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Abstract. This work addresses the challenge of client drift in Federated Lear-
ning (FL) caused by Non-IID data. We propose a two-phase algorithm that
clusters clients based on the similarity of their local model weights, followed by
independent federated training within each cluster. The methodology was vali-
dated on the MNIST dataset under two heterogeneous scenarios. The first repre-
sents an extreme case, where each client holds data restricted to a single class.
The second is based on a Dirichlet distribution (α = 0.1), producing unbalan-
ced combinations with a predominance of few classes per client. The proposed
algorithm improved the global baseline accuracy from 26.32% to 100% in the
first case, and outperformed the baseline of 86.67% in the second, achieving up
to 92.09%. The results show that clustering is an effective strategy to mitigate
heterogeneity and enhance the stability of federated training.

Resumo. Este trabalho aborda o desafio do client drift no Aprendizado Fede-
rado (Federated Learning – FL) causado por dados Non-IID. Propomos um
algoritmo em duas fases, com clusterização dos dispositivos por similaridade
dos pesos de modelos locais e treinamento federado independente por cluster.
A metodologia foi validada no dataset MNIST em dois cenários de heteroge-
neidade. O primeiro corresponde ao caso extremo, onde cada dispositivo pos-
sui dados restritos a uma única classe. O segundo é baseado na distribuição
Dirichlet (α = 0.1), gerando dados desbalanceadas e com predominância de
poucas classes por dispositivo. O algoritmo proposto elevou a acurácia do mo-
delo global de 26.32% para 100% no primeiro caso e superou a baseline de
86.67% no segundo caso, atingindo até 92.09%. Os resultados mostram que a
clusterização é uma estratégia eficaz para mitigar a heterogeneidade e melho-
rar a estabilidade do treinamento federado.

1. Introdução
Com os avanços em algoritmos, poder computacional e disponibilidade de conjun-
tos de dados, as técnicas de Aprendizado de Máquina (Machine Learning – ML) têm
sido exploradas em diversas aplicações, como condução autônoma, indústria inteli-
gente, realidade aumentada/virtual e da Internet das Coisas (Internet of Things – IoT)



[Hellström et al. 2022]. No entanto, os algoritmos de ML tradicionais exigem grandes
volumes de dados para o treinamento dos modelos, o que requer a coleta e o envio des-
ses dados para um servidor central. Além disso, nos últimos anos, polı́ticas e leis de
privacidade de dados passaram a exigir a proteção dos dados pessoais e a regulamentar
o compartilhamento de informações entre empresas, a fim de evitar abusos no uso dos
dados. Dessa forma, a transferência direta dos dados brutos para um servidor centrali-
zado pode representar um risco significativo à privacidade, uma vez que viola princı́pios
fundamentais dessas legislações.

Neste contexto, o FL [McMahan et al. 2016] surge como uma abordagem descen-
tralizada de treinamento de modelos de ML, na qual os dados permanecem nos disposi-
tivos locais e apenas as atualizações dos modelos são compartilhadas com um servidor
central [Li et al. 2021]. Em vez de enviar os dados brutos para um servidor centralizado,
cada dispositivo participante do FL treina um modelo localmente utilizando seus próprios
dados e, posteriormente, envia os parâmetros do modelo atualizado para um servidor agre-
gador. O servidor, então, combina as atualizações recebidas de múltiplos dispositivos para
gerar um modelo global atualizado [Wahab et al. 2021].

Essa abordagem reduz os riscos de vazamento de privacidade, ao mesmo tempo
em que minimiza o consumo de largura de banda para transmissão dos modelos lo-
cais, pois apenas os parâmetros dos modelos são transmitidos para o servidor agrega-
dor [Yang et al. 2022]. Além disso, a colaboração entre os dispositivos de borda permite
obter um modelo global mais robusto e preciso do que aquele treinado em um único dis-
positivo, tornando o FL uma solução promissora para aplicações que exigem segurança,
eficiência e escalabilidade. Além do mais, o paralelismo no FL pode acelerar o processo
de treinamento [Brecko et al. 2022].

Além do mais, as abordagens de FL devem considerar a heterogeneidade es-
tatı́stica dos dados que compromete a generalização do modelo global. Por exem-
plo, dispositivos móveis e IoT geram e coletam dados que, de forma intrı́nseca, apre-
sentam distribuições de forma Non-IID (Non-Independent and Identically Distributed)
[Brecko et al. 2022], ou seja, os dados apresentam variações significativas entre os dis-
positivos, tanto na distribuição desigual das classes quanto na variação da quantidade de
amostras. Isto reflete o uso particular e o contexto de cada dispositivo, como padrões
de tráfego, localização geográfica, preferências do usuário, bem como, o tipo de sen-
sor IoT empregado. Essa heterogeneidade gera o fenômeno conhecido como client drift
[Ma et al. 2022], onde cada modelo local tende a se especializar em seus próprios dados
enviesados, desviando-se da direção ótima global. Na etapa de agregação, esses vieses
podem colidir, desviando o modelo global em direções conflitantes [Zhao et al. 2022].

Diante desse desafio, este artigo propõe uma estratégia de “dividir para conquis-
tar” como forma de gerenciar a heterogeneidade dos dados e mitigar seus efeitos adversos
na agregação dos modelos locais enviados por dispositivos participante de tarefas de FL.
Neste caso, em vez de treinar um único modelo global para todos os dispositivos, propõe-
se agrupar os dispositivos em clusters com maior similaridade de dados e, em seguida,
treinar um modelo de FL especializado para cada grupo. A principal contribuição me-
todológica deste estudo consiste em na capacidade do servidor agregador em utilizar os
pesos iniciais dos modelos locais (enviados na etapa de inicialização do algoritmo) como
uma “impressão digital”, o que possibilita mensurar a similaridade entre os dispositivos e



realizar a clusterização de maneira eficiente, sem a necessidade de acessar ou inspecionar
diretamente os dados privados.

Os resultados obtidos mostram que o baseline global, correspondente ao
treinamento federado via FedAvg (Federated Averaging) [McMahan et al. 2016] sem
clusterização, apresentou forte limitação frente à heterogeneidade dos dados. No cenário
em que cada dispositivo possui apenas um único rótulo, o modelo global alcançou ape-
nas 26.32% de acurácia, resultado de gradientes altamente conflitantes. Nesse mesmo
cenário, a clusterização utilizando o algoritmo K-Means foi bem-sucedida, formando
grupos homogêneos de dispositivos e permitindo que cada modelo por cluster atingisse
100% de acurácia, superando o problema de client drift. Já no cenário mais realista,
baseado na distribuição Dirichlet com α = 0.1, o baseline global obteve acurácia de
86.67%, enquanto os modelos treinados por cluster superaram esse valor em todos os
casos, alcançando valores de acurácia entre 89.14% e 92.09%.

As contribuições centrais deste artigo são elencadas a seguir: (i) propõe-se um
algoritmo de duas fases para o FL, baseada na clusterização de dispositivos por similari-
dade dos pesos iniciais dos modelos locais e posterior treinamento federado por cluster;
(ii) são apresentadas validações empı́ricas da proposta em cenários com dados de disposi-
tivos heterogêneos, demonstrando a mitigação do client drift e ganhos de desempenho em
relação ao baseline global; (iii) o estudo evidencia que a clusterização é uma estratégia
prática e eficaz para melhorar a estabilidade da agregação de modelos por cluster; (iv)
disponibiliza-se o código-fonte1 da simulação para permitir a reprodução e validação dos
resultados.

Para além desta seção introdutória, o restante deste artigo está organizado em
seções, conforme descrito a seguir. A Seção 2 apresenta a fundamentação teórica e discute
os trabalhos relacionados. A Seção 3 apresenta a proposta do algoritmo de FL baseado
em clusterização. A Seção 4 apresenta o cenário de simulação. A Seção 5 discute os
resultados e a análise da simulação. Por fim, a Seção 6 apresenta as considerações finais.

2. Fundamentação Teórica

2.1. Aprendizado Federado

O primeiro algoritmo de FL, denominado FedAvg [McMahan et al. 2016], foi introduzido
em 2016 como uma solução eficiente para treinamento colaborativo de modelos sem a
necessidade de compartilhamento dos dados dos dispositivos. O processo treinamento
do FedAvg envolve a troca periódica de parâmetros entre os dispositivos e o servidor
agregador, da seguinte forma:

1. Seleção de dispositivos e distribuição do modelo global: O servidor identifica e
seleciona dispositivos que atendem aos critérios necessários para participar da ro-
dada de treinamento. Após a seleção, o modelo global mais recente é transmitido
aos dispositivos escolhidos, garantindo que cada um receba a versão atualizada
como base para o treinamento local.

2. Treinamento local: Após receber o modelo global, cada dispositivo atualiza o
modelo local com base no seu conjunto de dados.

1Disponı́vel em: https://github.com/enzodias1/ic-federated-learning



3. Upload da atualização do modelo local: Cada dispositivo envia sua atualização
para o servidor por meio de um enlace de comunicação.

4. Agregação do modelo global: O servidor atualiza o modelo global com base na
agregação dos modelos locais recebidos, calculando a média ponderada com base
na quantidade de dados dos dispositivos.

De acordo com [Li et al. 2021], o processo de treinamento distribuı́do pode ser
repetido por várias rodadas de comunicação até que a convergência seja alcançada ou
interrompido conforme a definição de um critério de parada.

2.2. Desafios de Dados Non-IID
O problema da distribuição de dados Non-IID está relacionado ao problema de heteroge-
neidade de dados. De acordo com [Zhao et al. 2022], os algoritmos de ML tradicionais
são geralmente treinados com base em dados balanceados, na suposição de que os dados
são IID (Independent and Identically Distributed). No entanto, os conjuntos de dados
gerados por dispositivos móveis e IoT baseiam-se no padrão de uso um determinado
usuário e apresentam uma distribuição bastante diferente entre si [Brecko et al. 2022].
Portanto, o conjunto de dados de cada usuários não será uma representação da distribuição
da população [McMahan et al. 2016].

A heterogeneidade da distribuição de dados no FL pode ser expressa pela
caracterização da assimetria da distribuição dos diferentes conjuntos. De acordo com
[Ma et al. 2022], essa assimetria pode ser ocasionada pela distribuição enviesada dos da-
dos locais, que varia entre os diferentes clientes. Além do mais, a distribuição dos rótulos
dos dados locais dos dispositivos podem ser distintos, ainda que a distribuição da proba-
bilidade do rótulo considerando os demais dispositivos seja a mesma.

A assimetria também pode ser causada pelas diferentes caracterı́sticas dos da-
dos locais de cada dispositivo que podem indicar o mesmo rótulo, bem como, diferentes
rótulos podem indicar as mesmas caracterı́sticas dos dados locais de cada dispositivo. Por
fim, a quantidade de dados locais de cada dispositivo pode ser significativamente dife-
rente, provocando a heterogeneidade da distribuição de dados [Ma et al. 2022].

2.3. Trabalhos Relacionados
Na formulação inicial do FL proposta por [McMahan et al. 2016], os autores introdu-
ziram conceitos fundamentais e apresentaram o algoritmo FedAvg. Em seguida, foram
desenvolvidas variantes deste algoritmo, visando mitigar os efeitos da heterogeneidade
estatı́stica dos dados dos dispositivos. As abordagens como FedProx [Li et al. 2020]
e Scaffold [Karimireddy et al. 2020] incorporam técnicas que ajustam a agregação e a
atualização do modelo local, restringindo desvios excessivos, promovendo o alinhamento
das representações aprendidas pelos modelos locais com o modelo global e estabilizando
a convergência.

Em [Zhao et al. 2022], os autores demonstram que, em cenários Non-IID alta-
mente heterogêneos, a acurácia do FedAvg pode sofrer reduções de até 55%, associa-
das à divergência dos pesos dos modelos treinados localmente pelos dispositivos. De
forma complementar, o trabalho de [Ma et al. 2022] apresenta um levantamento abran-
gente sobre o problema dos dados Non-IID em FL, destacando que a heterogeneidade
estatı́stica é um dos maiores desafios para a estabilidade e a acurácia do modelo global.



Em [Zhao et al. 2024], os autores questionam a viabilidade do treinamento de um único
modelo global. Dessa forma, os autores apresentam um algoritmo de FL que utiliza a
similaridade de gradientes para formar clusters dinâmicos e combina os modelos resul-
tantes em um ensemble, alcançando maior estabilidade e melhor desempenho em cenários
de dados Non-IID.

Inspirado pela estratégia de “dividir para conquistar”, este trabalho se diferencia
na metodologia de clusterização ao adotar uma abordagem distinta. Em vez de utilizar
gradientes, que se mostraram numericamente instáveis em nossos experimentos prelimi-
nares, propomos e validamos o uso dos pesos completos dos modelos como uma “im-
pressão digital” capaz de medir a similaridade entre dispositivos e formar clusters, sem
comprometer a privacidade dos dados brutos dos dispositivos.

3. Proposta de Algoritmo de FL baseado em Clusterização

A heterogeneidade estatı́stica dos dados no FL gera o client drift, dificultando a con-
vergência do modelo global. Para mitigar esse efeito, propõe-se o Algoritmo 1 em duas
fases: inicialmente, os dispositivos são agrupados pela similaridade de seus modelos lo-
cais e, em seguida, os modelos de FL são treinados e avaliados por cluster.

3.1. Fase 1: Clusterização via Similaridade de Modelos

Na fase 1, o servidor inicia o processo enviando w0 para todos os K dispositivos. Cada
dispositivo treina esse modelo por Einit épocas usando os seus dados locais. Em seguida,
o servidor recebe wk

init de cada dispositivo, como sendo uma versão levemente ajustada
do modelo inicial, e trata os pesos ajustados como uma “impressão digital” dos dados de
cada dispositivo.

A premissa é que dispositivo que possuam dados semelhantes acabarão produ-
zindo modelos também semelhantes. Por fim, o servidor aplica um algoritmo de agru-
pamento (neste caso, o K-Means) para separar os dispositivos em Nc grupos com maior
similaridade. Assim, espera-se que dispositivos que têm distribuições de dados parecidas
são colocados no mesmo grupo.

3.2. Fase 2: Treinamento e Avaliação Distribuı́da por Cluster

Na Fase 2, o treinamento ocorre separadamente dentro de cada cluster de dispositivos
previamente definido. Para cada cluster, o servidor inicializa um modelo próprio, e em
seguida, inicia o ciclo padrão do FL, conforme apresentado na Seção 2.1. Em cada rodada,
alguns dispositivos do cluster são selecionados, recebem a versão atual wc

t do modelo do
grupo, realizam o treinamento local com seus dados e depois retornam wc,k

t+1 ao servidor. O
servidor agrega essas atualizações e gera a nova versão wc

t+1 do modelo global do cluster.

Após a atualização do modelo wc
t+1, é realizada a avaliação distribuı́da por cluster.

Nessa etapa, o modelo resultante é enviado aos dispositivos para ser testado nos dados
locais dos dispositivos pertencentes ao próprio grupo. Essa avaliação mostra o quanto
o modelo especialista consegue capturar e atender às caracterı́sticas especı́ficas daquele
cluster, sem considerar dados externos ou de outros grupos.



Algoritmo 1: FL baseado em clusterização de modelos.
1 ▷ Fase 1: Clusterização de Dispositivos
2 Servidor:
3 inicialização de w0

4 para cada dispositivo k em paralelo faça ▷ ∀ k ∈ K
5 [wk

init]← InicializaçãoNoDispositivo(k, w0)
6 Clusters← KMeans([wk

init], Nc)

7 InicializaçãoNoDispositivo(k, w0):
8 wk

init ← TreinamentoLocal(k, w0, Einit)
9 EnviaModeloAoServidor(wk

init)

10 ▷ Fase 2: Treinamento de Modelos por Cluster
11 para cada c ∈ Clusters em paralelo faça
12 inicialização de wc

1

13 ▷ Execução do Loop de FL por cluster
14 para cada rodada t = 1, 2, ... em paralelo faça
15 ▷ Seleção de dispositivos e distribuição de wc

t

16 ▷ Treinamento local de wc,k
t no dispositivo

17 ▷ Upload de wc,k
t+1 com a atualização do modelo local

18 ▷ Agregação do modelo wc
t+1 ← Agregação(∀ wc,k

t+1 ∈ c)
19 ▷ Avaliação distribuı́da de wc

t+1 por cluster

20 Saı́da: Modelos wc
global por cluster

4. Configuração dos Experimentos

4.1. Cenário da Simulação
Considere um ambiente com dados heterogêneos e um conjunto de 100 dispositivos
participantes de uma tarefa de FL. As tarefas envolvem problemas de classificação de
imagens utilizando o conjunto de dados MNIST, amplamente adotado como benchmark
em pesquisas de FL, conforme os trabalhos de [McMahan et al. 2016], [Zhu et al. 2020],
[Chen et al. 2021], [Zhao et al. 2022] e [Chen et al. 2022].

4.2. Cenários de Heterogeneidade dos Dados
As simulações consideram dois cenários de heterogeneidade dos dados. No primeiro,
é definido um caso extremo de heterogeneidade estatı́stica, onde cada dispositivo possui
apenas uma única classe do MNIST. No segundo, adota-se uma distribuição Dirichlet com
parâmetro α = 0.1, assegurando uma partição realista, com combinações desbalanceadas
e com a predominância de poucas classes para cada dispositivo.

4.3. Arquitetura de ML
Para a tarefa de classificação do MNIST, considera-se uma arquitetura de rede neural do
tipo Multi-Layer Perceptron (MLP) com 101.770 parâmetros treináveis, composta por
uma camada de entrada, seguida de uma única camada oculta com 128 neurônios, uma
função de ativação ReLU e uma camada de saı́da softmax. Além do mais, é utilizado o



ADAM (Adaptive Moment Estimation) como método de otimização do modelo, Sparse
Categorical Crossentropy como função de perda, com um batch size de tamanho 128.

5. Análise dos Resultados
As simulação de FL foram realizadas por 50 rodadas de comunicação, onde os resulta-
dos representam a média obtida em três execuções. Nos experimentos com clusterização,
foram selecionado ∼ 1

3
dos membros do cluster (máx. 10) como os dispositivos partici-

pantes em cada rodada de comunicação. Na fase de inicialização, cada modelo local foi
treinado por 10 épocas locais antes de ser enviado ao servidor, para posteriormente, ser
utilizado no processo de clusterização. Além do mais, o algoritmo K-Means foi configu-
rado para formar 10 grupos, correspondentes aos subconjuntos de dispositivos utilizados
no treinamento federado por cluster.

5.1. Baseline de Referência

Para efeito de comparação, foi definida uma baseline FL Global, onde os 100 dispositivos
foram considerados em conjunto, sem aplicação da clusterização. Neste caso, em cada
rodada de comunicação, 10 dispositivos foram selecionados aleatoriamente para receber
o modelo global, realizar treinamento local em seus dados por 1 época local, e posterior-
mente, enviar as atualizações ao servidor. A agregação foi definida com base no FedAvg,
resultando nos valores da acurácia do wglobal e da função de perda f(wglobal) que serviram
como referência para avaliar os ganhos obtidos com a clusterização.

A Figura 1a apresenta a evolução do treinamento federado da baseline de re-
ferência no cenário de dados de único rótulo. Nesse caso, cada dispositivo dispõe exclu-
sivamente de exemplos de uma única classe, o que levou a baseline a alcançar um valor
médio de apenas 26.32% de acurácia. Esse resultado evidencia a acentuada degradação
do modelo global causada pelo client drift, pois os dispositivos treinam em conjuntos de
dados altamente enviesados e as atualizações enviadas ao servidor tornam-se conflitantes,
comprometendo a convergência para um modelo capaz de representar todas as classes de
forma equilibrada.

(a) (b)

Figura 1. Baselines de referência para o FL Global.

Por outro lado, a Figura 1b apresenta a evolução do treinamento federado da ba-
seline de referência no cenário de dados com uma distribuição baseada em Dirichlet com



α = 0.1. Neste caso, os dados representam um ambiente de heterogeneidade realista,
assegurando uma partição não uniforme dos dados, com combinações desbalanceadas e
predominância de poucas classes em cada dispositivo. Nesse cenário, o modelo global
alcançou uma acurácia média de 86, 67%, demonstrando que, embora a heterogeneidade
imponha desafios, ainda é possı́vel atingir boa convergência.

5.2. Clusterização com Cenário de Único Rótulo

Conforme a Figura 2a, o cenário de clusterização com único rótulo foi capaz de recupe-
rar perfeitamente a estrutura subjacente dos dados, uma vez que o algoritmo K-Means
(k = 10) identificou corretamente os 10 grupos homogêneos, cada um composto por 10
dispositivos. Neste contexto, a Figura 2b mostra que o treinamento federado conduzido
por cluster atingiu 100% de acurácia distribuı́da em todos os grupos, confirmando que os
modelos especialistas convergiram sem dificuldades.

(a) (b)

Figura 2. Resultados do cenário de Único Rótulo.

Considerando que o modelo global da baseline global de referência no cenário de
único rótulo convergiu para apenas 26.32% de acurácia, a abordagem de clusterização
resultou em um ganho de +73.68% para todos os grupos. A separação em grupos ho-
mogêneos elimina conflitos entre atualizações locais, garantindo a convergência. No
cenário de único rótulo, a clusterização torna-se trivial, já que cada dispositivo possui
apenas uma classe, e o treinamento federado por cluster também se simplifica, pois todos
os dispositivos colaboram sobre dados idênticos.

5.3. Clusterização com Cenário baseado em Dirichlet com α = 0.1

Conforme a Figura 3a, o cenário de clusterização baseado em Dirichlet com α = 0.1
apresentou variação no número de dispositivos por cluster, refletindo o desbalanceamento
introduzido pela distribuição. Essa irregularidade na composição dos grupos impacta di-
retamente a qualidade dos modelos treinados, mas não de forma linear em relação ao
número de dispositivos. A Figura 3b mostra que clusters maiores não apresentaram neces-
sariamente maior acurácia, evidenciando que a homogeneidade interna dos dados exerce
papel mais relevante do que a quantidade de dispositivos.

A Tabela 1 apresenta o ganho por clusters, onde os grupos superaram a baseline
global de referência com valor médio 86.67% de acurácia, resultando em ganhos entre



(a) (b)

Figura 3. Resultados do cenário baseado em Dirichlet com α = 0.1.

+2.47% e +5.42%. Embora os incrementos sejam menos expressivos que no cenário de
único rótulo, eles evidenciam que a clusterização reduz o client drift mesmo em contextos
realistas, contribuindo para maior estabilidade e desempenho do treinamento federado.

Dados Cluster Acurácia (%) ∆ACC

α = 0.1

0 89.34 +2.67
1 91.28 +4.61
2 90.82 +4.15
3 90.61 +3.94
4 90.56 +3.89
5 89.14 +2.47
6 90.75 +4.08
7 92.09 +5.42
8 91.24 +4.57
9 89.29 +2.62

Tabela 1. Acurácia distribuı́da por cluster no cenário Dirichlet com α = 0.1, onde
∆ACC é a diferença com relação a baseline de referência.

6. Considerações Finais

Este trabalho investigou a heterogeneidade de dados no FL e validou uma metodologia
na clusterização de dispositivos por “impressão digital” de pesos e o treinamento fede-
rado por cluster. Os experimentos com o MNIST mostraram que a abordagem supera o
FL global em cenários realistas (baseado em Dirichlet com α = 0.1) e atinge 100% de
acurácia em cenários extremos (único rótulo). Assim, confirmou-se que a clusterização
mitiga o client drift e melhora o desempenho do modelo global. Como trabalhos futu-
ros, pretende-se automatizar a escolha da quantidade de grupos, o uso de informações e
métodos alternativos para computar a similaridade dos modelos e a avaliação em datasets
mais complexos. Além disso, pretende-se avaliar o algoritmo considerando métricas de
custo de comunicação e de consumo energético, tanto durante o treinamento quanto na
transmissão dos modelos.
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