
Assessing Programming Difficulty and Effort: 
Statistical Correlations with the Index of Internal Effort

Alisson Antônio de Oliveira
Instituto Federal do Paraná (IFPR) - Campus Curitiba

R. João Negrão, 1285 - Rebouças, Curitiba - PR, 80230-150
alisson.oliveira@ifpr.edu.br 

Abstract. Code metrics are essential variables for evaluating complexity and 
effort  in  different  development  contexts.  However,  there  is  a  gap  in 
comprehensive measurement of complexity and team effort. This study uses a 
dataset of 46 codes from the Brazilian Informatics Olympiad to investigate 
correlations  between  metrics  such  as  difficulty,  number  of  lines  of  code, 
cyclomatic  complexity,  and  the  Index  of  Internal  Effort  (IIE),  a  generic 
framework  for  measuring  Explicit  Intellectual  Activities  (EIA).  Statistical 
results  revealed  positive  and  significant  correlations  among  the  studied 
metrics,  including  the  IIE,  validating  its  applicability  as  a  complexity 
indicator. This study contributes to the understanding of perceived complexity 
in programming competitions,  suggesting practical applications in creating 
more balanced challenges and managing software projects, based on a new 
framework as a complexity metric.

1. Introduction

Code metrics are diverse and depend on the context in which they are applied. In the  
literature reviews conducted by Ardito et al. (2020) and Vogel et al. (2020), more than a 
hundred  code  indicators  are  presented,  each  with  a  wide  variety  of  applications. 
However,  the  most  frequently  cited  indicators  in  the  literature  are  Cyclomatic 
Complexity (CC) and the number of Lines of Code (LoC).

According to Elnaffar (2016), programming is a mental process that involves 
structuring  code  in  some  manner,  regardless  of  the  final  quality  produced.  The 
complexity of this structure reflects the cognitive effort (difficulty) required to solve the 
problem. In his work, Elnaffar (2016), used five code metrics: (i) McCabe's Cyclomatic 
Complexity [McCabe 1976]; (ii) Average Depth of Nested Blocks; (iii) the total number 
of statements, which varies from one programming language to another; (iv) the total 
number  of  operators;  (v)  the  number  of  unique  operators.  These  five  metrics  were 
combined to form a Real Difficulty Index (RDI), proposed by the author. 

According to the literature review by Usman et al. (2014), effort estimation is a 
fundamental part of software project management. This activity is essential for project 
planning  and  control  as  it  involves  forecasting  the  time  and  resources  needed  to 
complete  various  tasks.  There  is  a  vast  amount  of  research  dedicated  to  effort 
estimation, encompassing models, techniques, methods, and tools developed to improve 
the  accuracy  of  these  estimates.  Like  other  software  engineering  activities,  effort 
estimation  is  performed  within  the  context  of  a  structured  software  development 



process, which provides guidelines and standards for the effective application of these 
various approaches. In this context, an indicator of coding complexity and work effort is 
a crucial tool in the software project management process.

Kasto  and  Whalley  (2013)  sought  to  explore  the  relationship  between  code 
metrics  and  student  performance,  using  dynamic  metrics  along  with  cyclomatic 
complexity (CC) and average block depth. They found a significant correlation between 
these metrics and the difficulty of the questions. 

The RSM Wizard (Resource Standard Metrics -  RSM) software [M Squared 
Technologies LLC. 2024] is  a  graphical  interface program that  incorporates various 
classic code metrics and supports multiple programming languages, such as C/C++. In 
the  work  of  Pighin  and  Marzona  (2003),  the RSM  Wizard  was  used  to  measure 
cyclomatic complexity (CC) and examine its relationship with the number of failures in 
the first version of code during a software release. The conclusion from the correlation 
tests was that more indicators and different complexity measures are necessary before 
any robust correlation can be established between complexity and the persistence of 
defects in faulty files.

In the context of programming marathons or competitions, discussions about the 
difficulty of the questions often arise among participants. According to Elnaffar (2016), 
an intuitive approach to evaluating the difficulty of a programming question is to treat it  
as  a  classification  problem.  This  involves  categorizing  the  difficulty  of  a  coding 
question based on the provided solution (answer key).

In  seeking  data  for  measuring  code  complexity,  the  SBC  Programming 
Marathon [Sociedade Brasileira de Computação 2024] and the Brazilian Computing 
Olympiad [Olimpíada Brasileira de Informática – OBI 2024] were identified. The SBC 
Programming Marathon provides statistical data on the correct answers of each team on 
its website but does not provide answer keys for applying classic coding metrics. On the 
other  hand,  the  OBI  does  not  present  statistical  data  on  competitors  but  provides 
problem statements and reference codes (answer keys). Therefore, the OBI data was 
selected to form a dataset that allows statistical testing with the metrics found in the 
literature.

The Brazilian Computing Society (Sociedade Brasileira de Computação - SBC) 
promotes  the  Brazilian  Computing  Olympiad  (OBI),  a  competition  similar  to  other 
Brazilian  scientific  Olympiads  such  as  Astronomy,  Physics,  and  Mathematics. 
According to  the official  OBI website  [Olimpíada Brasileira de Informática –  OBI 
2022], the main goal of the event is to spark students' interest in computer science, a  
crucial field in contemporary basic education, through challenges with a healthy dose of 
competition. The OBI has two categories,  Programming and Introduction, each with 
different  levels.  In  all  categories  and  levels,  the  activities  (exams)  are  conducted 
individually.

Based on our knowledge of code metrics, reinforced by the literature reviews of 
Ardito et al. (2020) and Vogel et al. (2020), there are no generic metrics for measuring 
code complexity, especially concerning the measurement of team work effort. In the 
research presented by Oliveira, Santos, and Pilatti (2024), a  framework for measuring 
Explicit  Intellectual  Activities  (EIA)  was  proposed.  This  framework  starts  with 
measuring  complexity  through  an  approximation  (IIEa)  that  uses  the  Complexity 
Typology (TC) of Sheard and Mostashari (2010) and  culminates in the average work 



effort of the team that conducted the research (IIE0). However, the proof of concept 
(PoC)  presented  by  Oliveira,  Santos,  and  Pilatti,  (2024)  was  applied  to  patents 
developed  by  public  servants,  requiring,  among  other  items,  the  variables  (i) 
development time of the research and (ii) the number of researchers involved in the 
work.

This work aims to analyze whether there is a significant correlation between the 
complexity measured using the Index of  Internal  Effort  (IIE)  framework [Mensures 
2016] and the coding difficulty of the problems proposed by the organizers of the 2022 
Brazilian  Computing  Olympiad  (OBI).  This  analysis  can  contribute  to  academic 
programming events by investigating possible metrics that committees can use in their 
events to regulate the difficulty of the questions. Additionally, code metrics can be used 
in the workplace to assist in managing tasks, both in software development and in code 
maintenance.

This  article  is  structured  as  follows:  in  the  first  section,  the  study  topic  is 
introduced. In the second section, the methodology used to create the dataset for the 
proof  of  concept  (PoC)  is  detailed,  along with  the  applied  code  metrics.  The  third 
section presents the obtained statistical results and their main characteristics. The fourth 
section discusses the achieved results, highlighting the strengths and weaknesses of the 
study, as well as the main conclusions reached. Finally, the fifth section provides final 
recommendations and general conclusions about the study conducted.

2. Method

After searching for the construction of a dataset containing codes suitable for applying 
classic metrics from the literature,  freely available data from the OBI 2022 website 
[Olimpíada Brasileira de Informática – OBI 2022], were selected. According to the 
official site, the Programming category exams are conducted in three phases and cover 
students  at  four  distinct  levels:  Junior  Level  (0),  for  students  from  any  year  of 
Elementary School; Level 1, for students from Elementary School up to the 1st year of  
High School; Level 2, for students from Elementary School up to the 3rd year of High 
School; and Senior Level (3), for students in the 4th year of Technical Education and 
the 1st year of a bachelor's degree program. The grouping of phases and levels creates a 
categorization that can be used as a reference for the difficulty proposed by the event  
organizers, making it possible to use this information as the main reference variable for 
the tests.

During the creation of the dataset, 46 codes were found in OBI 2022 website, 
with difficulty levels ranging from 1 to 6. The dataset for this article, including the 
statistical tests, is available via a link at the end of this article.

The metrics used in the correlation tests are: (i) code difficulty based on the 
selection of questions by the organizers of OBI 2022 (Diff), formed by the simple sum 
of the Olympiad phase (1, 2, 3) and student level (0, 1, 2, 3); (ii) metrics provided by the 
RSM Wizard software (2024), including: Lines of Code (LoC), Effective Lines of Code 
(eLoc), Logical Lines of Code (1LoC), Cyclomatic Complexity (CC) as per [McCabe 
1976], Function Points for LoC (FP), and Total Function Complexity (TFC); (iii) IIEa, a 
generic metric for measuring explicit intellectual activities, according to the parameters 
proposed in the work of Oliveira and Pilatti (2021).



The Index of Internal Effort (IIE) is a generic tool, but when specifically applied 
to evaluate code complexity, it is crucial to identify the most relevant variables in the 
code, similar to the process of “System Identification” recurring in control engineering 
[Ljung 1999]. To achieve this, variable groups published in Oliveira and Pilatti (2021) 
work, which addresses code metrics on the Arduino platform, were selected. The four 
variable groups (Gn) were organized in reverse order compared to what is typically 
taught in programming classes [Oliveira and Pilatti 2021]. Normally, in classes, simpler 
concepts  and  functions  are  presented  first,  followed  by  more  complex  ones.  The 
following describes the groups used in this study:

    • G1: Iterations and their controls: For, While, Do While, Continue, Goto;
    • G2: Conditional statements and their controls: IF-Else, Switch/Case, Break;
    • G3: Relational and logical operators: &&, ||, !, <, <=, ==, >=, >, !=;
    • G4: Code organizers and structures: braces {, brackets [, parentheses (;

The variables selected to form the Gn groups respect the Complexity Typology 
(TC) from Sheard and Mostashari (2010), making clear the difference between the items 
that form each group. With the selection of variable groups forming the study object, 
namely the C codes organized into groups G1, G2, G3, and G4, the next step is to count 
the occurrences of each element. These counted values are then processed according to 
the methodology of IIEa [Oliveira and Pilatti 2021] to obtain the complexity of each 
code. Equation 1 presents the complexity calculation method by IIE, known as IIEa 
because it is an approximation of complexity.

IIEa=1+∑
n>3

√Gn=1+√G1+√G2+√G3+√G4
(1)

To compare the code difficulty proposed by OBI 2022 with code metrics found 
in the literature, a Spearman correlation test (a non-parametric test) will be conducted 
using  an  "all  against  all"  matrix  structure.  This  technique  allows  investigating  the 
possible relationships between all  indicators,  resulting in three main scenarios:  (i)  a 
significant and positive correlation, indicating that two variables or metrics are directly 
connected or associated by a third variable; (ii) a significant and negative correlation, 
where  variables  grow  in  an  inversely  proportional  manner;  and  (iii)  absence  of 
significant correlation between the indicators [Triola 2013].

In  total,  10  metrics  will  be  compared  in  the  correlation  test,  with  the  main 
metrics being difficulty (Diff) and IIEa complexity. These metrics are not classical in 
software literature, with the former originating from the group that manages OBI and 
the latter being a generic framework for measuring explicit intellectual activities (EIA).

3. Results

Table 1 presents the results of the correlation test among the 10 selected metrics for the 
research. The complete file with all collected data is made available by the author at the 
end of this article.

The  values  highlighted  in  Table  1  are  those  that  showed  a  significant  and 
positive correlation in the Spearman test. For this test, only cases with a confidence 
level of 99% were considered, where the correlation value must be equal to or greater 
than 0.384 for a sample size of 46 codes [Triola 2013].



The  reference  variable  due  to  dataset  characteristics  is  the  difficulty  of  the 
questions (Diff). This variable showed a significant and positive correlation with the 
phase and level of the questions in OBI 2022. It is important to note that the phases did 
not show a significant correlation with the level of questions, which can be explained by 
the fact that some questions were duplicated across different levels or phases. However, 
each  exam  consisted  of  three  or  more  questions,  highlighting  the  importance  of 
combining levels and phases to form the difficulty variable (Diff).

Furthermore, the difficulty of the questions proposed by the organizers of OBI 
2022 (Diff) showed a significant and positive correlation with three metrics: lines of 
code (LoC),  function points  (FP),  and the approximation of  complexity (IIEa).  The 
latter  metric  comes  from  a  generic  framework  for  measuring  explicit  intellectual 
activities (EIA), while the first two are specific metrics in the software field.

Table 1. Correlation Test Among Code Metrics 

The research hypothesis investigates the possible significant positive correlation 
among three distinct elements: (i) the difficulty defined by the organizers of OBI 2022, 
(ii) classical code metrics, and (iii) the approximation of code complexity through the 
generic  measurement  framework  for  explicit  intellectual  activities  (EIA),  called  the 
Index  of  Internal  Effort  (IIE)  [Mensures  2016].  With  this  dataset,  the  results  were 
positive, allowing us to infer that the difficulty attributed by the organizers of OBI 2022 
aligns with classical code metrics, indicating that both LoC and FP effectively reflect 
the complexity perceived by specialists.

Additionally, the Index of Internal Effort (IIE) showed a consistent correlation 
with classical metrics and the perceived difficulty by the organizers of OBI 2022, thus 
not  refuting  the  possibility  of  using  a  generic  framework  when  assessing  code 
complexity. This correlation is crucial as it  does not invalidate the use of IIE as an  
indicator of complexity applicable generically to various Explicit Intellectual Activities 
(EIA),  besides  offering  an  additional  metric  for  software  project  management  and 
evaluation.

The application of these metrics together not only facilitates a more accurate 
analysis  of  code  complexity  in  C  but  also  provides  a  multifaceted  approach  that 
considers different aspects of difficulty and effort involved in programming. Therefore, 
the positive correlation found among these variables reinforces the importance of using 
multiple metrics to gain a more comprehensive and accurate understanding of software 
project  complexity,  contributing  to  better  software  development  and  management 
practices.



4. Discussion

In this study, codes in the C programming language from the Brazilian Olympiad in 
Informatics 2022 were used as a database to conduct a proof of concept (PoC) on the 
applicability of IIEa, allowing for comparison of this generic indicator with human data 
and classical coding metrics from the literature.

The difficulty of the codes (Diff), as defined by the organizers of OBI 2022, 
showed a significant and positive correlation with classical coding indicators such as 
lines  of  code  (LoC)  and  function  points  (FP).  Additionally,  the  complexity 
approximated by IIEa showed a significant correlation with the metric Diff.

Specifically, a significant internal correlation was found among the metrics of 
the RSM Wizard software (2024), including effective lines of code (eLoc), logic lines of 
code (1LoC), and total function complexity (TFC). The metrics from RSM Wizard also 
showed significant correlation with classical metrics LoC, CC, and FP, but did not show 
significant correlation with the difficulty defined by the organizers of OBI 2022 (Diff).

The Index of Internal Effort (IIE), in its approximation of complexity (IIEa), 
created to measure Explicit Intellectual Activities (EIAs) within the Brazilian public 
service, had its applicability not refuted in this proof of concept (PoC). This result is 
important to validate a generic and empirical methodology, aligned with the principles 
of modern science as advocated by the philosophy of modern science [Popper 2001].

In a previous study conducted on Arduino platform programming [Oliveira and 
Pilatti  2021],  code  complexity  was  measured  using  IIEa,  finding  a  positive  and 
significant correlation with metrics (i) CC (cyclomatic complexity), (ii) LoC (lines of 
code), and (iii) evaluation of students in a technical programming course. In the present 
study, using a non-similar dataset, IIEa demonstrated significant correlation not only 
with classical software metrics, but also with (iv) problems difficulty and its respective 
coding, as attributed by the event organizers. This finding addresses a gap identified in  
the tests of Oliveira and Pilatti (2021), which included student opinions but lacked input 
from programming teachers and experts.

By  hypothesis,  in  academic  exams,  Olympiads,  marathons,  Hackathons,  and 
similar events, it would be feasible to modify the current process with fixed questions,  
allowing  organizers  to  provide  multiple  questions  to  participants,  using  IIEa  as  a 
reference for scoring each one. This would enable competitors to freely choose which 
and how many questions to tackle to try to win the competition. IIEa has emerged as the 
most  suitable  indicator  for  this  context  because  it  is  less  limited  to  a  specific  test 
condition. This is supported by the significant number of correlations of IIEa found in 
the tests and presented in Table 1.

The IIE was initially developed to measure EIAs carried out by public servants, 
with  the  aim of  improving the  efficiency and effectiveness  of  services  provided to 
society [Mensures 2016]. Hypothetically, its application may have limitations or non-
linearities in certain EIAs. For this reason, IIEa is being tested with various distinct 
datasets  to  explore  these  potential  limitations.  Examples  include  codes  from  the 
Arduino platform [Oliveira and Pilatti 2021], patents filed by public service [Oliveira et 
al. 2023a, Oliveira et al. 2023b], complexity of postgraduate program books evaluated 
by CAPES [Oliveira and Pinto 2024], among others.



In the research by Ferreira et al. (2016), the authors emphasize the importance of 
studies  on "truck factor"  in  software  development  project  management.  This  metric 
assesses  the  risk  associated  with  team  members'  absence,  which  can  interrupt  or 
significantly compromise project progress due to the loss of knowledge concentrated in 
just a few developers. To mitigate this issue, a recommended practice is to regularly 
conduct code reviews, enabling more team members to become familiar with different 
parts of the project. In this context, IIEa can be used to measure the work delivered by 
each collaborator,  thereby balancing the workload within the development team and 
minimizing the "truck factor."

The  cyclomatic  complexity  (CC)  indicator  [McCabe  1976]  did not  show  a 
significant  correlation  with  the  reference  variable  (Diff).  Hypothetically,  CC  is  an 
indicator limited to the quantity of conditional branches and loops in the code, whereas 
the questions selected by the organizers of OBI 2022 go beyond this limitation. In this  
context, a multi-criteria indicator like IIEa has advantages over other restrictive metrics. 
Within the application rules of IIEa indicated by Oliveira, Santos, and Pilatti (2024) are: 
the use of at least 4 distinct variables or groups of variables, and the use of the square 
root as an element to compress errors in collected data. These two conditions increase 
the robustness of IIEa compared to other metrics formed by a single group of variables.

A limitation of the dataset to be reported is the size of the codes. Since the 
dataset consists of problems from the Brazilian Olympiad in Informatics 2022, each 
code is produced by a single participant within a specific time limit, which restricts the  
size and complexity of the codes used. In future work, it is crucial to repeat the tests  
using considerably larger codes developed by teams of developers. In these future tests, 
variables  such  as  (i)  development  time  and  (ii)  number  of  developers  can  be 
incorporated to measure the average workload, as suggested in the research on patents 
deposited by the public service by Oliveira, Santos, and Pilatti (2024).

This study provides two significant contributions, one internal and one external. 
Internally, it contributes to the software field by introducing a new coding metric to the 
community.  However,  due  to  the  lack  of  data  on  the  number  of  participants  and 
development time, the IIE was presented partially, calculating only the approximation 
of complexity (IIEa), while the average team effort [Oliveira, Santos and Pilatti 2024] 
was  not  addressed.  Externally,  this  study  contributes  to  the  improvement  of  public 
service,  as  the  IIE  aims  to  enhance  the  performance  evaluation  of  public  servants 
through a multidisciplinary framework for measuring tasks performed. However, due to 
its  generic  nature,  more  tests  in  diverse  areas  and  different  datasets  are  needed  to 
identify possible limitations in its use.

5. Conclusions

This  study  explored  the  complexity  of  codes  from  the  Brazilian  Olympiad  in 
Informatics 2022 (OBI 2022) through the application of classical metrics and the Index 
of  Internal  Effort  (IIE).  The results  highlight  that  the difficulty of  the questions,  as 
defined by the event organizers (Diff), correlates positively with metrics such as lines of 
code (LoC), function points (FP), and the complexity approximation by IIEa. These 
findings  confirm  that  both  traditional  metrics  and  IIEa  are  effective  in  assessing 
perceived complexity and effort involved in programming for small codes.



This study contributes significantly to software research by presenting IIEa as a 
viable  generic  metric,  while  also  validating  the  utility  of  classical  metrics  in 
programming  competitions.  Practical  implications  include  applying  these  metrics  to 
create  more  balanced  questions  in  academic  competitions,  allowing  participants  to 
choose challenges aligned with their skill levels.

Limitations of the dataset include the limited size of the studied codes and the 
need to explore additional metrics in more complex software development contexts. 
Future research should expand the study of IIE to include codes in other programming 
languages  and  variables  such  as  development  time  and  number  of  developers.  The 
potential influence of these results on the scientific community lies in the possibility of  
revising complexity assessment practices and developing new measurement models.
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