computacao de Borda

A aplicacdo de Kubernetes em dispositivos de recursos limitados, como o Raspberry Pi,
tornou-se um campo de pesquisa ativo. Distribui¢des leves como o K3s foram desenvolvi-
das para minimizar o consumo de recursos, tornando vidvel a criacio de clusters de borda
para aplicacoes de IoT e monitoramento [6]. Estudos comparativos demonstram que, para
cargas de trabalho de baixa a média intensidade, clusters de Raspberry Pi gerenciados por
K3s apresentam um desempenho satisfatério com um custo energético e financeiro dras-
ticamente reduzido em comparagcdo com solugdes em nuvem ou servidores tradicionais
[3]. O autoescalonamento nestes ambientes € chave para garantir a responsividade sem
esgotar os recursos limitados dos dispositivos [1].

3. Proposta da Solucao e Metodologia

Esta secdo apresenta a solugdo proposta, detalhando a arquitetura de monitoramento cons-
truida sobre um cluster de Raspberry Pi com K3s. Descreve também os componentes de
hardware e software utilizados e a metodologia de validagdo focada no autoescalonamento
horizontal.

3.1. Cenario de Uso

O cendrio simula um ambiente de monitoramento industrial onde um cluster de disposi-
tivos Raspberry Pi deve escalar dinamicamente os processos (pods) de andlise de dados,
conforme a demanda de sensores de temperatura. A arquitetura da solugcdo (Figura 1)
utiliza um ciclo de controle onde um Avaliador, com base em um modelo preditivo, de-
termina o nimero de réplicas necessdrias, enquanto um Atualizador retreina o modelo
periodicamente para garantir a alocag@o proativa de recursos.

Solicitar M

Loop de controle: a cada 20s

Numeros de
réplicas

Métricas Brutas [Formuladnr]—ir Avaliador

}

Carregar

|

Salvar

Arquivo
de
histdrico

_—

Fluxo de dados

de
métricas

Carregar e limpar Carregar, reciclar e salvar

N\ yd
[

Fonte: Adaptado de Ju, Singh e Toor (2021).

Ciclo de
atualizacao do
modelo:

uma vez por dia

Figura 1. Arquitetura da solucao proposta, ilustrando o fluxo de dados e o me-
canismo de autoescalonamento.

3.2. Ambiente Experimental

O ambiente experimental foi construido com hardware de baixo custo e software open-
source. O cluster foi formado por trés nds Raspberry Pi 4 (4GB RAM, CPU Quad-core
Cortex-A72) [8] rodando Raspberry Pi OS (64-bit), com um né atuando como master

K3s e dois como workers. Sensores de temperatura DS18B20 foram conectados as portas
GPIO para a coleta de dados. A arquitetura de software utilizou K3s [4] como orquestra-
dor de cont€ineres, RabbitMQ [7] como message broker para desacoplar os dados, e uma
aplicacao em Python conteinerizada (Docker) para processar as informagdes da fila.

3.3. Estudo de Caso: Analise de Escalabilidade

Para validar a elasticidade da solugao, a aplicagcdo de monitoramento foi implantada no
cluster K3s com um limite de ‘500m* (meio core de CPU) e configurada com um Hori-
zontal Pod Autoscaler (HPA). O gatilho para o escalonamento foi o uso de CPU, definido
para ser ativado quando a utiliza¢do média atingisse 70% da capacidade alocada. O HPA
foi configurado para manter no minimo 1 pod e no maximo 4 pods.

4. Resultados e Analise

O estudo de caso foi dividido em dois cendrios para observar o comportamento de scale-
out (escalar para cima) e scale-in (escalar para baixo).

4.1. Cenario 1: Escalabilidade Horizontal Incremental (Scale-Out)

O teste iniciou com um simulador enviando dados equivalentes a uma caldeira para a fila
do RabbitMQ. O K3s manteve uma unica réplica (pod) da aplicacdo, cujo consumo de
CPU estabilizou em aproximadamente 35% do recurso alocado (cerca de 175m de CPU).

Em seguida, a carga foi aumentada para simular trés caldeiras ativas. O consumo
de CPU do tnico pod saltou para aproximadamente 85% (cerca de 425m), ultrapassando
o limite de 70% definido no HPA.

Analise: Conforme esperado, apds o periodo de observagdo padrdo do Kuber-
netes, o HPA iniciou o processo de escalonamento. Em aproximadamente 40 segundos,
um segundo pod foi provisionado e entrou em estado Running. A carga de trabalho foi
entdo distribuida pelo balanceador de carga do Kubernetes entre os dois pods, e o con-
sumo de CPU em cada um deles estabilizou em torno de 43%, demonstrando a eficacia
do scale-out para lidar com o aumento da demanda.

4.2. Cenario 2: Escalabilidade Horizontal Decremental (Scale-In)

Partindo do estado anterior (dois pods ativos), a carga de trabalho foi reduzida de volta
para o equivalente a uma caldeira. A utilizacdo de CPU em ambos os pods caiu para
aproximadamente 18 % cada.

Analise: O HPA mantém um periodo de estabilizagdo para evitar o flapping (esca-
lar para cima e para baixo repetidamente). Apds a janela de estabilizacdo padrao do K3s
(padrao de 5 minutos) com a carga consistentemente baixa, o HPA identificou o pod como
ocioso e iniciou o processo de scale-in. Um dos pods foi terminado, e o sistema retornou
ao estado inicial com um tnico pod consumindo aproximadamente 35% de CPU. Este
teste validou a capacidade do sistema de economizar recursos ao reduzir a infraestrutura
em resposta a diminui¢do da demanda.

4.3. Discussao dos Resultados

Os resultados praticos do estudo de caso confirmam a tese central deste trabalho: € vidvel
e vantajoso utilizar uma arquitetura baseada em K3s em dispositivos de baixo custo para

monitoramento industrial. A capacidade do HPA de provisionar e remover pods de forma
autbnoma, baseada em métricas de uso real, valida a elasticidade da solugdo. A arqui-
tetura proposta ndo € apenas uma alternativa mais econdmica em termos de hardware,
mas também mais eficiente e sustentavel do ponto de vista energético, pois o consumo de
recursos computacionais acompanha dinamicamente a carga de trabalho.

5. Conclusao

Este trabalho demonstrou a concepg¢do, implementagao e, crucialmente, a validacao de
uma solucgdo escaldvel e de baixo custo para monitoramento industrial, utilizando Kuber-
netes (K3s) em um cluster de Raspberry Pi. A arquitetura proposta provou ser capaz de
se adaptar dinamicamente as flutuagdes de carga, atendendo aos requisitos de eficiéncia e
otimizacao de recursos por meio da escalabilidade horizontal.

A validacdo por meio do estudo de caso confirmou que a abordagem € tecnica-
mente robusta e responsiva, posicionando-se como uma alternativa moderna e vantajosa
em relacdo as infraestruturas centralizadas tradicionais para aplica¢des de Computagdo de
Borda. O trabalho abre caminho para futuras investigacdes, incluindo a anélise de outras
métricas de escalonamento (como métricas customizadas via Prometheus) e a integracao
de mecanismos de tolerancia a falhas no cluster.

Referéncias
[1] Gama, K. et al. (2021). A Survey on Autonomic Provisioning of Fog Computing Services.
ACM Computing Surveys, 54(5), 1-38.
[2] Ghosh, A. et al. (2021). A Review on Industrial IoT: Applications, Technologies, and
Challenges. IEEE Access, 9, 45939-45973.

[3] Ismail, B. I.; Khan, S. (2021). Performance Evaluation of Lightweight Kubernetes Dis-
tributions for Edge Computing. In: 2021 IEEFE International Conference on Edge
Computing (EDGE), pp. 1-8.

[4] K3S. (2025). Lightweight Kubernetes. Disponivel em: https://k3s.io/. Acesso em: 10 out.
2025.

[5] Kubernetes. (2025). Official Documentation. Disponivel em:
https://kubernetes.io/docs/home/. Acesso em: 10 out. 2025.

[6] Mora, H. et al. (2022). Performance Analysis of K3s, MicroK8s, and Kubeadm for De-
ploying Kubernetes Clusters on the Edge. Sensors, 22(19), 7354.

[7] RabbitMQ. (2025). Messaging that just works. Disponivel em:
https://www.rabbitmg.com/. Acesso em: 10 out. 2025.

[8] Raspberry Pi Foundation. (2025). Raspberry Pi Documentation. Disponivel em:
https://www.raspberrypi.com/documentation/. Acesso em: 10 out. 2025.

[9] Merkel, D. (2014). Docker: lightweight linux containers for consistent development and
deployment. Linux Journal, 2014(239), 2.

[10] Nguyen, T.-T. et al. (2020). Horizontal Pod Autoscaling in Kubernetes for Elastic Contai-
ner Orchestration. Sensors, 20(16), 4621.

