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Resumo. Este artigo investiga propriedades de coloracdo de prismas complementares
GG, que sdo grafos formados pela combinacdo da cépia de um grafo G com a cdpia
de seu complemento G através de um emparelhamento perfeito de vértices correspon-
dentes. Apresentamos limites superiores e inferiores para o niimero cromdtico em
algumas classes de grafos. Para grafos bipartidos completos K, s, determinamos o
valor exato de X(KmK_T,S) em funcdo de r e s. Para ciclos C,, e caminhos P,, com
n > b, estabelecemos que x(C,,C,,) = x(P,P,) = [n/2]. Adicionalmente, apresenta-
mos cotas inferiores para prismas complementares de grafos perfeitos e planares. Os
resultados ajustam os limites de trabalhos anteriores e contribuem para o entendimento
da estrutura combinatoria destes grafos por meio de construgoes algoritmicas.

1. Introducao

Um grafo é um par G = (V, E), em que V' é um conjunto finito e ndo vazio cujos elementos sdo
chamados de vértices, e E C {{u,v} | u,v € V, u # v} é um conjunto de pares ndo ordenados
de vértices, chamados de arestas. O estudo de grafos € motivado pela necessidade de representar
e analisar relacOes entre objetos discretos, permitindo a formalizacdo matematica de problemas
praticos em computagdo, logistica, biologia e telecomunicacdes. Dentro desse contexto, a
investigacdo de propriedades estruturais em classes especificas de grafos tem mostrado ser
relevante para o desenvolvimento da area.

Os prismas complementares, introduzidos por Haynes et al. [Haynes et al. 2007] sdo uma
classe de grafos que combinam uma cépia do grafo G com uma cépia de seu complemento G por
meio de um emparelhamento perfeito de vértices correspondentes. Esta construcdo, denotada por
GG, é uma classe de grafos adequada para a investigacio de diversas propriedades combinatdrias
e inclui grafos conhecidos, como o grafo de Petersen, que é o prisma complementar C5C’.

A relevancia desta classe de grafos € evidenciada pela crescente literatura dedicada a
explorar suas propriedades. Pesquisas recentes investigaram o indice cromatico (coloragao de
arestas) [Zatesko et al. 2019], o nimero B-cromdtico [Bendali-Braham et al. 2019], c6digos de
identificacdo [Cappelle et al. 2019, Cappelle et al. 2022], coloracao injetiva [Raksha et al. 2020],
o problema de k-independéncia [Mortosa et al. 2022] e atribuicdes de papéis (role assignments)
[Castonguay et al. 2025].

Apesar do interesse em variantes de coloracdo e outros problemas, um estudo sistematico
focado no pardmetro de colora¢io mais fundamental — o nimero cromdtico de vértices x(GG)
— ainda apresenta oportunidades para uma caracteriza¢do mais completa. Enquanto proble-
mas especificos, como a coloragdo de arestas e atribui¢des de papéis, ja foram abordados, a
determinacdo do niimero cromético de vértices, em sua forma cldssica, para familias de prismas
complementares permanece como uma drea a ser aprofundada.

Neste artigo, nosso objetivo € contribuir para o desenvolvimento dessa area, refinando
a analise do nimero cromatico de prismas complementares. Buscamos oferecer limites desse



parametro para algumas classes de grafos, incluindo grafos bipartidos, bipartidos completos,
ciclos, caminhos, perfeitos e planares. Nossos resultados ndao apenas estendem os resultados
de trabalhos anteriores, mas também oferecem novos insights sobre a estrutura dessa classe de
grafos.

2. Preliminares
2.1. Definicoes Basicas

Nesta se¢do, apresentamos as defini¢des e notacOes fundamentais utilizadas ao longo deste traba-
lho. Buscamos, sempre que possivel, adotar a terminologia e as convencdes de [Haynes et al. 2007,
Bondy and Murty 2008].

No estudo de grafos, frequentemente precisamos identificar vértices que ndo estdo
conectados entre si. O grau deg(v) de um vértice v é o nimero de arestas incidentes a v;
denotamos por 6(G) e A(G) o grau minimo e o grau maximo de G, respectivamente. Um
subconjunto S de vértices V' de um grafo G é chamado de conjunto independente quando
nenhum par de vértices em .S € adjacente em G. O niimero de independéncia de G, denotado por
a(G), é o tamanho do maior subconjunto de vértices de G que sdo mutuamente ndo-adjacentes.

Em contraste com conjuntos independentes, temos estruturas em que todos os vértices
estdo conectados. Um grafo completo € um grafo simples no qual cada par de vértices distintos
¢ unido por uma aresta. Este conceito se estende naturalmente para subgrafos: uma clique
de um grafo simples G = (V, E) é um subconjunto S de V' tal que quaisquer dois vértices
distintos em S sdo adjacentes em (. Formalmente, o subgrafo induzido G[S], que contém
todos os vértices de S e todas as arestas de (G com ambas as extremidades em S, forma um
grafo completo. Analogamente ao nimero de independéncia, definimos o niimero de clique,
denotado por w(G), como o tamanho do maior subconjunto de vértices de G que sdo mutuamente
adjacentes, quantificando o maior agrupamento completamente conectado possivel no grafo.

Uma relacdo fundamental entre esses conceitos surge através do grafo complementar G
de um grafo G. O grafo G possui o mesmo conjunto de vértices que G, mas dois vértices sio
adjacentes em G se e somente se niio sio adjacentes em (. Esta dualidade revela que conjuntos
independentes em G correspondem exatamente a cliques em G, e vice-versa, estabelecendo

assim que a(G) = w(G) e w(G) = a(Q).

Um grafo G = (V, E) é bipartido se existe uma particiode V = AU Bcom AN B = ()
tal que toda aresta de F/ conecta um vértice de A a um vértice de B. O grafo bipartido completo
K, s, com1 < r < s, éum grafo bipartido onde |A| = r e |B| = s, e cada vértice de A é
adjacente a todos os vértices de B.

Um grafo G € perfeito se, para todo subgrafo induzido G[S] de GG, o nimero cromatico
de G[S] € igual ao tamanho de sua maior clique, isto é, x(G[S]) = w(G[S]). Esta classe inclui
diversas classes de grafos conhecidos como grafos bipartidos. Um grafo € planar se pode ser
desenhado no plano sem que suas arestas se cruzem, exceto nos vértices. Pelo célebre Teorema
das Quatro Cores, todo grafo planar pode ser colorido com no méximo quatro cores, ou seja,
X(G) < 4 para todo grafo planar GG. Estas duas classes de grafos — perfeitos e planares —
possuem aplicagdes praticas em areas como otimizagdo combinatoria e desenho de circuitos.

Outro conceito fundamental na teoria dos grafos é a coloragdo de vértices. Seja C' =
{c1,¢a, ..., cx} um conjunto de k cores. Uma k-coloragdo de vértices de um grafo G = (V, E)
¢ um mapeamento ¢ : V' — (' que atribui uma cor a cada vértice. A coloracdo é dita propria
se c(u) # c(v) para toda aresta uv € F, isto €, vértices adjacentes recebem cores distintas. O
niimero cromdtico x(G) é o menor valor de k para o qual G admite uma k-colorag@o prépria.



Notavelmente, cada classe de cor em uma coloracdo propria forma um conjunto independente,
estabelecendo uma conexdo profunda entre coloracao e independéncia em grafos.

Finalmente, unindo os conceitos de grafo e de seu complemento, temos o prisma comple-
mentar GG de um grafo G. Esta estrutura é construida pela unido disjunta de uma cépia de G e
uma cépia de seu complemento G, adicionando-se um emparelhamento perfeito entre os vértices
correspondentes. Formalmente, V (GG) = V(G) UV (G) e BE(GG) = E(G)U E(G) U {vD :
v € V(G)}, onde T denota o vértice correspondente a v na cépia de G. Este produto captura
simultaneamente as propriedades estruturais de um grafo e seu complementar, criando um objeto
interessante para investigacao tedrica. Veja na Figura 1 a 3-coloragdo do prisma complementar
C5C5, conhecido como grafo de Petersen.

Paran > 1, K,, e P, denotam, respectivamente, o grafo completo € o caminho com n
vértices. Paran > 3, C,, denota o ciclo com n vértices. Especificamente, V' (P,) = {vy,...,v,}
€ E(Pn) = {'Uﬂ}i+1 1< <n— 1}, V(Cn) = {'Ul,...,?]n} € E(Cn) = {Uﬂ]prl 1 <1 <
n—1} U {v,v}.
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Figura 1. Grafo de Petersen, o prisma complementar de C5, com uma coloracao propria
de cardinalidade 3.

2.2. Propriedades Basicas Conhecidas

As propriedades estruturais do prisma complementar seguem diretamente de sua construgao.
Para qualquer grafo G de ordem n, o prisma complementar GG possui exatamente 2n vértices,
resultado natural da unido disjunta de duas cépias de grafos com n vértices cada. Além disso, a
estrutura do prisma estabelece uma relagcdo precisa entre os graus dos vértices correspondentes:
para vértices correspondentes v em G e T em G, temos que deg(v) + deg(v) = n + 1. Esta
igualdade reflete o fato de que v estd conectado a seus vizinhos em (&, enquanto v estd conectado
aos nao-vizinhos de v no grafo original, e ambos estao conectados entre si através da aresta do
emparelhamento perfeito.

No contexto mais amplo da teoria dos grafos, uma desigualdade fundamental relaciona o
ndmero cromdtico com outros parametros do grafo. Para qualquer grafo G de ordem n, vale que
X(G) > max{w(G),n/a(G)}. Esta cota inferior captura duas restricdes essenciais: primeiro,
precisamos de pelo menos w((G) cores para colorir adequadamente uma clique maxima; segundo,
como cada classe de cor forma um conjunto independente de tamanho no maximo «(G), neces-
sitamos de pelo menos n/a(G) cores para acomodar todos os vértices. Estas relagdes fornecem
ferramentas valiosas para a andlise estrutural de grafos e seus prismas complementares.

Teorema 2.1 ([Haynes et al. 2007]). Para qualquer grafo G:
max{x(G), x(G)} < x(GG) < x(G) + x(G).

O limite inferior segue do fato de que G e G sdo subgrafos de G'G. Para o limite superior,
podemos colorir a cépia de G com x(G) cores e a cpia de G com um conjunto disjunto de x(G)



novas cores. Como ndo ha arestas entre as copias, exceto entre vértices correspondentes (que
terdo cores de conjuntos disjuntos), a coloracdo € vélida.

Este teorema estabelece limites fundamentais para o nimero cromatico do prisma com-

plementar. Por exemplo, considerando G = K3, temos x(G) = 3 e x(&) = 1, resultando em
X(GG) = 3, que satisfaz a desigualdade 3 < 3 < 4.

Teorema 2.2 ([Haynes et al. 2007]). Para todo grafo G de ordem n:
Y(GG) < n,

com igualdade se e somente se G € {K,,, K, }.

A caracterizacao dos grafos que atingem o limite superior do Teorema 2.2 € particular-
mente elegante: apenas o grafo completo e o grafo vazio resultam em prismas complementares
com numero cromatico maximo. De fato, para G = K, obtemos X(G’@) = 4, confirmando que
o limite superior € atingido precisamente quando GG é um grafo completo.

Teorema 2.3 ([Haynes et al. 2007]). Para todo grafo G:
a(G) +a(G) — 1 < a(GG) < a(G) + a(G),

Os limites para o nimero de independéncia do prisma complementar revelam uma
relacdo quase aditiva entre os niimeros de independéncia de G e G. Um caso ilustrativo é o
ciclo de 5 vértices C5, onde a(Cs) = 2, a(Cs) = 2, e a(C5C5) = 3. Estes valores satisfazem
a desigualdade 3 < 3 < 4, mostrando que o limite inferior pode ser estritamente menor que o
superior, diferentemente do que ocorre em muitos casos particulares.

3. Resultados

Nesta secdo, apresentamos nossos principais resultados. Estabelecemos uma desigualdade geral
para grafos bipartidos e determinamos 0 nimero cromatico exato para prismas complementares
de grafos bipartidos completos, ciclos e caminhos. Concluimos com cotas inferiores para grafos
perfeitos e planares.

Teorema 3.1 (Coloragdo de Prismas Complementares de Grafos Bipartidos). Seja G = (A U
B, E) um grafo bipartido com n = |A| + | B| vértices. Entdo:

Y(GG) < min{n,2+ x(G)}.

Demonstragdo. Pela desigualdade geral x(GG) < x(G) + x(G) e o fato de que x(G) = 2
para grafos bipartidos, obtemos x(GG) < 2 + x(G). Além disso, pelo Teorema 2.2, temos
X(GG) < n. O

Ilustramos o Teorema 3.1 considerando o grafo bipartido G com n = 8 vértices, formado
pela juncao de duas estrelas K 3 através de uma aresta entre seus vértices centrais. O maior
conjunto independente de GG € formado por seus 6 vértices-folha, que correspondem a uma
6-clique em G. Assim, w(G) = 6 e, portanto, (G) > 6. Para mostrar que x(G) = 6, atribufmos
cores distintas aos vértices da clique e observamos que os vértices centrais ¢; e ¢ podem receber
cores ja utilizadas: c¢; pode assumir a cor de uma de suas folhas originais, pois em G ele é
adjacente apenas as folhas de c; (e analogamente para cy). Aplicando o teorema, obtemos
X(GG) < min{8,2 + 6} = 8.



Teorema 3.2 (Coloracao de Prismas Complementares de Grafos Bipartidos Completos). Para o
grafo bipartido completo K, s com 1 < r < s, o nimero cromdtico de seu prisma complementar
é:

X(KT,SKT,S) =S
exceto quando (r =1e s < 3)ou (r =s < 4), casos em que x(K, K, ;) = s+ 1.

Demonstragdo. Seja G = K, ; com conjuntos de vértices 2 € S de tamanhos [R| =1 € [S] = s.
O grafo complementar, (7, € a unido disjunta dos grafos completos K, (induzido pelos vértices
de R) e K (induzido pelos vértices de S). O prisma complementar GG € formado por G, G e

uma correspondéncia perfeita entre os vértices v € V(G) e v € V(G).

A presenga da clique S de tamanho s em G estabelece um limite inferior para o niimero
cromidtico: x(GG) > w(GG) > s.

Para a colorag@o da clique S, sempre utilizamos s cores distintas: ¢(@;) = ¢; para
t=1,...,s. Esta atribuicao € fixa em todos os casos e consome necessariamente s cores.

Agora analisamos quando s cores sdo suficientes e quando uma cor adicional € necessaria.
Caso 1: \(K, K, ) =s+1

Subcaso 1.1: r = 1 e s < 2. Paras = 1, G é um P,, e seu prisma complementar PP,
¢ um ciclo (Y4, cujo nimero cromético € 2 = s + 1. Para s = 2, G é um Pj, e seu prisma
complementar contém um C5 como subgrafo induzido, exigindo x(Ps;P;) = 3 = s + 1 cores.

Subcaso 1.2: 7 = ses € {2,3}. Paras = 2, Ky,K,, é o prisma de Cj, que tem
X = 3 = s+ 1. Para s = 3, é um resultado conhecido que x(K33K33) = 4 = s + 1, pois
as restri¢des impostas pelas duas 3-cliques em G e a estrutura bipartida de G impedem uma
3-coloracao.

Caso 2: \(K, . K,,) = s

Para os demais casos, mostraremos que s cores sao suficientes através de construcoes
especificas. Nossa estratégia geral consiste em colorir as cliques em GG com cores distintas e

entdo reutilizar pequenos conjuntos fixos de cores para os conjuntos de vértices independentes S
e RemG.

Subcaso 2.1: » = 1 e s > 3. Apds colorir a clique S, colorimos o vértice central v, de G
com c(v1) = ¢;. Seu correspondente 77 € adjacente apenas a v;, entdo usamos ¢(v7) = Cg, pOis
s > 3 garante sua disponibilidade.

Para os vértices u; de S, cada um é adjacente a vy (cor ¢;) e a w; (cor ¢;). Colorimos
c(uy) = ¢y (evitando conflito com ¢(u7) = ¢1), c(uy) = c3 (evitando ¢; e ¢3), € para i > 2,
usamos c(u;) = ¢, (evitando apenas c; e ¢;). A construgdo utiliza exatamente s cores.

Subcaso 2.2: r = s e s > 4. Colorimos ambas as cliques: ¢(;) = ¢; e ¢(7;) = ¢; para
i=1,...,s. Como s > 4, podemos usar conjuntos de cores disjuntos para as partes de G.

Para os vértices de .S, usamos as cores {cy,ca}: c(uy) = ¢, c(uz) = ¢, e ¢(u;) = ¢4
para ¢ > 2. Para os vértices de R, usamos as cores {cs, ¢4 }: c(v3) = ¢4, c¢(vq) = c3, € ¢(v;) = 3
para j ¢ {3,4}

A coloragdo € valida, pois garante que c(u;) # c(w;), c(v;) # c(v;) e que c(w;) # c(v;).
O Algoritmo 1 detalha esta construcao.

Subcaso 2.3: 2 < r < s e s > 4. Apés colorir a clique .S, colorimos os vértices de S em
G usando duas cores (possivel pois s > 1 > 2 = s> 3): ¢(u1) = ¢y e ¢(u;) = ¢y parai > 2.



Algoritmo 1 Coloragio de K, (K, ; para s > 4

Entrada: Grafo G = K, com partes R = {vy,...,v.} ¢S = {uy,...,us}; conjunto de s
cores C' = {cy,...,¢s}.
Saida: Uma s-coloragdo propria c para GG.
// Etapa 1: Colorir a cliqgue S em G
1: parai < 1 até s faca
c(u;) + ¢ > Colorir a clique S
3: fim para
// Etapa 2: Colorir a clique R em G
4: parai < 1 até r faca

5 o(my) + ¢ > Colorir a clique R
6: fim para

// Etapa 3: Colorir os vértices de S em G com as cores {c1, c2}
7 c(uy) < ¢ > Evita conflito com ¢(u7) = ¢4
8: parai < 2 até s faca

: c(w;) < ¢ > Valido pois i > 2 = ¢(W;) # 1

10: fim para

// Etapa 4: Colorir os vértices de R em G com as cores {cs, c4}
11: c(vs) < ¢4 > Evita conflito com ¢(73) = ¢3
12: paraj € {1,...,r}\ {3} faca
13: c(vj) ¢ c3 > Vilido pois j ¢ {3} = ¢(7;) # c3
14: fim para

15: retorne c

Considerando os subgrafos induzidos em G, os vértices de R sao adjacentes a todos os
vértices de S. S ja estd colorido com {cy, c2} e € possivel colorir inteiramente R com {c3}. Para
a r-clique em R, cada vértice U; tem seu correspondente v; colorido com c3. Precisamos de r
cores distintas do conjunto C' \ {c3}, que possui s — 1 cores disponiveis. A condigdo r < s
garante que hd cores suficientes. A construgdo utiliza s cores e € vdlida. 0

Teorema 3.3 (Coloragdo de Prismas Complementares de Grafos Ciclos). Para o grafo ciclo C,,
comn > 5 vértices:

X(CuCh) = [n/2].

Demonstragdo. Para o complemento de ciclos C,,, temos que w(C,,) = [n/2] e a(C,) = 2.
Para ciclos pares, o complemento Cs;, possui duas cliques de tamanho w = k, logo, sdo
necessdrias exatamente k cores. Para ciclos impares w(Cayy1) = | (2k + 1)/2] = k, porém ndo
conseguimos cobrir todos os vértices com apenas k cores, pois isso resultaria em o(C,,) = 3, jd
que [(2k +1)/k] = 3, o que é falso pela prépria estrutura de C,,. Portanto, o limite inferior para
o ndmero cromético x(C,C,) > [n/2].

Para o limite superior, os casos base n = 3 e n = 4 sdo verificados diretamente,
resultando em x(C3C3) = 3 e x(C4Cy) = 3. O caso n = 5 corresponde ao Grafo de Petersen,
cujo nimero cromatico € 3, satisfazendo a féormula [5/2] = 3.

Para n > 6, a prova é construtiva e utiliza k = [n/2] cores. A base da nossa coloragao
consiste em atribuir ao vértice v; de C), a cor ¢(v;) = crij2)- Esta regra produz a seguinte
k-coloragdo: c(v7) = ¢(T3) = c1,c(T3) = (V) = c2,¢(V5) = c(Us) = ¢3,...,¢(Tn) = Cnyay-



Essa é uma coloracao vdlida para o subgrafo C),, pois vértices com a mesma cor correspondem a
indices consecutivos em C,,, ndo sendo, portanto, adjacentes em C,.

A principal vantagem dessa atribui¢ao inicial é que as cores de indice baixo, como
c1,Cs € c3, sdo usadas apenas nos primeiros vértices de C,, (especificamente, para i < 6). Isso
nos permite usar, no pior caso, uma 3-colora¢do base para os vértices de C,,, reutilizando as
cores de C,,, sabendo que os conflitos de cores serdo poucos e localizados somente em uma
regido conhecida.

Se utilizarmos as cores ¢y, c2 € c3, 0s conflitos potenciais dessa abordagem sao de dois
tipos: (1) nas arestas de emparelhamento para os primeiros vértices, nesses casos, basta utilizar
as duas outras cores disponiveis nesta drea, ex: c(vy) = c(vs) = ca, c(vg) = ¢(vy) = c3, c(v3) =
c(vg) = c1; e (2) na aresta de fechamento v,,v; se o ciclo for impar. Como, para n > 6, temos
k > 3, entdo ¢(T,) ¢ {c1,c2,c3} pela constru¢do anterior. Portanto, a 3-coloragio de C,,
reutilizando as cores de C,,, respeitando os possiveis conflitos das arestas de emparelhamento
perfeito, € vélida. OJ

Como ilustragiio concreta, consideremos C7C7 onde n = 7e k = [7/2] = 4. Apli-
cando nossa construgdo, primeiro colorimos C7: ¢(77) = c(T3) = c1, c(T3) = c(T3) = ¢,
c(v5) = c(vg) = ¢3, c(v7) = ¢4. Para Cy, usamos as cores {ci, ¢a, c3} resolvendo confli-
tos locais: c(v1) = c(vs) = co,c(ve) = c(vy) = c3,¢(v3) = ¢(vg) = ¢;. Para v7, como
c(7) = ¢4 ¢ {c1, 2,3}, podemos usar ¢(v7) = c3, que difere de c¢(v1) = ¢z e c(vg) = ¢4,
validando a 4-coloragdo completa.

Teorema 3.4 (Coloracdo de Prismas Complementares de Grafos Caminhos). Para o grafo
caminho P, com n > 5 vértices:

X(PuPn) = [n/2].

Demonstragdo. Para o complemento de caminhos P,, temos que w(P,) = [n/2]. Em grafo
complementar de um caminho, podemos destacar duas de suas cliques. Uma de tamanho
[n/2] formada pelos vértices de indice impar, e outra de tamanho |n/2 | formada pelos vértices
de indice par. A presencga dessa clique maxima estabelece imediatamente o limite inferior
x(P,P,) > w(P,P,) > [n/2]. Mostraremos que este limite é justo através de uma construgio
explicita que utiliza exatamente k = [n /2] cores.

A prova € construtiva, baseada na estratégia usada para ciclos, mas simplificada pela
estrutura linear do caminho. Primeiro, colorimos os vértices de P, com a regra c(v;) = Crij2]-
Esta coloragio é vélida para o subgrafo P,, pois atribui a mesma cor apenas a vértices com indices
consecutivos no caminho original, que correspondem precisamente a vértices ndo adjacentes em
P,. Especificamente, as duas cliques em P, recebem cores distintas: a clique de tamanho [n/2]
usa todas as k cores, enquanto a clique menor usa as primeiras |n/2] cores.

Em seguida, colorimos os vértices de F,. A propriedade chave de um caminho € sua
estrutura linear, sem a aresta de fechamento v;v,, que existe em um ciclo. Isso garante que uma
2-coloragdo base sempre respeite as arestas adjacentes de F,.

O tnico desafio restante sdo os possiveis conflitos nas arestas de emparelhamento, que
ocorrem se ¢(v;) = ¢(7;). Seguindo a estratégia andloga a dos ciclos, colorimos P, usando as
cores {cy, ¢2, c3}. Como na construg@o anterior, as cores ¢y, ¢, € ¢3 aparecem apenas em c(7;)
paraz < 6, os conflitos ficam restritos a essa regido inicial. Resolvemos esses conflitos atribuindo
cores aos primeiros vértices de P, que evitam suas cores correspondentes: ¢(v;) = ¢, evitando



c(v1) = ¢, c(vg) = ¢3, c(v3) = ¢y, e assim por diante. Para i > 6, temos ¢(v;) ¢ {c1,ca, 3},
eliminando qualquer possibilidade de conflito.

A diferenga crucial em relagc@o aos ciclos é que o caminho P, ndo possui a aresta de
fechamento v,v;. Enquanto em ciclos impares precisamos garantir que c(v,) # c(vq), em
caminhos essa restri¢ao inexiste, simplificando significativamente a coloracdo. A estrutura linear
garante que uma 3-coloracdo apropriada de F,, sempre respeita tanto as arestas adjacentes quanto
as arestas de emparelhamento, assegurando que x (P, P,) = [n/2] paran > 5. O

Teorema 3.5 (Coloragdo de Prismas Complementares de Grafos Perfeitos). Se G é um grafo
perfeito, entdo B
X(GG) > max{w(G), a(G)}.

) )
resultado segue diretamente do limite inferior geral x(GG) > max{x(G), x(G)} estabelecido
no Teorema 2.1. O

Este teorema fornece uma cota inferior imediata para prismas complementares de grafos
perfeitos, conectando o nimero cromatico do prisma complementar com as propriedades do
grafo original. Por exemplo, para o ciclo Cj, que é um grafo perfeito com w(G) =2 e a(G) = 2,
obtemos x(C5C5) = 3 > 2, confirmando que o Grafo de Petersen satisfaz esta cota com igual-
dade préxima ao limite.

Teorema 3.6 (Coloracio de Prismas Complementares de Grafos Planares). Se G é um grafo
planar com n vértices:

X(GG) > x(G) = n/4.

Demonstracdo. Pelo risultado classico de Nordhaus e Gaddum [Nordhaus and Gaddum 1956],
sabemos que x(G)x(G) > n para qualquer grafo G. Como G € planar, pelo Teorema das

Quatro Cores [Appel and Haken 1978] temos X(Glg 4. Portanto, 4x(G) > n, o que implica
X(G) > n/4. O resultado segue pois x(GG) > x(G) pelo Teorema 2.1. O

Esta cota € particularmente util para grafos planares com muitos vértices, garantindo
que o prisma complementar terd nimero cromético crescente com a ordem do grafo. Para um
grafo planar maximal com 8 vértices, por exemplo, obtemos imediatamente que x(GG) > 2,
estabelecendo um limite inferior sem necessidade de analise estrutural detalhada.

4. Conclusao

Neste trabalho, investigamos o nimero cromatico de prismas complementares, uma classe de
grafos que combina um grafo com seu complemento com um emparelhamento perfeito. Apesar
de simples, nossos resultados fornecem limites mais estritos para o nimero cromatico dos que os
introduzidos por Haynes et al, em algumas familias de grafos.

Para grafos bipartidos completos K, , estabelecemos uma formula fechada que determina
X(KT’SK_W) em funcdo dos parametros 7 e s, evidenciando a dependéncia do valor em relagdo
ao balanceamento entre as partes. Para ciclos C;, com n > 5 e caminhos P, com n > 4,
demonstramos que x(C,,C,,) = x(P,P,) = [n/2], generalizando resultados conhecidos como
o nimero cromético do Grafo de Petersen. Adicionalmente, estabelecemos cotas inferiores para
prismas complementares de grafos perfeitos e planares, conectando o problema a parametros
estruturais dos grafos originais.



Um problema natural que emerge de nossa investigacdo € o refinamento do limite supe-
rior geral. O Teorema 2.1 estabelece que x(GG) < x(G) + x(G), enquanto o limite inferior é
max{x(G), x(G)}. Nossos resultados para classes especificas sugerem que, frequentemente, o
ndmero cromético se aproxima mais do limite inferior do que do superior. Isto motiva a seguinte

conjectura:

Conjectura 4.1. Para todo grafo G, dadas coloragdes prdprias minimas de G e G, é possivel
colorir GG com max{x(G), x(G)} + 1 cores.

Se verdadeira, esta conjectura estabeleceria um limite superior significativamente mais
restritivo do que o conhecido, aproximando-se do limite inferior fundamental. A existéncia de
casos como Ky 9K 5, onde Y(GG) = 3 = max{2,2} + 1, sugere que o limite proposto pode ser
estrito para algumas familias. Porém, estabelecer esse limite para qualquer prisma complementar
€ um problema combinatdrio mais elaborado e depende de uma construc¢do algoritmica ou de um
contraexemplo que deve ser explorado em trabalhos futuros.

Este trabalho da mais alguns passos no estudo cromatico de prismas complementares,
deixando em aberto a questdo fundamental do limite exato do ndmero cromatico geral e o papel
do emparelhamento perfeito na determinagao desse limite.
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