
Recognizing some corona products in polynomial time

Jarlilson Guajajara1, Julliano Rosa Nascimento1

1Instituto de Informática – Universidade Federal de Goiás (UFG)
Caixa Postal 131 – 74001-970 – Goiânia – GO – Brasil

jarlilsonguajajara@discente.ufg.br, jullianonascimento@ufg.br

Abstract. The corona product of G and H is the graph G◦H , obtained by taking
a copy of G, |V (G)| copies of H , and connecting the i-th vertex of G to each
vertex in the i-th copy of H , where 1 ≤ i ≤ |V (G)|. We present an algorithm
for recognizing some corona product graphs, a structure that is particularly
useful for analyzing hierarchical networks. Our results demonstrate that the
algorithm works for arbitrary graphs G when H is restricted to classes where
the isomorphism problem is solvable in polynomial time. Notably, for H as a
path, cycle, or complete graph, the algorithm runs in cubic time.

1. Introduction
Graph Theory is one of the cornerstones of Computer Science, providing tools for

analyzing and solving complex problems. Its applications are widely used by information
technology and data analysis professionals, as well as academic and corporate researchers,
educators, and computer science students.

Two central aspects of Graph Theory are the categorization of graphs with com-
mon properties and the solving of problems using specific algorithms. There are tools
that allow both direct interaction with graphs and the execution of algorithms on them.
However, solutions such as those presented in [UnickSoft 2024] and [Halim 2015], while
visually appealing, do not cover a wide range of fundamental algorithms for Graph The-
ory nor do they offer options for generating specific graph families.

To enhance graph identification and the application of algorithms for educational
and scientific purposes, we plan to expand the open-source tool web Graph Problems,
developed by [Silva 2018], by integrating functionality for identifying corona products
in graphs. It is worth noting that previous improvements to this tool have already been
made, as reported in [da Silva and da Silva 2022].

The corona product was introduced in 1970 by [Frucht and Harary 1970] as a op-
eration to simplify the study of the relationship between graph structure and algebraic
properties. Unlike the more complex lexicographic product [Sabidussi 1959], the corona
product establishes a straightforward connection between the automorphism group of the
resulting graph and the wreath product of the automorphism groups of the original graphs.
This simplicity makes the corona product a practical and intuitive tool for analyzing com-
posite graph structures and their symmetries.

There is a variety of studies addressing the corona product of graphs. For
instance, [Sharma et al. 2019] investigates corona products as models for network-
generating processes with hierarchical structure that incorporate property duplication.
Additionally, some well-known problems in Graph Theory have been studied within

this product framework, such as domination in [G. Yero et al. 2012], equitable coloring
in [Furmanczyk et al. 2012] and perfect coloring in [Bhange and Bhapkar 2020], among
others.

According to [Feigenbaum and Schaffer 1985], deciding whether a given graph
can be expressed as a corona product of two graphs is polynomially equivalent to the
graph isomorphism test, even when G is connected. However, it is possible to verify
whether a graph is a corona product within classes in which the isomorphism problem
can be solved in polynomial time.

In this paper, we introduce an algorithm to recognize corona product graphs, al-
lowing G to be an arbitrary graph and restricting H to the classes of paths, cycles, and
complete graphs, achieving cubic complexity in these cases. Although the algorithm is
currently in the theoretical stage, we plan to implement it in the future and integrate it
into the open-source tool web Graph Problems [Graph problems tool 2022], expanding
its functionality for analyzing and recognizing graph structures.

This paper is structured as follows. Section 2, we review the necessary theory
to understand the developed algorithm; in Section 3, we describe the algorithm for iden-
tifying corona products, as well as its limitations; finally, in Section 4, we present our
results.

2. Preliminaries
We will use the standard notations and definitions in Graph Theory as presented

in [Bondy and Murty 2008] and [Booth and Colbourn 1979]. For a graph G, its vertex
and edge sets are denoted by V (G) and E(G), respectively. Given two graphs G and G′,
we say that graph G is isomorphic to graph G′ and write G ∼= G′ if there exists a bijection
ϕ : V → V ′ such that xy ∈ E(G) if and only if ϕ(x)ϕ(y) ∈ E(G′) for all x, y ∈ V .

In a simple graph of order n, the degree of a vertex v, denoted by deg(v), is the
number of edges incident to v. An isolated vertex is a vertex of degree zero, that is, a
vertex that is not an endpoint of any edge. The neighborhood of a vertex v, denoted by
NG(v), is the set of all neighbors of v in G. The neighborhood of a subset V of V (G),
denoted as NG(V), is the union of the neighborhoods of the vertices of V . A subgraph of
a graph G is a graph G′ = (V ′, E ′), where V ′ ⊆ V (G) and E ′ ⊆ E(G). If G′ contains all
edges uv ∈ E(G) for all vertices u, v ∈ V ′, then G′ is called an induced subgraph of G,
and is denoted by G[V ′]. We say that V ′ induces or generates G′ in G.

A relation R on a set S is called reflexive if, for every a ∈ S, we have aR a,
meaning that each element is related to itself. The relation R is symmetric if, for any
a, b ∈ S, we have aR b ⇒ bR a; in other words, if an element a is related to b, then
b is also related to a. The relation R is transitive if, for any a, b, c ∈ S, we have aR b
and bR c ⇒ aR c, which means that if a is related to b and b is related to c, then a is
also related to c. If a relation R on S satisfies the properties of reflexivity, symmetry, and
transitivity, then R is called an equivalence relation on S.

Two problems A and B are considered polynomially reducible if there is a
polynomial-time computable function f that transforms any instance x of problem A into
a corresponding instance f(x) of problem B, such that x ∈ A if and only if f(x) ∈ B. If
there exists also a polynomial-time computable function in the reverse order, we say that

A and B are polynomially equivalent. In that case, solving either of the two problems in
polynomial time implies that the other can also be solved in polynomial time.

We define a loop as a set of instructions that repeats within an algorithm, continu-
ing for a specified number of iterations or until a certain condition is met to terminate the
process.

2.1. Some Classes of Graphs

Classes of graphs group those that share common properties. In this work, we
consider only undirected graphs. A path is a sequence of distinct vertices connected by
edges between consecutive vertices. The first vertex in this sequence is called the initial
vertex, while the last vertex is the terminal vertex. The shortest path between two vertices,
known as the shortest path, contains the minimum number of edges connecting them.

A path graph is one formed by n vertices v1, v2, . . . , vn, where each vertex vi is
connected to the next vertex vi+1 by an edge, for 1 ≤ i ≤ n − 1. The vertices v1 and vn
are the endpoints, each with degree one, while all other vertices have degree two.

On the other hand, when a path starts and ends at the same vertex, it forms a cycle.
The cycle graph, denoted by Cn, has n vertices and n edges, with each vertex having
degree two, provided n ≥ 3.

The complete graph, by contrast, connects every pair of distinct vertices with an
edge. Denoted by Kn, it contains n(n−1)

2
edges.

Finally, a graph G is said to be bipartite if its vertex set V (G) can be divided into
two disjoint subsets A and B, such that all edges connect vertices from A to vertices in
B. The complete bipartite graph, Kn,m, is a bipartite graph where |A| = n and |B| = m,
and each vertex in A is connected to every vertex in B.

Let G be a graph with n vertices and H a graph with m vertices. The corona
product of G and H is the graph G ◦H constructed by taking a copy of G and n copies of
H . The connection between them is established by adding an edge from the i-th vertex of
G, for 1 ≤ i ≤ n, to each vertex in the i-th copy of H . Throughout this paper, we refer to
G as the core and H as the copy, these being the copies of H in G ◦H . See an example
of a corona product in Figure 1.

Figure 1. Example of the corona product of a cycle C3 and a complete graph K4, C3 ◦K4.

3. Recognition Algorithm

In this section, we present our main result, the Algorithm 1. It recognizes the
corona product in graphs without restrictions on G, while H is restricted to graphs in
classes where the isomorphism test can be resolved in polynomial time.

Algorithm 1: ISCORONAPRODUCT(X)
Input: Connected graph X = (V,E)
Output: True, if there exists a corona decomposition X ∼= G ◦H , for some

graphs G and H; or False, otherwise

1 Let n = |V (X)|;
2 Let v1, v2, . . . , vn be an ordering of the vertices of X such that

d(v1) ≥ d(v2) ≥ · · · ≥ d(vn);
3 for i = 1 to n do
4 Let q = n−i+1

i ;
5 if q ∈ Z then
6 Let V (G) = {v1, v2, . . . , vi};
7 for j = 1 to i do
8 if |NX(vj) \ V (G)| ≠ q then
9 break this j-loop and begin the next iteration of the i-loop;

10 Let V (Hj) = NX(vj) \ V (G);

11 for j = 1 to i− 1 do
12 if X[V (Hj)] ≇ X[V (Hj+1)] then
13 break this j-loop and begin the next iteration of the i-loop;

14 return True;

15 return False;

First, Algorithm 1 attempts to identify the core of a potential corona product. For
this purpose, we use Proposition 1. First, we recall the definition of the corona product.
For each vertex vi ∈ V (G), a copy of the graph H , denoted by Hi, is added. Each vertex
of Hi, denoted as uj,i ∈ V (Hi), where uj,i corresponds to uj ∈ V (H), is connected to the
vertex vi in G. It is also important to note that there are no connections between distinct
copies of H .

Proposition 1. Let X ∼= G◦H be the corona product of two non-trivial connected graphs
G and H . Denote V (G) = {v1, . . . , vn} and V (H) = {u1, . . . , um}. If vi ∈ V (G) and
uj ∈ V (H), for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, then degX(uj,i) < degX(vi).

Proof. We aim to prove that, for vi ∈ V (G) and uj,i ∈ V (Hi), the degree of uj,i in the
graph X = G ◦H is less than the degree of vi.

To do this, let us analyze the degrees. The vertex vi ∈ V (G) is connected to at
least one neighbor in G, as we define G as a non-trivial graph. If degG(vi) is the degree
of vi in the graph G, then vi has degG(vi) neighbors. Additionally, vi is connected to all
vertices of the copy Hi, which contains m vertices, as |V (H)| = m. Hence, the degree of
vi in X is given by degX(vi) = degG(vi)+m. Now, we compare the degree of vi with the

degree of uj,i, where degX(uj,i) = degH(uj) + 1. Thus, for degG◦H(uj,i) < degG◦H(vi)
to hold, we must have degH(uj) + 1 < degG(vi) +m.

We know that uj ∈ V (H), so degH(uj) ≤ m− 1, since the maximum degree of a
vertex in H is m−1, in the case where H is a complete graph. This implies degH(uj)+1 ≤
m.

On the other hand, degG(vi) ≥ 1, as vi must have at least one neighbor in G.
Thus, degG(vi) + m ≥ m + 1. Consequently, we conclude that degH(uj) + 1 ≤ m <
degG(vi) +m, which proves that degX(uj,i) < degX(vi).

Therefore, we conclude that, for any vertex uj,i ∈ V (Hi) and vi ∈ V (G), the
degree of uj,i in the graph G ◦H is always less than the degree of vi.

By Proposition 1, we know that the vertices with greater degree in X are candi-
dates to belong to the core. The following lemmas are derived from the Algorithm 1:

Lemma 1. If X ∼= G ◦H , then |V (X)| = |V (G)|+ |V (G)| · |V (H)|.

Proof. This result follows directly from the definition of the corona product, which states
that each vertex in G is associated with a distinct copy of H , forming a union of these
copies alongside G itself.

Thus, the structure permits the vertices to be arranged in a matrix representing the
order and adjacency of vertices within the corona product.

Lemma 2. The Isomorphism relation R between two graphs is an equivalence relation.

Proof. To show that isomorphism is an equivalence relation, we must prove that this
relation is reflexive, symmetric, and transitive.

Let G be a simple graph. The identity function id : V (G) → V (G), defined
by id(v) = v for every v ∈ V (G), is a bijection from V (G) to itself. Moreover, since
id preserves adjacencies, i.e., uv ∈ E(G) ⇔ id(u) id(v) ∈ E(G), we have that G is
isomorphic to itself. Therefore, the isomorphism relation is reflexive.

Now, suppose G1 and G2 are simple graphs such that G1 is isomorphic to G2.
Then, there exists a bijection f : V (G1) → V (G2) that preserves adjacencies, i.e., uv ∈
E(G1) ⇔ f(u)f(v) ∈ E(G2). Since f is a bijection, there exists an inverse function f−1 :
V (G2) → V (G1), which is also a bijection. Furthermore, f−1 preserves adjacencies,
because if f(u)f(v) ∈ E(G2), then uv ∈ E(G1). Therefore, f−1 is an isomorphism from
G2 to G1, which implies that G2 is isomorphic to G1. Thus, the isomorphism relation is
symmetric.

Finally, let G1, G2, and G3 be simple graphs such that G1 is isomorphic to G2

and G2 is isomorphic to G3. Then, there exist bijections f : V (G1) → V (G2) and
g : V (G2) → V (G3) that preserve adjacencies. The composition g∗f : V (G1) → V (G3)
is a bijection, and for any u, v ∈ V (G1), we have uv ∈ E(G1) ⇔ f(u)f(v) ∈ E(G2) ⇔
g(f(u))g(f(v)) ∈ E(G3). Thus, g ∗ f preserves adjacencies, which implies that G1 is
isomorphic to G3. Therefore, the isomorphism relation is transitive.

If the conditions are satisfied, the algorithm performs final checks to ensure that
the degree of the neighbors of the core vertices is compatible with the structure of a corona
product. Otherwise, it concludes that X is not a corona product. If all conditions are met,
the graph is recognized as such.

This set of heuristics explores both the global structure of the graph and local
properties of vertices, allowing the algorithm to run efficiently, as we will prove in the
following proposition.
Proposition 2. Let X be a connected graph with n vertices. Algorithm 1 correctly deter-
mines whether X is a corona product G ◦H or not in O(n3+n2 · f(n)) time, where f(n)
is the complexity of deciding isomorphism in the class of graph H .

Proof. To perform an asymptotic analysis of Algorithm 1, we examine each execution
step and its corresponding computational complexity to determine the total cost in terms
of runtime.

Initially, the algorithm sorts the vertices v1, v2, . . . , vn of the graph X in non-
increasing order of degree, which requires a sorting operation with complexity O(n log n),
where n is the number of vertices in X . This sorting serves as preprocessing for the
following loops and will be done only once during the algorithm’s execution. The ideia
behind the sorting comes from Proposition 1.

Next, the algorithm enters a main loop in Line 3 that iterates over each possible
value of i, where i ranges from 1 to n, exploring different vertex partitions to check if a
corona product structure can be identified. Therefore, this loop executes n iterations in
the worst case, as it goes through all possible choices for i.

Within the main loop, the algorithm computes the value q = n−i+1
i

, an operation
with constant complexity O(1) that is performed in each iteration. This value q determines
the feasibility of partitioning the vertices as intended, as non-integer values indicate an
incompatible distribution for the base structure. When feasible, the resulting configuration
can be visualized as a matrix, as shown in Figure 2, an arrangement justified by Lemma 1.

After defining q, the algorithm enters a second loop in Line 7, iterating over each
vertex vj in the set V (G), which contains at most n vertices. At this point, for each vertex
vj , the algorithm checks if the neighborhood NX(vj) \ V (G) contains exactly q vertices.
This neighborhood check has a cost proportional to the degree of vj , which is O(n) in
the worst case, as vj could be connected to all other vertices in X . Thus, the cost of this
operation for all n vertices in V (G) is O(n2).

Finally, the algorithm performs isomorphism tests in Line 11 between the sub-
graphs Hj , verifying if they are isomorphic to each other. This test is conducted for n− 1
pairs of subgraphs Hj , aiming to ensure that all copies Hj form the desired corona product
structure. The isomorphism test between two graphs generally has a high cost, potentially
requiring exponential time in the worst case. We denote this cost as f(n), where f(n)
represents the complexity of deciding isomorphism. Given that there are n − 1 pairs of
graphs to compare—as we do not need to check all pairs since Lemma 2 guarantees that
isomorphism is an equivalence relation—the complexity of this step is O(n · f(n)).

Therefore, the total complexity of the algorithm is dominated by the main loop and
the isomorphism tests, as these represent the most computationally expensive processes.

The overall complexity of the algorithm can be expressed as O(n3 + n2 · f(n)), where
f(n) is the cost associated with the isomorphism test. If the subgraphs Hj are small or
the isomorphism test can be optimized for o(n3), the term O(n3) becomes dominant.

Figure 2. Matrix (q + 1)× i representing the partitioning process of Algorithm 1.

Path graphs, cycles, and complete graphs exhibit regular structures with well-
defined degree properties, which simplifies analysis in the context of the corona product.
In these classes, vertex degrees follow specific patterns. In complete graphs, all vertices
have a maximum and uniform degree. In path graphs, vertex degrees vary predictably
between one and two. In cycles, all vertices have degree two. This degree regularity
enables a simplified isomorphism verification among the copies of H and facilitates the
decomposition into a corona product, due to the structural predictability of these classes.
See how the corona product of a cycle C3 and a complete graph K4 is represented in the
matrix in Figure 3.

Figure 3. For q = 4 and i = 3, the matrix (q + 1) × i, resulting in 5 × 3, illustrates a
successful partitioning process of the corona product C3 ◦K4.

From Propositions 1 and 2, we derive the following corollary, which formalizes
the efficiency of the proposed algorithm for specific graph classes.

Corollary 1. Let X be a graph that admits a corona decomposition X ∼= G◦H , where H
belongs to the classes of path, cycle, or complete graphs. Under these conditions, corona
product recognition can be performed with O(n3) complexity.

Proof. Recall the result established in Proposition 2, which states that the recognition of
the corona product X ∼= G◦H can be performed with a complexity of O(n3+n2 · f(n)),
where f(n) depends on the complexity of verifying structural constraints for H .

For H being a path, a cycle, or a complete graph, f(n) = O(n), which implies
n2 · f(n) = O(n3). Thus, the total complexity reduces to O(n3).

This confirms that for these specific classes of H , corona product recognition is
achievable within cubic time, as stated.

This result demonstrates the algorithm’s practicality when H belongs to well-
structured graph classes, such as paths, cycles, or complete graphs. These graph classes
enable the algorithm to leverage their inherent structural properties, ensuring efficient
recognition within cubic time complexity. Future work could investigate whether similar
performance guarantees can be extended to other graph classes.

4. Final Remarks

In this work, we presented an algorithm to recognize some corona product graphs.
The approach allows G to be any arbitrary graph while restricting H to graph classes
where the isomorphism problem is solvable in polynomial time.

This study represents an initial contribution to the recognition of corona products
in graphs, providing an efficient solution for specific classes as seen in Corollary 1.

For future work, we suggest the implementation and integration of this algorithm
into the system described in [Graph problems tool 2022]. Practical implementation may
reveal additional factors that impact performance, such as hidden costs in intermediate
operations. Furthermore, we propose studying its applicability to the corona product of
other graph classes, such as permutation graphs, where isomorphism can be determined
in linear time [Colbourn 1981].

Acknowledgment

The authors express their sincere gratitude to the Conselho Nacional de Desen-
volvimento Científico (CNPq) for the financial support that enabled this research. This
study was conducted as part of the activities developed under the Programa de Iniciação
à Pesquisa (PIP-UFG).

References

Bhange, A. and Bhapkar, H. (2020). Perfect coloring of corona product of cycle
graph with cycle, path and null graph. Advances in Mathematics: Scientific Journal,
9:10839–10844.

Bondy, J. A. and Murty, U. S. R. (2008). Graph theory. Springer Publishing Company,
Incorporated.

Booth, K. S. and Colbourn, C. J. (1979). Problems polynomially equivalent to graph iso-
morphism. Technical Report CS-77-04, Department of Computer Science, University
of Waterloo.

Colbourn, C. (1981). On testing isomorphism of permutation graphs. Networks, 11(1):13–
21.

da Silva, D. and da Silva, H. (2022). Algoritmos para compor uma ferramenta web:
geração de grafos grades e cordais e solução de conjunto independente, clique e em-
parelhamento em grafos. In Anais da X Escola Regional de Informática de Goiás,
pages 118–129, Porto Alegre, RS, Brasil. SBC.

Feigenbaum, J. and Schaffer, A. (1985). Recognizing corona graphs. AT&T Bell Labora-
tories Technical Memorandum.

Frucht, R. and Harary, F. (1970). On the corona of two graphs. Aequationes mathemati-
cae, 4(3):322–325.

Furmanczyk, H., Kubale, M., and Mkrtchyan, V. (2012). Equitable colorings of corona
multiproducts of graphs. Discussiones Mathematicae Graph Theory, 37.

G. Yero, I., Kuziak, D., and Aguilar, A. (2012). Coloring, location and domination of
corona graphs. Aequationes Mathematicae.

Graph problems tool (2022). Graph problems tool. https://github.com/braul
ly/graph-problems-tool. Accessed on October 13, 2024.

Halim, S. (2015). Visualgo–visualising data structures and algorithms through animation.
Olympiads in informatics, 9:243–245.

Sabidussi, G. (1959). The composition of graphs. Duke Mathematical Journal, 26(4):693
– 696.

Sharma, R., Adhikari, B., and Krueger, T. (2019). Self-organized corona graphs: A de-
terministic complex network model with hierarchical structure. Advances in Complex
Systems, 22(06):1950019.

Silva, B. R. (2018). Algoritmos e limites para os números envoltório e de Carathéodory
na convexidade P3. Dissertação (mestrado em ciência da computação), Universidade
Federal de Goiás, Goiânia. 93 f.

UnickSoft (2024). Graph online. https://graphonline.ru/en/. Accessed on
October 12, 2024.

https://github.com/braully/graph-problems-tool
https://github.com/braully/graph-problems-tool
https://graphonline.ru/en/

	Introduction
	Preliminaries
	Some Classes of Graphs

	Recognition Algorithm
	Final Remarks

