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Abstract. This work addresses the challenge of client drift in Federated Lear-
ning (FL) caused by Non-1ID data. We propose a two-phase algorithm that
clusters clients based on the similarity of their local model weights, followed by
independent federated training within each cluster. The methodology was vali-
dated on the MNIST dataset under two heterogeneous scenarios. The first repre-
sents an extreme case, where each client holds data restricted to a single class.
The second is based on a Dirichlet distribution (o« = 0.1), producing unbalan-
ced combinations with a predominance of few classes per client. The proposed
algorithm improved the global baseline accuracy from 26.32% to 100% in the
first case, and outperformed the baseline of 86.67% in the second, achieving up
t0 92.09%. The results show that clustering is an effective strategy to mitigate
heterogeneity and enhance the stability of federated training.

Resumo. Este trabalho aborda o desafio do client drift no Aprendizado Fede-
rado (Federated Learning — FL) causado por dados Non-1ID. Propomos um
algoritmo em duas fases, com clusterizacdo dos dispositivos por similaridade
dos pesos de modelos locais e treinamento federado independente por cluster.
A metodologia foi validada no dataset MNIST em dois cendrios de heteroge-
neidade. O primeiro corresponde ao caso extremo, onde cada dispositivo pos-
sui dados restritos a uma tinica classe. O segundo é baseado na distribuigcdo
Dirichlet (o« = 0.1), gerando dados desbalanceadas e com predomindncia de
poucas classes por dispositivo. O algoritmo proposto elevou a acurdcia do mo-
delo global de 26.32% para 100% no primeiro caso e superou a baseline de
86.67% no segundo caso, atingindo até 92.09%. Os resultados mostram que a
clusterizacdo é uma estratégia eficaz para mitigar a heterogeneidade e melho-
rar a estabilidade do treinamento federado.

1. Introducao

Com os avancos em algoritmos, poder computacional e disponibilidade de conjun-
tos de dados, as técnicas de Aprendizado de Mdaquina (Machine Learning — ML) tém
sido exploradas em diversas aplicacdoes, como condu¢do autdbnoma, industria inteli-
gente, realidade aumentada/virtual e da Internet das Coisas (Internet of Things — 10T)



[Hellstrom et al. 2022]. No entanto, os algoritmos de ML tradicionais exigem grandes
volumes de dados para o treinamento dos modelos, o que requer a coleta e o envio des-
ses dados para um servidor central. Além disso, nos dltimos anos, politicas e leis de
privacidade de dados passaram a exigir a prote¢cao dos dados pessoais e a regulamentar
o compartilhamento de informagdes entre empresas, a fim de evitar abusos no uso dos
dados. Dessa forma, a transferéncia direta dos dados brutos para um servidor centrali-
zado pode representar um risco significativo a privacidade, uma vez que viola principios
fundamentais dessas legislacoes.

Neste contexto, o FL [McMabhan et al. 2016] surge como uma abordagem descen-
tralizada de treinamento de modelos de ML, na qual os dados permanecem nos disposi-
tivos locais e apenas as atualizacdes dos modelos s@o compartilhadas com um servidor
central [Li et al. 2021]. Em vez de enviar os dados brutos para um servidor centralizado,
cada dispositivo participante do FL treina um modelo localmente utilizando seus préprios
dados e, posteriormente, envia os parametros do modelo atualizado para um servidor agre-
gador. O servidor, entdo, combina as atualiza¢des recebidas de multiplos dispositivos para
gerar um modelo global atualizado [Wahab et al. 2021].

Essa abordagem reduz os riscos de vazamento de privacidade, a0 mesmo tempo
em que minimiza o consumo de largura de banda para transmissdo dos modelos lo-
cais, pois apenas os parametros dos modelos sdo transmitidos para o servidor agrega-
dor [Yang et al. 2022]. Além disso, a colaboragdo entre os dispositivos de borda permite
obter um modelo global mais robusto e preciso do que aquele treinado em um unico dis-
positivo, tornando o FL. uma solu¢do promissora para aplicagdes que exigem seguranga,
eficiéncia e escalabilidade. Além do mais, o paralelismo no FL pode acelerar o processo
de treinamento [Brecko et al. 2022].

Além do mais, as abordagens de FL devem considerar a heterogeneidade es-
tatistica dos dados que compromete a generalizacdo do modelo global. Por exem-
plo, dispositivos méveis e [oT geram e coletam dados que, de forma intrinseca, apre-
sentam distribui¢des de forma Non-1ID (Non-Independent and ldentically Distributed)
[Brecko et al. 2022], ou seja, os dados apresentam variacoes significativas entre os dis-
positivos, tanto na distribui¢ao desigual das classes quanto na varia¢do da quantidade de
amostras. Isto reflete o uso particular e o contexto de cada dispositivo, como padrdes
de trafego, localiza¢do geogréfica, preferéncias do usudrio, bem como, o tipo de sen-
sor IoT empregado. Essa heterogeneidade gera o fendmeno conhecido como client drift
[Ma et al. 2022], onde cada modelo local tende a se especializar em seus proprios dados
enviesados, desviando-se da direcdo 6tima global. Na etapa de agregacao, esses vieses
podem colidir, desviando o modelo global em dire¢des conflitantes [Zhao et al. 2022].

Diante desse desafio, este artigo propde uma estratégia de “dividir para conquis-
tar” como forma de gerenciar a heterogeneidade dos dados e mitigar seus efeitos adversos
na agregacao dos modelos locais enviados por dispositivos participante de tarefas de FL.
Neste caso, em vez de treinar um tnico modelo global para todos os dispositivos, propde-
se agrupar os dispositivos em clusters com maior similaridade de dados e, em seguida,
treinar um modelo de FL especializado para cada grupo. A principal contribui¢do me-
todolégica deste estudo consiste em na capacidade do servidor agregador em utilizar os
pesos iniciais dos modelos locais (enviados na etapa de inicializa¢do do algoritmo) como
uma “impressao digital”, o que possibilita mensurar a similaridade entre os dispositivos e



realizar a clusteriza¢do de maneira eficiente, sem a necessidade de acessar ou inspecionar
diretamente os dados privados.

Os resultados obtidos mostram que o baseline global, correspondente ao
treinamento federado via FedAvg (Federated Averaging) [McMahan et al. 2016] sem
clusterizagdo, apresentou forte limitacao frente a heterogeneidade dos dados. No cendrio
em que cada dispositivo possui apenas um unico rétulo, o modelo global alcangou ape-
nas 26.32% de acurdcia, resultado de gradientes altamente conflitantes. Nesse mesmo
cendrio, a clusterizacdo utilizando o algoritmo K-Means foi bem-sucedida, formando
grupos homogéneos de dispositivos e permitindo que cada modelo por cluster atingisse
100% de acurécia, superando o problema de client drift. Ja no cendrio mais realista,
baseado na distribui¢do Dirichlet com @ = 0.1, o baseline global obteve acuracia de
86.67%, enquanto os modelos treinados por cluster superaram esse valor em todos os
casos, alcan¢ando valores de acuricia entre 89.14% e 92.09%.

As contribui¢des centrais deste artigo sdo elencadas a seguir: (i) propde-se um
algoritmo de duas fases para o FL, baseada na clusterizacao de dispositivos por similari-
dade dos pesos iniciais dos modelos locais e posterior treinamento federado por cluster;
(if) sao apresentadas validacdes empiricas da proposta em cendrios com dados de disposi-
tivos heterogéneos, demonstrando a mitigacao do client drift e ganhos de desempenho em
relacdo ao baseline global; (iii) o estudo evidencia que a clusteriza¢do é uma estratégia
pratica e eficaz para melhorar a estabilidade da agregacdo de modelos por cluster; (iv)
disponibiliza-se o cédigo-fonte! da simulacio para permitir a reproducio e validagdo dos
resultados.

Para além desta se¢@o introdutdria, o restante deste artigo estd organizado em
secoes, conforme descrito a seguir. A Secdo 2 apresenta a fundamentacao tedrica e discute
os trabalhos relacionados. A Secdo 3 apresenta a proposta do algoritmo de FL baseado
em clusterizacdo. A Secdo 4 apresenta o cendrio de simulacdo. A Secdo 5 discute os
resultados e a andlise da simulacdo. Por fim, a Secdo 6 apresenta as consideracgdes finais.

2. Fundamentacao Teérica

2.1. Aprendizado Federado

O primeiro algoritmo de FL, denominado FedAvg [McMahan et al. 2016], foi introduzido
em 2016 como uma solucdo eficiente para treinamento colaborativo de modelos sem a
necessidade de compartilhamento dos dados dos dispositivos. O processo treinamento
do FedAvg envolve a troca periddica de parametros entre os dispositivos e o servidor
agregador, da seguinte forma:

1. Selecao de dispositivos e distribuicao do modelo global: O servidor identifica e
seleciona dispositivos que atendem aos critérios necessarios para participar da ro-
dada de treinamento. Apoés a sele¢do, o modelo global mais recente € transmitido
aos dispositivos escolhidos, garantindo que cada um receba a versao atualizada
como base para o treinamento local.

2. Treinamento local: Apds receber o modelo global, cada dispositivo atualiza o
modelo local com base no seu conjunto de dados.

'Disponivel em: https://github.com/enzodiasl/ic-federated-learning



3. Upload da atualizacao do modelo local: Cada dispositivo envia sua atualiza¢ao
para o servidor por meio de um enlace de comunicagao.

4. Agregacao do modelo global: O servidor atualiza o modelo global com base na
agregacao dos modelos locais recebidos, calculando a média ponderada com base
na quantidade de dados dos dispositivos.

De acordo com [Li et al. 2021], o processo de treinamento distribuido pode ser
repetido por vérias rodadas de comunicacdo até que a convergéncia seja alcancada ou
interrompido conforme a defini¢do de um critério de parada.

2.2. Desafios de Dados Non-IID

O problema da distribui¢ao de dados Non-IID esta relacionado ao problema de heteroge-
neidade de dados. De acordo com [Zhao et al. 2022], os algoritmos de ML tradicionais
sdo geralmente treinados com base em dados balanceados, na suposi¢cdo de que os dados
sdo IID (Independent and Identically Distributed). No entanto, os conjuntos de dados
gerados por dispositivos méveis e [oT baseiam-se no padrdo de uso um determinado
usudrio e apresentam uma distribui¢do bastante diferente entre si [Brecko et al. 2022].
Portanto, o conjunto de dados de cada usudrios ndo serd uma representacao da distribui¢ao
da populagdo [McMahan et al. 2016].

A heterogeneidade da distribuicio de dados no FL pode ser expressa pela
caracterizacdo da assimetria da distribuicdo dos diferentes conjuntos. De acordo com
[Ma et al. 2022], essa assimetria pode ser ocasionada pela distribuicao enviesada dos da-
dos locais, que varia entre os diferentes clientes. Além do mais, a distribuicdo dos rétulos
dos dados locais dos dispositivos podem ser distintos, ainda que a distribuicdo da proba-
bilidade do rétulo considerando os demais dispositivos seja a mesma.

A assimetria também pode ser causada pelas diferentes caracteristicas dos da-
dos locais de cada dispositivo que podem indicar o mesmo rétulo, bem como, diferentes
rotulos podem indicar as mesmas caracteristicas dos dados locais de cada dispositivo. Por
fim, a quantidade de dados locais de cada dispositivo pode ser significativamente dife-
rente, provocando a heterogeneidade da distribui¢do de dados [Ma et al. 2022].

2.3. Trabalhos Relacionados

Na formulagdo inicial do FL proposta por [McMahan et al. 2016], os autores introdu-
ziram conceitos fundamentais e apresentaram o algoritmo FedAvg. Em seguida, foram
desenvolvidas variantes deste algoritmo, visando mitigar os efeitos da heterogeneidade
estatistica dos dados dos dispositivos. As abordagens como FedProx [Li et al. 2020]
e Scaffold [Karimireddy et al. 2020] incorporam técnicas que ajustam a agregacdo e a
atualizac@o do modelo local, restringindo desvios excessivos, promovendo o alinhamento
das representacoes aprendidas pelos modelos locais com o modelo global e estabilizando
a convergéncia.

Em [Zhao et al. 2022], os autores demonstram que, em cenarios Non-IID alta-
mente heterogéneos, a acurdcia do FedAvg pode sofrer reducdes de até 55%, associa-
das a divergéncia dos pesos dos modelos treinados localmente pelos dispositivos. De
forma complementar, o trabalho de [Ma et al. 2022] apresenta um levantamento abran-
gente sobre o problema dos dados Non-IID em FL, destacando que a heterogeneidade
estatistica ¢ um dos maiores desafios para a estabilidade e a acuricia do modelo global.



Em [Zhao et al. 2024], os autores questionam a viabilidade do treinamento de um dnico
modelo global. Dessa forma, os autores apresentam um algoritmo de FL que utiliza a
similaridade de gradientes para formar clusters dindmicos e combina os modelos resul-
tantes em um ensemble, alcangando maior estabilidade e melhor desempenho em cendrios
de dados Non-IID.

Inspirado pela estratégia de “dividir para conquistar”, este trabalho se diferencia
na metodologia de clusterizacdo ao adotar uma abordagem distinta. Em vez de utilizar
gradientes, que se mostraram numericamente instaveis em nossos experimentos prelimi-
nares, propomos e validamos o uso dos pesos completos dos modelos como uma “im-
pressao digital” capaz de medir a similaridade entre dispositivos e formar clusters, sem
comprometer a privacidade dos dados brutos dos dispositivos.

3. Proposta de Algoritmo de FL baseado em Clusterizacao

A heterogeneidade estatistica dos dados no FL gera o client drift, dificultando a con-
vergéncia do modelo global. Para mitigar esse efeito, propde-se o Algoritmo 1 em duas
fases: inicialmente, os dispositivos sdo agrupados pela similaridade de seus modelos lo-
cais e, em seguida, os modelos de FL sao treinados e avaliados por cluster.

3.1. Fase 1: Clusterizacao via Similaridade de Modelos

Na fase 1, o servidor inicia o processo enviando wy para todos os K dispositivos. Cada
dispositivo treina esse modelo por Ei,; €pocas usando os seus dados locais. Em seguida,
o servidor recebe w¥. de cada dispositivo, como sendo uma versdo levemente ajustada
do modelo inicial, e trata os pesos ajustados como uma “impressao digital” dos dados de
cada dispositivo.

A premissa é que dispositivo que possuam dados semelhantes acabardo produ-
zindo modelos também semelhantes. Por fim, o servidor aplica um algoritmo de agru-
pamento (neste caso, o K-Means) para separar os dispositivos em V. grupos com maior
similaridade. Assim, espera-se que dispositivos que t€m distribuicdes de dados parecidas
sao colocados no mesmo grupo.

3.2. Fase 2: Treinamento e Avaliacao Distribuida por Cluster

Na Fase 2, o treinamento ocorre separadamente dentro de cada cluster de dispositivos
previamente definido. Para cada cluster, o servidor inicializa um modelo préprio, € em
seguida, inicia o ciclo padrao do FL, conforme apresentado na Sec¢do 2.1. Em cada rodada,
alguns dispositivos do cluster sdo selecionados, recebem a versdo atual w; do modelo do
grupo, realizam o treinamento local com seus dados e depois retornam wtcfl ao servidor. O
servidor agrega essas atualiza¢Oes e gera a nova versdo wy, ; do modelo global do cluster.

Ap6s a atualiza¢do do modelo wy ;, € realizada a avaliagao distribuida por cluster.
Nessa etapa, o modelo resultante € enviado aos dispositivos para ser testado nos dados
locais dos dispositivos pertencentes ao proprio grupo. Essa avaliacio mostra o quanto
o modelo especialista consegue capturar e atender as caracteristicas especificas daquele
cluster, sem considerar dados externos ou de outros grupos.



Algoritmo 1: FL baseado em clusterizacdo de modelos.

1 > Fase 1: Clusterizacdo de Dispositivos

2 Servidor:

3 inicializagcdo de wy

4 para cada dispositivo k£ em paralelo faca >V k € K
5 [wf.] < InicializagdoNoDispositivo(k, wg)

6 Clusters +— KMeans([w?, ], N.)

init

=

InicializacaoNoDispositivo(k, wy):
8 wk .« TreinamentoLocal(k, wg, Einit)
9 EnviaModeloAoServidor(w?,,)

init

10 > Fase 2: Treinamento de Modelos por Cluster
11 para cada c € Clusters em paralelo faca

12 inicializacdo de wf

13 > Execugdo do Loop de FL por cluster

14 para cadarodadat = 1,2, ... em paralelo faca

15 > Selecdo de dispositivos e distribui¢cdo de wy

16 > Treinamento local de wy * no dispositivo

17 > Upload de wffl com a atualiza¢do do modelo local

18 > Agregacdo do modelo wy, | <— Agregagao(V wffl €0
19 > Avaliagdo distribuida de wf, , por cluster

20 Saida: Modelos wg, por cluster

4. Configuracao dos Experimentos

4.1. Cenario da Simulacao

Considere um ambiente com dados heterogéneos e um conjunto de 100 dispositivos
participantes de uma tarefa de FL. As tarefas envolvem problemas de classificacdo de
imagens utilizando o conjunto de dados MNIST, amplamente adotado como benchmark
em pesquisas de FL, conforme os trabalhos de [McMahan et al. 2016], [Zhu et al. 2020],
[Chen et al. 2021], [Zhao et al. 2022] e [Chen et al. 2022].

4.2. Cenarios de Heterogeneidade dos Dados

As simulacdes consideram dois cendrios de heterogeneidade dos dados. No primeiro,
¢ definido um caso extremo de heterogeneidade estatistica, onde cada dispositivo possui
apenas uma unica classe do MNIST. No segundo, adota-se uma distribui¢ao Dirichlet com
parametro o = 0.1, assegurando uma parti¢ao realista, com combinacdes desbalanceadas
e com a predominancia de poucas classes para cada dispositivo.

4.3. Arquitetura de ML

Para a tarefa de classificacdo do MNIST, considera-se uma arquitetura de rede neural do
tipo Multi-Layer Perceptron (MLP) com 101.770 parametros treindveis, composta por
uma camada de entrada, seguida de uma unica camada oculta com 128 neurdnios, uma
funcdo de ativagdo ReLLU e uma camada de saida soffmax. Além do mais, € utilizado o



ADAM (Adaptive Moment Estimation) como método de otimizacao do modelo, Sparse
Categorical Crossentropy como fun¢ao de perda, com um batch size de tamanho 128.

5. Analise dos Resultados

As simulagdo de FL foram realizadas por 50 rodadas de comunicacdo, onde os resulta-
dos representam a média obtida em trés execucdes. Nos experimentos com clusterizagao,
foram selecionado ~ % dos membros do cluster (max. 10) como os dispositivos partici-
pantes em cada rodada de comunicacdo. Na fase de inicializa¢do, cada modelo local foi
treinado por 10 épocas locais antes de ser enviado ao servidor, para posteriormente, ser
utilizado no processo de clusterizacdo. Além do mais, o algoritmo K-Means foi configu-
rado para formar 10 grupos, correspondentes aos subconjuntos de dispositivos utilizados
no treinamento federado por cluster.

5.1. Baseline de Referéncia

Para efeito de comparacao, foi definida uma baseline FL Global, onde os 100 dispositivos
foram considerados em conjunto, sem aplicacdo da clusterizagdo. Neste caso, em cada
rodada de comunicagdo, 10 dispositivos foram selecionados aleatoriamente para receber
o modelo global, realizar treinamento local em seus dados por 1 época local, e posterior-
mente, enviar as atualizacdes ao servidor. A agregacao foi definida com base no FedAvg,
resultando nos valores da acuracia do w,pe € da fun¢do de perda f(wgioba) que serviram
como referéncia para avaliar os ganhos obtidos com a clusterizacao.

A Figura la apresenta a evolu¢do do treinamento federado da baseline de re-
feréncia no cenario de dados de tnico rétulo. Nesse caso, cada dispositivo dispde exclu-
sivamente de exemplos de uma Unica classe, o que levou a baseline a alcangar um valor
médio de apenas 26.32% de acurdcia. Esse resultado evidencia a acentuada degradagio
do modelo global causada pelo client drift, pois os dispositivos treinam em conjuntos de
dados altamente enviesados e as atualiza¢des enviadas ao servidor tornam-se conflitantes,
comprometendo a convergéncia para um modelo capaz de representar todas as classes de
forma equilibrada.
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Figura 1. Baselines de referéncia para o FL Global.

Por outro lado, a Figura 1b apresenta a evolucao do treinamento federado da ba-
seline de referéncia no cendrio de dados com uma distribuicdo baseada em Dirichlet com



a = 0.1. Neste caso, os dados representam um ambiente de heterogeneidade realista,
assegurando uma parti¢do nao uniforme dos dados, com combina¢des desbalanceadas e
predominéncia de poucas classes em cada dispositivo. Nesse cenario, 0 modelo global
alcancou uma acurdcia média de 86, 67%, demonstrando que, embora a heterogeneidade
imponha desafios, ainda € possivel atingir boa convergéncia.

5.2. Clusterizacdo com Cenario de Unico Rétulo

Conforme a Figura 2a, o cendrio de clusterizacado com unico rétulo foi capaz de recupe-
rar perfeitamente a estrutura subjacente dos dados, uma vez que o algoritmo K-Means
(k = 10) identificou corretamente os 10 grupos homogéneos, cada um composto por 10
dispositivos. Neste contexto, a Figura 2b mostra que o treinamento federado conduzido
por cluster atingiu 100% de acurécia distribuida em todos os grupos, confirmando que os
modelos especialistas convergiram sem dificuldades.
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Figura 2. Resultados do cenario de Unico Rétulo.

Considerando que o modelo global da baseline global de referéncia no cendrio de
tnico rétulo convergiu para apenas 26.32% de acurécia, a abordagem de clusterizagido
resultou em um ganho de +73.68% para todos os grupos. A separagdo em grupos ho-
mogéneos elimina conflitos entre atualizacdes locais, garantindo a convergéncia. No
cendrio de unico rétulo, a clusterizacdo torna-se trivial, ja& que cada dispositivo possui
apenas uma classe, e o treinamento federado por cluster também se simplifica, pois todos
os dispositivos colaboram sobre dados idénticos.

5.3. Clusterizacao com Cenario baseado em Dirichlet com o« = 0.1

Conforme a Figura 3a, o cendrio de clusterizacdo baseado em Dirichlet com o = 0.1
apresentou varia¢ao no nimero de dispositivos por cluster, refletindo o desbalanceamento
introduzido pela distribui¢do. Essa irregularidade na composicao dos grupos impacta di-
retamente a qualidade dos modelos treinados, mas ndo de forma linear em relacdo ao
numero de dispositivos. A Figura 3b mostra que clusters maiores ndo apresentaram neces-
sariamente maior acurdcia, evidenciando que a homogeneidade interna dos dados exerce
papel mais relevante do que a quantidade de dispositivos.

A Tabela 1 apresenta o ganho por clusters, onde os grupos superaram a baseline
global de referéncia com valor médio 86.67% de acurécia, resultando em ganhos entre
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Figura 3. Resultados do cenario baseado em Dirichlet com o = 0.1.

+2.47% e +5.42%. Embora os incrementos sejam menos expressivos que no cendrio de
unico rétulo, eles evidenciam que a clusterizacdo reduz o client drift mesmo em contextos
realistas, contribuindo para maior estabilidade e desempenho do treinamento federado.

Dados | Cluster | Acurdcia (%) | AACC

0 89.34 +2.67
1 91.28 +4.61
2 90.82 +4.15
3 90.61 +3.94
o —0.1 4 90.56 +3.89
5 89.14 +2.47
6 90.75 +4.08
7 92.09 +5.42
8 91.24 +4.57
9 89.29 +2.62

Tabela 1. Acuracia distribuida por cluster no cenario Dirichlet com o = 0.1, onde
AACC é a diferenca com relacao a baseline de referéncia.

6. Consideracoes Finais

Este trabalho investigou a heterogeneidade de dados no FL e validou uma metodologia
na clusterizacao de dispositivos por “impressao digital” de pesos e o treinamento fede-
rado por cluster. Os experimentos com o MNIST mostraram que a abordagem supera o
FL global em cendrios realistas (baseado em Dirichlet com o = 0.1) e atinge 100% de
acurdcia em cendrios extremos (Unico rotulo). Assim, confirmou-se que a clusterizagao
mitiga o client drift e melhora o desempenho do modelo global. Como trabalhos futu-
ros, pretende-se automatizar a escolha da quantidade de grupos, o uso de informacdes e
métodos alternativos para computar a similaridade dos modelos e a avaliacdo em datasets
mais complexos. Além disso, pretende-se avaliar o algoritmo considerando métricas de
custo de comunicacio e de consumo energético, tanto durante o treinamento quanto na
transmissao dos modelos.
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