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Resumo. Este artigo investiga propriedades de coloração de prismas complementares
GG, que são grafos formados pela combinação da cópia de um grafo G com a cópia
de seu complemento G através de um emparelhamento perfeito de vértices correspon-
dentes. Apresentamos limites superiores e inferiores para o número cromático em
algumas classes de grafos. Para grafos bipartidos completos Kr,s, determinamos o
valor exato de χ(Kr,sKr,s) em função de r e s. Para ciclos Cn e caminhos Pn com
n ≥ 5, estabelecemos que χ(CnCn) = χ(PnPn) = ⌈n/2⌉. Adicionalmente, apresenta-
mos cotas inferiores para prismas complementares de grafos perfeitos e planares. Os
resultados ajustam os limites de trabalhos anteriores e contribuem para o entendimento
da estrutura combinatória destes grafos por meio de construções algorı́tmicas.

1. Introdução
Um grafo é um par G = (V,E), em que V é um conjunto finito e não vazio cujos elementos são
chamados de vértices, e E ⊆ {{u, v} | u, v ∈ V, u ̸= v} é um conjunto de pares não ordenados
de vértices, chamados de arestas. O estudo de grafos é motivado pela necessidade de representar
e analisar relações entre objetos discretos, permitindo a formalização matemática de problemas
práticos em computação, logı́stica, biologia e telecomunicações. Dentro desse contexto, a
investigação de propriedades estruturais em classes especı́ficas de grafos tem mostrado ser
relevante para o desenvolvimento da área.

Os prismas complementares, introduzidos por Haynes et al. [Haynes et al. 2007] são uma
classe de grafos que combinam uma cópia do grafo G com uma cópia de seu complemento G por
meio de um emparelhamento perfeito de vértices correspondentes. Esta construção, denotada por
GG, é uma classe de grafos adequada para a investigação de diversas propriedades combinatórias
e inclui grafos conhecidos, como o grafo de Petersen, que é o prisma complementar C5C5.

A relevância desta classe de grafos é evidenciada pela crescente literatura dedicada a
explorar suas propriedades. Pesquisas recentes investigaram o ı́ndice cromático (coloração de
arestas) [Zatesko et al. 2019], o número B-cromático [Bendali-Braham et al. 2019], códigos de
identificação [Cappelle et al. 2019, Cappelle et al. 2022], coloração injetiva [Raksha et al. 2020],
o problema de k-independência [Mortosa et al. 2022] e atribuições de papéis (role assignments)
[Castonguay et al. 2025].

Apesar do interesse em variantes de coloração e outros problemas, um estudo sistemático
focado no parâmetro de coloração mais fundamental — o número cromático de vértices χ(GG)
— ainda apresenta oportunidades para uma caracterização mais completa. Enquanto proble-
mas especı́ficos, como a coloração de arestas e atribuições de papéis, já foram abordados, a
determinação do número cromático de vértices, em sua forma clássica, para famı́lias de prismas
complementares permanece como uma área a ser aprofundada.

Neste artigo, nosso objetivo é contribuir para o desenvolvimento dessa área, refinando
a análise do número cromático de prismas complementares. Buscamos oferecer limites desse



parâmetro para algumas classes de grafos, incluindo grafos bipartidos, bipartidos completos,
ciclos, caminhos, perfeitos e planares. Nossos resultados não apenas estendem os resultados
de trabalhos anteriores, mas também oferecem novos insights sobre a estrutura dessa classe de
grafos.

2. Preliminares
2.1. Definições Básicas
Nesta seção, apresentamos as definições e notações fundamentais utilizadas ao longo deste traba-
lho. Buscamos, sempre que possı́vel, adotar a terminologia e as convenções de [Haynes et al. 2007,
Bondy and Murty 2008].

No estudo de grafos, frequentemente precisamos identificar vértices que não estão
conectados entre si. O grau deg(v) de um vértice v é o número de arestas incidentes a v;
denotamos por δ(G) e ∆(G) o grau mı́nimo e o grau máximo de G, respectivamente. Um
subconjunto S de vértices V de um grafo G é chamado de conjunto independente quando
nenhum par de vértices em S é adjacente em G. O número de independência de G, denotado por
α(G), é o tamanho do maior subconjunto de vértices de G que são mutuamente não-adjacentes.

Em contraste com conjuntos independentes, temos estruturas em que todos os vértices
estão conectados. Um grafo completo é um grafo simples no qual cada par de vértices distintos
é unido por uma aresta. Este conceito se estende naturalmente para subgrafos: uma clique
de um grafo simples G = (V,E) é um subconjunto S de V tal que quaisquer dois vértices
distintos em S são adjacentes em G. Formalmente, o subgrafo induzido G[S], que contém
todos os vértices de S e todas as arestas de G com ambas as extremidades em S, forma um
grafo completo. Analogamente ao número de independência, definimos o número de clique,
denotado por ω(G), como o tamanho do maior subconjunto de vértices de G que são mutuamente
adjacentes, quantificando o maior agrupamento completamente conectado possı́vel no grafo.

Uma relação fundamental entre esses conceitos surge através do grafo complementar G
de um grafo G. O grafo G possui o mesmo conjunto de vértices que G, mas dois vértices são
adjacentes em G se e somente se não são adjacentes em G. Esta dualidade revela que conjuntos
independentes em G correspondem exatamente a cliques em G, e vice-versa, estabelecendo
assim que α(G) = ω(G) e ω(G) = α(G).

Um grafo G = (V,E) é bipartido se existe uma partição de V = A ∪B com A ∩B = ∅
tal que toda aresta de E conecta um vértice de A a um vértice de B. O grafo bipartido completo
Kr,s, com 1 ≤ r ≤ s, é um grafo bipartido onde |A| = r e |B| = s, e cada vértice de A é
adjacente a todos os vértices de B.

Um grafo G é perfeito se, para todo subgrafo induzido G[S] de G, o número cromático
de G[S] é igual ao tamanho de sua maior clique, isto é, χ(G[S]) = ω(G[S]). Esta classe inclui
diversas classes de grafos conhecidos como grafos bipartidos. Um grafo é planar se pode ser
desenhado no plano sem que suas arestas se cruzem, exceto nos vértices. Pelo célebre Teorema
das Quatro Cores, todo grafo planar pode ser colorido com no máximo quatro cores, ou seja,
χ(G) ≤ 4 para todo grafo planar G. Estas duas classes de grafos — perfeitos e planares —
possuem aplicações práticas em áreas como otimização combinatória e desenho de circuitos.

Outro conceito fundamental na teoria dos grafos é a coloração de vértices. Seja C =
{c1, c2, . . . , ck} um conjunto de k cores. Uma k-coloração de vértices de um grafo G = (V,E)
é um mapeamento c : V → C que atribui uma cor a cada vértice. A coloração é dita própria
se c(u) ̸= c(v) para toda aresta uv ∈ E, isto é, vértices adjacentes recebem cores distintas. O
número cromático χ(G) é o menor valor de k para o qual G admite uma k-coloração própria.



Notavelmente, cada classe de cor em uma coloração própria forma um conjunto independente,
estabelecendo uma conexão profunda entre coloração e independência em grafos.

Finalmente, unindo os conceitos de grafo e de seu complemento, temos o prisma comple-
mentar GG de um grafo G. Esta estrutura é construı́da pela união disjunta de uma cópia de G e
uma cópia de seu complemento G, adicionando-se um emparelhamento perfeito entre os vértices
correspondentes. Formalmente, V (GG) = V (G) ∪ V (G) e E(GG) = E(G) ∪ E(G) ∪ {vv :
v ∈ V (G)}, onde v denota o vértice correspondente a v na cópia de G. Este produto captura
simultaneamente as propriedades estruturais de um grafo e seu complementar, criando um objeto
interessante para investigação teórica. Veja na Figura 1 a 3-coloração do prisma complementar
C5C5, conhecido como grafo de Petersen.

Para n ≥ 1, Kn e Pn denotam, respectivamente, o grafo completo e o caminho com n
vértices. Para n ≥ 3, Cn denota o ciclo com n vértices. Especificamente, V (Pn) = {v1, . . . , vn}
e E(Pn) = {vivi+1 : 1 ≤ i ≤ n − 1}; V (Cn) = {v1, . . . , vn} e E(Cn) = {vivi+1 : 1 ≤ i ≤
n− 1} ∪ {vnv1}.

1 1 2 2 3

2 3 1 3 1

V (C5)

V (C5)

Figura 1. Grafo de Petersen, o prisma complementar de C5, com uma coloração própria
de cardinalidade 3.

2.2. Propriedades Básicas Conhecidas
As propriedades estruturais do prisma complementar seguem diretamente de sua construção.
Para qualquer grafo G de ordem n, o prisma complementar GG possui exatamente 2n vértices,
resultado natural da união disjunta de duas cópias de grafos com n vértices cada. Além disso, a
estrutura do prisma estabelece uma relação precisa entre os graus dos vértices correspondentes:
para vértices correspondentes v em G e v em G, temos que deg(v) + deg(v) = n + 1. Esta
igualdade reflete o fato de que v está conectado a seus vizinhos em G, enquanto v está conectado
aos não-vizinhos de v no grafo original, e ambos estão conectados entre si através da aresta do
emparelhamento perfeito.

No contexto mais amplo da teoria dos grafos, uma desigualdade fundamental relaciona o
número cromático com outros parâmetros do grafo. Para qualquer grafo G de ordem n, vale que
χ(G) ≥ max{ω(G), n/α(G)}. Esta cota inferior captura duas restrições essenciais: primeiro,
precisamos de pelo menos ω(G) cores para colorir adequadamente uma clique máxima; segundo,
como cada classe de cor forma um conjunto independente de tamanho no máximo α(G), neces-
sitamos de pelo menos n/α(G) cores para acomodar todos os vértices. Estas relações fornecem
ferramentas valiosas para a análise estrutural de grafos e seus prismas complementares.

Teorema 2.1 ([Haynes et al. 2007]). Para qualquer grafo G:

max{χ(G), χ(G)} ≤ χ(GG) ≤ χ(G) + χ(G).

O limite inferior segue do fato de que G e G são subgrafos de GG. Para o limite superior,
podemos colorir a cópia de G com χ(G) cores e a cópia de G com um conjunto disjunto de χ(G)



novas cores. Como não há arestas entre as cópias, exceto entre vértices correspondentes (que
terão cores de conjuntos disjuntos), a coloração é válida.

Este teorema estabelece limites fundamentais para o número cromático do prisma com-
plementar. Por exemplo, considerando G = K3, temos χ(G) = 3 e χ(G) = 1, resultando em
χ(GG) = 3, que satisfaz a desigualdade 3 ≤ 3 ≤ 4.

Teorema 2.2 ([Haynes et al. 2007]). Para todo grafo G de ordem n:

χ(GG) ≤ n,

com igualdade se e somente se G ∈ {Kn, Kn}.
A caracterização dos grafos que atingem o limite superior do Teorema 2.2 é particular-

mente elegante: apenas o grafo completo e o grafo vazio resultam em prismas complementares
com número cromático máximo. De fato, para G = K4, obtemos χ(GG) = 4, confirmando que
o limite superior é atingido precisamente quando G é um grafo completo.

Teorema 2.3 ([Haynes et al. 2007]). Para todo grafo G:

α(G) + α(G)− 1 ≤ α(GG) ≤ α(G) + α(G),

Os limites para o número de independência do prisma complementar revelam uma
relação quase aditiva entre os números de independência de G e G. Um caso ilustrativo é o
ciclo de 5 vértices C5, onde α(C5) = 2, α(C5) = 2, e α(C5C5) = 3. Estes valores satisfazem
a desigualdade 3 ≤ 3 ≤ 4, mostrando que o limite inferior pode ser estritamente menor que o
superior, diferentemente do que ocorre em muitos casos particulares.

3. Resultados
Nesta seção, apresentamos nossos principais resultados. Estabelecemos uma desigualdade geral
para grafos bipartidos e determinamos o número cromático exato para prismas complementares
de grafos bipartidos completos, ciclos e caminhos. Concluı́mos com cotas inferiores para grafos
perfeitos e planares.

Teorema 3.1 (Coloração de Prismas Complementares de Grafos Bipartidos). Seja G = (A ∪
B,E) um grafo bipartido com n = |A|+ |B| vértices. Então:

χ(GG) ≤ min{n, 2 + χ(G)}.

Demonstração. Pela desigualdade geral χ(GG) ≤ χ(G) + χ(G) e o fato de que χ(G) = 2
para grafos bipartidos, obtemos χ(GG) ≤ 2 + χ(G). Além disso, pelo Teorema 2.2, temos
χ(GG) ≤ n.

Ilustramos o Teorema 3.1 considerando o grafo bipartido G com n = 8 vértices, formado
pela junção de duas estrelas K1,3 através de uma aresta entre seus vértices centrais. O maior
conjunto independente de G é formado por seus 6 vértices-folha, que correspondem a uma
6-clique em G. Assim, ω(G) = 6 e, portanto, χ(G) ≥ 6. Para mostrar que χ(G) = 6, atribuı́mos
cores distintas aos vértices da clique e observamos que os vértices centrais c1 e c2 podem receber
cores já utilizadas: c1 pode assumir a cor de uma de suas folhas originais, pois em G ele é
adjacente apenas às folhas de c2 (e analogamente para c2). Aplicando o teorema, obtemos
χ(GG) ≤ min{8, 2 + 6} = 8.



Teorema 3.2 (Coloração de Prismas Complementares de Grafos Bipartidos Completos). Para o
grafo bipartido completo Kr,s com 1 ≤ r ≤ s, o número cromático de seu prisma complementar
é:

χ(Kr,sKr,s) = s

exceto quando (r = 1 e s < 3) ou (r = s < 4), casos em que χ(Kr,sKr,s) = s+ 1.

Demonstração. Seja G = Kr,s com conjuntos de vértices R e S de tamanhos |R| = r e |S| = s.
O grafo complementar, G, é a união disjunta dos grafos completos Kr (induzido pelos vértices
de R) e Ks (induzido pelos vértices de S). O prisma complementar GG é formado por G, G e
uma correspondência perfeita entre os vértices v ∈ V (G) e v ∈ V (G).

A presença da clique S de tamanho s em G estabelece um limite inferior para o número
cromático: χ(GG) ≥ ω(GG) ≥ s.

Para a coloração da clique S, sempre utilizamos s cores distintas: c(ui) = ci para
i = 1, . . . , s. Esta atribuição é fixa em todos os casos e consome necessariamente s cores.

Agora analisamos quando s cores são suficientes e quando uma cor adicional é necessária.

Caso 1: χ(Kr,sKr,s) = s+ 1

Subcaso 1.1: r = 1 e s ≤ 2. Para s = 1, G é um P2, e seu prisma complementar P2P2

é um ciclo C4, cujo número cromático é 2 = s + 1. Para s = 2, G é um P3, e seu prisma
complementar contém um C5 como subgrafo induzido, exigindo χ(P3P3) = 3 = s+ 1 cores.

Subcaso 1.2: r = s e s ∈ {2, 3}. Para s = 2, K2,2K2,2 é o prisma de C4, que tem
χ = 3 = s + 1. Para s = 3, é um resultado conhecido que χ(K3,3K3,3) = 4 = s + 1, pois
as restrições impostas pelas duas 3-cliques em G e a estrutura bipartida de G impedem uma
3-coloração.

Caso 2: χ(Kr,sKr,s) = s

Para os demais casos, mostraremos que s cores são suficientes através de construções
especı́ficas. Nossa estratégia geral consiste em colorir as cliques em G com cores distintas e
então reutilizar pequenos conjuntos fixos de cores para os conjuntos de vértices independentes S
e R em G.

Subcaso 2.1: r = 1 e s ≥ 3. Após colorir a clique S, colorimos o vértice central v1 de G
com c(v1) = c1. Seu correspondente v1 é adjacente apenas a v1, então usamos c(v1) = c2, pois
s ≥ 3 garante sua disponibilidade.

Para os vértices ui de S, cada um é adjacente a v1 (cor c1) e a ui (cor ci). Colorimos
c(u1) = c2 (evitando conflito com c(u1) = c1), c(u2) = c3 (evitando c1 e c2), e para i > 2,
usamos c(ui) = c2 (evitando apenas c1 e ci). A construção utiliza exatamente s cores.

Subcaso 2.2: r = s e s ≥ 4. Colorimos ambas as cliques: c(ui) = ci e c(vi) = ci para
i = 1, . . . , s. Como s ≥ 4, podemos usar conjuntos de cores disjuntos para as partes de G.

Para os vértices de S, usamos as cores {c1, c2}: c(u1) = c2, c(u2) = c1, e c(ui) = c1
para i > 2. Para os vértices de R, usamos as cores {c3, c4}: c(v3) = c4, c(v4) = c3, e c(vj) = c3
para j /∈ {3, 4}

A coloração é válida, pois garante que c(ui) ̸= c(ui), c(vj) ̸= c(vj) e que c(ui) ̸= c(vj).
O Algoritmo 1 detalha esta construção.

Subcaso 2.3: 2 ≤ r < s e s ≥ 4. Após colorir a clique S, colorimos os vértices de S em
G usando duas cores (possı́vel pois s > r ≥ 2 =⇒ s ≥ 3): c(u1) = c2 e c(ui) = c1 para i ≥ 2.



Algoritmo 1 Coloração de Kr,sKr,s para s ≥ 4

Entrada: Grafo G = Kr,s com partes R = {v1, . . . , vr} e S = {u1, . . . , us}; conjunto de s
cores C = {c1, . . . , cs}.

Saı́da: Uma s-coloração própria c para GG.
// Etapa 1: Colorir a clique S em G

1: para i← 1 até s faça
2: c(ui)← ci ▷ Colorir a clique S
3: fim para

// Etapa 2: Colorir a clique R em G
4: para i← 1 até r faça
5: c(vi)← ci ▷ Colorir a clique R
6: fim para

// Etapa 3: Colorir os vértices de S em G com as cores {c1, c2}
7: c(u1)← c2 ▷ Evita conflito com c(u1) = c1
8: para i← 2 até s faça
9: c(ui)← c1 ▷ Válido pois i ≥ 2 =⇒ c(ui) ̸= c1

10: fim para
// Etapa 4: Colorir os vértices de R em G com as cores {c3, c4}

11: c(v3)← c4 ▷ Evita conflito com c(v3) = c3
12: para j ∈ {1, . . . , r} \ {3} faça
13: c(vj)← c3 ▷ Válido pois j /∈ {3} =⇒ c(vj) ̸= c3
14: fim para
15: retorne c

Considerando os subgrafos induzidos em G, os vértices de R são adjacentes a todos os
vértices de S. S já está colorido com {c1, c2} e é possı́vel colorir inteiramente R com {c3}. Para
a r-clique em R, cada vértice vj tem seu correspondente vj colorido com c3. Precisamos de r
cores distintas do conjunto C \ {c3}, que possui s − 1 cores disponı́veis. A condição r < s
garante que há cores suficientes. A construção utiliza s cores e é válida.

Teorema 3.3 (Coloração de Prismas Complementares de Grafos Ciclos). Para o grafo ciclo Cn

com n ≥ 5 vértices:
χ(CnCn) = ⌈n/2⌉.

Demonstração. Para o complemento de ciclos Cn, temos que ω(Cn) = ⌊n/2⌋ e α(Cn) = 2.
Para ciclos pares, o complemento C2k possui duas cliques de tamanho ω = k, logo, são
necessárias exatamente k cores. Para ciclos ı́mpares ω(C2k+1) = ⌊(2k + 1)/2⌋ = k, porém não
conseguimos cobrir todos os vértices com apenas k cores, pois isso resultaria em α(Cn) = 3, já
que ⌈(2k+ 1)/k⌉ = 3, o que é falso pela própria estrutura de Cn. Portanto, o limite inferior para
o número cromático χ(CnCn) ≥ ⌈n/2⌉.

Para o limite superior, os casos base n = 3 e n = 4 são verificados diretamente,
resultando em χ(C3C3) = 3 e χ(C4C4) = 3. O caso n = 5 corresponde ao Grafo de Petersen,
cujo número cromático é 3, satisfazendo a fórmula ⌈5/2⌉ = 3.

Para n ≥ 6, a prova é construtiva e utiliza k = ⌈n/2⌉ cores. A base da nossa coloração
consiste em atribuir ao vértice vi de Cn a cor c(vi) = c⌈i/2⌉. Esta regra produz a seguinte
k-coloração: c(v1) = c(v2) = c1, c(v3) = c(v4) = c2, c(v5) = c(v6) = c3, . . . , c(vn) = c⌈n/2⌉.



Essa é uma coloração válida para o subgrafo Cn, pois vértices com a mesma cor correspondem a
ı́ndices consecutivos em Cn, não sendo, portanto, adjacentes em Cn.

A principal vantagem dessa atribuição inicial é que as cores de ı́ndice baixo, como
c1, c2 e c3, são usadas apenas nos primeiros vértices de Cn (especificamente, para i ≤ 6). Isso
nos permite usar, no pior caso, uma 3-coloração base para os vértices de Cn, reutilizando as
cores de Cn, sabendo que os conflitos de cores serão poucos e localizados somente em uma
região conhecida.

Se utilizarmos as cores c1, c2 e c3, os conflitos potenciais dessa abordagem são de dois
tipos: (1) nas arestas de emparelhamento para os primeiros vértices, nesses casos, basta utilizar
as duas outras cores disponı́veis nesta área, ex: c(v1) = c(v5) = c2, c(v2) = c(v4) = c3, c(v3) =
c(v6) = c1; e (2) na aresta de fechamento vnv1 se o ciclo for ı́mpar. Como, para n ≥ 6, temos
k ≥ 3, então c(vn) /∈ {c1, c2, c3} pela construção anterior. Portanto, a 3-coloração de Cn,
reutilizando as cores de Cn, respeitando os possı́veis conflitos das arestas de emparelhamento
perfeito, é válida.

Como ilustração concreta, consideremos C7C7 onde n = 7 e k = ⌈7/2⌉ = 4. Apli-
cando nossa construção, primeiro colorimos C7: c(v1) = c(v2) = c1, c(v3) = c(v4) = c2,
c(v5) = c(v6) = c3, c(v7) = c4. Para C7, usamos as cores {c1, c2, c3} resolvendo confli-
tos locais: c(v1) = c(v5) = c2, c(v2) = c(v4) = c3, c(v3) = c(v6) = c1. Para v7, como
c(v7) = c4 /∈ {c1, c2, c3}, podemos usar c(v7) = c3, que difere de c(v1) = c2 e c(v6) = c1,
validando a 4-coloração completa.

Teorema 3.4 (Coloração de Prismas Complementares de Grafos Caminhos). Para o grafo
caminho Pn com n ≥ 5 vértices:

χ(PnPn) = ⌈n/2⌉.

Demonstração. Para o complemento de caminhos Pn, temos que ω(Pn) = ⌈n/2⌉. Em grafo
complementar de um caminho, podemos destacar duas de suas cliques. Uma de tamanho
⌈n/2⌉ formada pelos vértices de ı́ndice ı́mpar, e outra de tamanho ⌊n/2⌋ formada pelos vértices
de ı́ndice par. A presença dessa clique máxima estabelece imediatamente o limite inferior
χ(PnPn) ≥ ω(PnPn) ≥ ⌈n/2⌉. Mostraremos que este limite é justo através de uma construção
explı́cita que utiliza exatamente k = ⌈n/2⌉ cores.

A prova é construtiva, baseada na estratégia usada para ciclos, mas simplificada pela
estrutura linear do caminho. Primeiro, colorimos os vértices de Pn com a regra c(vi) = c⌈i/2⌉.
Esta coloração é válida para o subgrafo Pn, pois atribui a mesma cor apenas a vértices com ı́ndices
consecutivos no caminho original, que correspondem precisamente a vértices não adjacentes em
Pn. Especificamente, as duas cliques em Pn recebem cores distintas: a clique de tamanho ⌈n/2⌉
usa todas as k cores, enquanto a clique menor usa as primeiras ⌊n/2⌋ cores.

Em seguida, colorimos os vértices de Pn. A propriedade chave de um caminho é sua
estrutura linear, sem a aresta de fechamento v1vn que existe em um ciclo. Isso garante que uma
2-coloração base sempre respeite as arestas adjacentes de Pn.

O único desafio restante são os possı́veis conflitos nas arestas de emparelhamento, que
ocorrem se c(vi) = c(vi). Seguindo a estratégia análoga à dos ciclos, colorimos Pn usando as
cores {c1, c2, c3}. Como na construção anterior, as cores c1, c2 e c3 aparecem apenas em c(vi)
para i ≤ 6, os conflitos ficam restritos a essa região inicial. Resolvemos esses conflitos atribuindo
cores aos primeiros vértices de Pn que evitam suas cores correspondentes: c(v1) = c2 evitando



c(v1) = c1, c(v2) = c3, c(v3) = c1, e assim por diante. Para i > 6, temos c(vi) /∈ {c1, c2, c3},
eliminando qualquer possibilidade de conflito.

A diferença crucial em relação aos ciclos é que o caminho Pn não possui a aresta de
fechamento vnv1. Enquanto em ciclos ı́mpares precisamos garantir que c(vn) ̸= c(v1), em
caminhos essa restrição inexiste, simplificando significativamente a coloração. A estrutura linear
garante que uma 3-coloração apropriada de Pn sempre respeita tanto as arestas adjacentes quanto
as arestas de emparelhamento, assegurando que χ(PnPn) = ⌈n/2⌉ para n ≥ 5.

Teorema 3.5 (Coloração de Prismas Complementares de Grafos Perfeitos). Se G é um grafo
perfeito, então

χ(GG) ≥ max{ω(G), α(G)}.

Demonstração. Como G é perfeito, temos que χ(G) = ω(G) e χ(G) = ω(G) = α(G). O
resultado segue diretamente do limite inferior geral χ(GG) ≥ max{χ(G), χ(G)} estabelecido
no Teorema 2.1.

Este teorema fornece uma cota inferior imediata para prismas complementares de grafos
perfeitos, conectando o número cromático do prisma complementar com as propriedades do
grafo original. Por exemplo, para o ciclo C5, que é um grafo perfeito com ω(G) = 2 e α(G) = 2,
obtemos χ(C5C5) = 3 ≥ 2, confirmando que o Grafo de Petersen satisfaz esta cota com igual-
dade próxima ao limite.

Teorema 3.6 (Coloração de Prismas Complementares de Grafos Planares). Se G é um grafo
planar com n vértices:

χ(GG) ≥ χ(G) ≥ n/4.

Demonstração. Pelo resultado clássico de Nordhaus e Gaddum [Nordhaus and Gaddum 1956],
sabemos que χ(G)χ(G) ≥ n para qualquer grafo G. Como G é planar, pelo Teorema das
Quatro Cores [Appel and Haken 1978] temos χ(G) ≤ 4. Portanto, 4χ(G) ≥ n, o que implica
χ(G) ≥ n/4. O resultado segue pois χ(GG) ≥ χ(G) pelo Teorema 2.1.

Esta cota é particularmente útil para grafos planares com muitos vértices, garantindo
que o prisma complementar terá número cromático crescente com a ordem do grafo. Para um
grafo planar maximal com 8 vértices, por exemplo, obtemos imediatamente que χ(GG) ≥ 2,
estabelecendo um limite inferior sem necessidade de análise estrutural detalhada.

4. Conclusão
Neste trabalho, investigamos o número cromático de prismas complementares, uma classe de
grafos que combina um grafo com seu complemento com um emparelhamento perfeito. Apesar
de simples, nossos resultados fornecem limites mais estritos para o número cromático dos que os
introduzidos por Haynes et al, em algumas famı́lias de grafos.

Para grafos bipartidos completos Kr,s, estabelecemos uma fórmula fechada que determina
χ(Kr,sKr,s) em função dos parâmetros r e s, evidenciando a dependência do valor em relação
ao balanceamento entre as partes. Para ciclos Cn com n ≥ 5 e caminhos Pn com n ≥ 4,
demonstramos que χ(CnCn) = χ(PnPn) = ⌈n/2⌉, generalizando resultados conhecidos como
o número cromático do Grafo de Petersen. Adicionalmente, estabelecemos cotas inferiores para
prismas complementares de grafos perfeitos e planares, conectando o problema a parâmetros
estruturais dos grafos originais.



Um problema natural que emerge de nossa investigação é o refinamento do limite supe-
rior geral. O Teorema 2.1 estabelece que χ(GG) ≤ χ(G) + χ(G), enquanto o limite inferior é
max{χ(G), χ(G)}. Nossos resultados para classes especı́ficas sugerem que, frequentemente, o
número cromático se aproxima mais do limite inferior do que do superior. Isto motiva a seguinte
conjectura:

Conjectura 4.1. Para todo grafo G, dadas colorações próprias mı́nimas de G e G, é possı́vel
colorir GG com max{χ(G), χ(G)}+ 1 cores.

Se verdadeira, esta conjectura estabeleceria um limite superior significativamente mais
restritivo do que o conhecido, aproximando-se do limite inferior fundamental. A existência de
casos como K2,2K2,2, onde χ(GG) = 3 = max{2, 2}+1, sugere que o limite proposto pode ser
estrito para algumas famı́lias. Porém, estabelecer esse limite para qualquer prisma complementar
é um problema combinatório mais elaborado e depende de uma construção algorı́tmica ou de um
contraexemplo que deve ser explorado em trabalhos futuros.

Este trabalho dá mais alguns passos no estudo cromático de prismas complementares,
deixando em aberto a questão fundamental do limite exato do número cromático geral e o papel
do emparelhamento perfeito na determinação desse limite.
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