Seguranca da Informacao em uma instituicao de ensino
superior: Estudo de Caso de Falhas em Aplicacoes Web e
Mobile

Iaan Mesquita de Souza', Sérgio Teixeira de Carvalho!

"nstituto de Informética — Universidade Federal de Goids (UFG)

iaanmesquita@discente.ufg.br sergiocarvalho@ufg.br

Abstract. This article presents a security case study of three anonymized insti-
tutional systems at a higher education instituion - System Alpha, System Beta,
and System Omega. Using static and dynamic analysis, controlled traffic ins-
pection, and safe parameter manipulation, we identified: (i) improper exposure
of information in Alpha due to access control and configuration weaknesses;
(ii) SQL injection in Beta’s login, enabling unauthorized access to sensitive re-
cords; and (iii) in Omega, a predictable association between identifiers and
images and enumeration via pagination. The evidence was anonymized and res-
ponsibly disclosed; maintainers applied fixes that were subsequently validated.
The findings were mapped to the OWASP Top 10, and the paper systematizes
the results, provides a critical discussion of the vulnerabilities, and highlights
lessons learned.

Resumo. Este artigo apresenta um estudo de caso de seguranca em trés sis-
temas institucionais anonimizados de uma instituicdo de ensino superior - Sis-
tema Alpha, Sistema Beta e Sistema Omega. Com andlise estdtica e dindmica,
inspecdo controlada de trdfego e manipulagcdo segura de pardametros, identi-
ficamos: (i) exposicdo indevida de informacées em Alpha, decorrente de fa-
lhas de controle de acesso e de configuracdo; (ii) inje¢cdo de SQL no login
de Beta, permitindo acesso ndo autorizado a registros sensiveis; e (iii) em
Omega, associacdo previsivel entre identificadores e imagens e enumeragdo
por paginagdo. As evidéncias foram anonimizadas e divulgadas de forma res-
ponsdvel e os mantenedores aplicaram corregdes, posteriormente validadas. As
falhas foram mapeadas ao OWASP Top 10, e o trabalho sistematiza os achados,
discute criticamente as vulnerabilidades e as licoes aprendidas.

1. Introducao

A transformacao digital nas universidades brasileiras intensificou a dependéncia de siste-
mas web e aplicagdes moveis para a gestdo académica e administrativa. Com a crescente
digitalizacdo e dependéncia de sistemas conectados a internet para operagdes criticas, a
seguranca da informagao tornou-se um requisito fundamental para organizagdes de todos
os portes e segmentos [[BM 2024], e as instituicdes de ensino superior nao sao excegao.
Esse movimento amplia a superficie de ataque e expoe instituicdes, estudantes e servido-
res a riscos significativos quando principios basicos de engenharia segura ndo sao obser-
vados. Nesse contexto, iniciativas de avaliacdo proativa de seguranga, alinhadas a boas

praticas internacionalmente reconhecidas, como o Open Web Application Security Pro-
ject (OWASP) [OWASP Foundation 2021al] Top 10, tornam-se essenciais para antecipar
ameacas, reduzir vulnerabilidades e fortalecer a confianga dos usudrios e da sociedade.

Este artigo apresenta um estudo de caso conduzido em trés sistemas de uma
instituicdo de ensino superior (denominados, Sistema Alpha, Sistema Beta e Sistema
Omega), com foco em identificar, analisar, documentar e notificar de forma responsdvel
vulnerabilidades que pudessem afetar a confidencialidade, a integridade e a disponibi-
lidade de dados e servigos. A investigacdo foi realizada sem ac¢des destrutivas e com
escopo estritamente técnico, combinando andlise estdtica e dindmica, inspe¢do contro-
lada de trafego, manipulagdo de parametros e testes de enumeracdo, sempre observando
limites éticos e legais.

Justificativa da escolha dos sistemas: Os trés sistemas analisados foram sele-
cionados especificamente por possuirem acesso publico pela Internet, o que permitiu a
realizacdo dos testes de seguranca de forma ética e controlada, sem a necessidade de
credenciais privilegiadas. Esta escolha, porém, apresenta limitacdes: sistemas de acesso
publico podem nao representar toda a complexidade da infraestrutura institucional, e vul-
nerabilidades em sistemas internos ou com autentica¢do mais robusta podem nao ter sido
detectadas. Ainda assim, a andlise de sistemas publicos € relevante por estes serem fre-
quentemente o primeiro alvo de atacantes e por representarem a interface mais exposta da
instituicdo.

Todo o material coletado foi anonimizado, incluindo nomes de sistemas, URLs,
identificadores e quaisquer dados pessoais. O proposito deste artigo € cientifico e edu-
cativo, sem a intencdo de expor indevidamente a instituicdo ou seus desenvolvedores.
Deliberadamente, o trabalho ndo apresenta “’receitas de ataque”, nem passos operacionais
detalhados, mitigando o risco de uso indevido.

Como sintese das evidéncias e para orientar a leitura, a Tabelaresurne as vulne-
rabilidades observadas em cada sistema, a gravidade atribuida, o mapeamento correspon-
dente ao OWASP Top 10 e os principais impactos. Em termos gerais, observou-se:

Sistema Alpha: Um caso tipico de Insecure Direct Object Reference (IDOR). O
backend validava o token de sessdao, porém nao aplicava verificacdo de autorizacao por
objeto (ownership), permitindo consultar, alterar e deletar dados de outros usudrios.

Sistema Beta: Uma injecdo de Script Query Language (SQL) no fluxo de
autentica¢io que possibilitava acesso ndo autorizado a registros sensiveis e confidenci-
ais, e por consequéncia, a problemas de autorizagao.

Sistema Omega: A associagio deterministica entre identificadores e arquivos de
imagem, a possibilidade de enumerar usudrios por paginacdo de uma Application Pro-
gramming Interface (API), possibilidade de sobrecarregar o servidor com requisi¢oes
custosas e fragilidades no uso de identificadores com potencial para consumo indevido
de créditos de terceiros.

Os impactos potenciais envolveram violacao de privacidade, fraude transacional,
alteracdo de dados, indisponibilidade e ampliacdo ndo autorizada de privilégios, com se-
veridade predominante alta/critica. O procedimento de divulgagdo responsavel foi se-
guido rigorosamente: as falhas foram documentadas e comunicadas imediatamente a

Tabela 1. Resumo das vulnerabilidades observadas e mapeamento ao OWASP
(Top 10, APl e Mobile).

Sistema Vulnerabilidades encontradas OWASP ID Gravidade
Alpha IDOR; enumeracao de usudrios; A01:2021; A05:2021; API1:2023; Alta
leitura/alteragcdo/exclusdo de dados API3:2023; API8:2023
Beta SQOL injection A03:2021; A01:2021 Critica
Omega IDs deterministicos em imagens; A01:2021; A04:2021; A05:2021; Alta
paginacdo enumerdvel API1:2023; API3:2023;
API4:2023; API8:2023; M3; MS;
M9

coordenagdo do curso para conectar com as equipes responsaveis, que procederam com
as correcoes. A redacao deste artigo foi concluida apos a verificacao das correcdes apli-
cadas as vulnerabilidades reportadas, assegurando que nao seja mais possivel reproduzir
qualquer exploracao aqui descrita.

Em resumo. as contribuicdes deste trabalho sao:

« Sistematizacdo de trés estudos de caso anonimizados (Alpha, Beta e Omega), re-
presentativos de classes recorrentes de vulnerabilidades.

* Mapeamento explicito ao OWASP Top 10, OWASP API Top 10 e OWASP Mobile
Top 10, facilitando a priorizacdo de riscos e o didlogo entre equipes de desenvol-
vimento, seguranca e gestao.

* Discussdo sobre mitigagdes com referéncia a trabalhos relacionados que abor-
dam controles de segurangca em maior profundidade [Libaneo and Carvalho 2016,
OWASP Foundation 2021a, (OWASP Foundation 2021b].

« Enfase em ética, privacidade e divulgacio responsavel como pilares para fortalecer
a seguranga institucional e, por extensao, o ecossistema nacional de Seguranca da
Informacao.

O restante do artigo estd organizado da seguinte forma: a Secdo 2 apresenta a
fundamentagdo tedrica e trabalhos relacionados. A Sec¢do 3 detalha os trés estudos de caso
(Sistema Alpha, Sistema Beta ¢ Sistema Omega) com uma andlise critica e implicacdes
praticas das vulnerabilidades encontradas. A Secdo 4 conclui com as consideragoes finais.

2. Fundamentacao Tedrica e Trabalhos Relacionados

A segurancga da informagao pode ser definida como o conjunto de praticas e tecnologias
que protegem dados digitais contra acesso ndo autorizado, uso indevido ou roubo ao longo
de todo o seu ciclo de vida [IBM 2024]. Esta protecdo abrange ndo apenas aspectos
técnicos, mas também processos organizacionais e conscientiza¢do humana.

Assim sendo, nesta se¢do sdo apresentados os conceitos fundamentais que
embasam este trabalho e trabalhos relacionados da literatura. Adotamos como
eixo principal o OWASP Top 10 para aplicagdes web [OWASP Foundation 2021al], o
OWASP API Top 10 para APIs [OWASP Foundation 2023] e o OWASP Mobile Top 10
[OWASP Foundation 2016l para aplicagdes moveis .

Ademais, a andlise de vulnerabilidades em sistemas de instituicdes de ensino su-
perior tem se mostrado uma preocupacao crescente no contexto brasileiro, especialmente
diante da crescente digitalizacdo dos processos académicos e administrativos.

[Libaneo and Carvalho 2016] apresentam um mapeamento abrangente das prin-
cipais vulnerabilidades em aplicacdes web e seus controles de seguranca, baseando-se
no relatério OWASP Top 10. O trabalho detalha controles especificos para cada classe de
vulnerabilidade, incluindo validagdo de entradas, gerenciamento de sessao, codificacdo de
saida, protecao de dados e controle de acesso. Este material € particularmente relevante
para o presente estudo, pois oferece diretrizes priticas de mitigacdo que complementam
nossa andlise empirica. Como os autores destacam, técnicas como query parameteriza-
tion (consultas parametrizadas) sdo essenciais para prevenir injecao de SQL, enquanto o
gerenciamento adequado de sessdo e autenticacdo de multiplos fatores protegem contra
quebra de autenticacao.

[Borges and da Silva 2025|] realizaram uma andlise de vulnerabilidades em
aplicagdes web de uma universidade privada e identificaram 517 falhas. Uma parcela
significativa permitia a execu¢do de cddigo arbitrario e a movimentacao lateral pela rede,
evidenciando a fragilidade dos controles de seguranga da informacgao em organizagdes que
administram ampla gama de dispositivos e dados sensiveis de milhares de individuos. O
estudo reforca a urgéncia de adog@o de medidas e arquiteturas de ciberseguranga robustas
para a protecdo de dados pessoais e académicos.

De forma complementar, [Fernandes 2019]] identificou vulnerabilidades criticas
no Sistema Integrado de Gestdo de Atividades Académicas (SIGAA), sistema am-
plamente utilizados por instituicdes de ensino, majoritariamente instituicdes publicas.
As vulnerabilidades documentadas pelo autor foram SQL Injection, Cross-Site Scrip-
ting (XSS) e Insecure Direct Object Reference (IDOR). O estudo documentou que 42
instituicdes de ensino superior utilizam o sistema, evidenciando o alcance potencial des-
sas falhas. O autor seguiu préticas de divulgacdo responsével, notificando previamente os
desenvolvedores sobre as vulnerabilidades identificadas.

[de Carvalho and de Castro Junior 2014]] investigaram a combinac¢ao de técnicas
de Google Hacking com exploracao de SQL Injection, demonstrando como atacantes
utilizam operadores avancados de busca para identificar sistemas vulnerdveis e, poste-
riormente, explorar falhas de injecao de SQL. O estudo de caso apresentado pelos au-
tores evidencia a facilidade com que sistemas web mal configurados podem ser desco-
bertos e comprometidos, reforcando a necessidade de testes proativos de seguranca. As
recomendacdes incluem uso de consultas parametrizadas, configuracao inteligente de pri-
vilégios do banco de dados e testes regulares com as mesmas técnicas usadas por atacan-
tes.

Estes estudos convergem ao destacar a importancia critica de avaliagdes proativas
de seguranca para proteger dados pessoais e académicos em ambientes universitarios,
ressaltando a urgéncia de politicas de seguranca da informacdo alinhadas as melhores
praticas internacionais como as definidas pela OWASP.

2.1. Taxonomias e Modelos Relevantes

O OWASP Top 10 é um documento padrao de conscientizagdo para desenvolvedores que
sintetiza classes recorrentes de risco em aplicagcdes a partir de dezenas de fraquezas ma-

peadas. Ele representa um amplo consenso sobre os riscos de seguranga mais criticos para
aplicagoes web [OWASP Foundation 2021a]. Em conjunto com os OWASP API Top 10
[OWASP Foundation 2023l e OWASP Mobile Top 10 [OWASP Foundation 2016l esses
catdlogos organizam mais de 30 categorias de risco, oferecendo um vocabuldrio comum
e prioridades praticas para mitigagao.

A luz desses referenciais, os achados foram mapeados as categorias do OWASP,
conforme a Tabela |1} privilegiando uma leitura orientada a risco e a mitigacdo. Esse
enquadramento fornece a base conceitual para as recomendacdes técnicas e de processo
apresentadas nas sec¢des seguintes, sem prescrever procedimentos operacionais detalha-
dos, em alinhamento a divulgacao responsavel.

3. Estudos de Caso

Este estudo integra uma avaliacdo de seguranca com base nas diretrizes OWASP Top 10,
OWASP API Top 10 e OWASP Mobile Top 10.

3.1. Sistema Alpha
3.1.1. Contexto e escopo

O escopo abrangeu a andlise pontual de duas rotas da API do Sistema Alpha, plataforma
de gestdo académica utilizada por discentes e docentes e acessivel via navegador web. A
abordagem foi minimamente invasiva, limitada a demonstracdo técnica da falha (prova
de conceito), sem exfiltracao massiva de dados, seguida de comunicacdo imediata e res-
ponsdvel aos mantenedores, em conformidade com principios de divulgacao responsavel.
ApOs o reporte e a confirmagdo da vulnerabilidade, a equipe técnica implementou as
correcOes € emitiu parecer atestando sua remediacdo. A validagdo final consistiu na
execucdo de requisi¢des simples as rotas afetadas, confirmando a elimina¢do do com-
portamento indevido.

3.1.2. Vulnerabilidades identificadas

A primeira etapa consistiu na inspecao das requisi¢oes realizadas pelo cliente (navegador
web) ao servidor. Foram identificadas duas rotas Representational State Transfer (REST)
parametrizadas por identificador no caminho da URL.:

/dados-pessoais/123
/dados-pagamentos/123

em que 123" correspondia ao identificador do proprio usudrio autenticado. O recebi-
mento do identificador diretamente no path (parametro de rota), quando combinado a
validac¢des incompletas no backend, € um padrao associado a falhas de controle de acesso
em nivel de objeto.

Teste 1 - Auséncia de foken. Visando verificar a existéncia de validacdo basica
de autenticacdo, foram emitidas requisicoes sem o cabecalho de autorizacdo. O sistema
rejeitou adequadamente tais requisi¢oes (por exemplo, com 401 /403), indicando que de
fato havia checagem de existéncia/validade do foken antes do processamento do recurso,
conforme esperado.

Teste 2 - Token valido e identificador (id) de terceiro. Para avaliar o controle
de autorizacdo por objeto, repetiu-se a requisicdo agora com um foken valido, porém

alterando-se apenas o id na URL para um valor pertencente a outro usudrio. Nessas
condi¢des, o backend retornou integralmente os dados do recurso associado ao id in-
formado, confirmando a auséncia de verificagdo de posse/pertin€ncia entre o usudrio au-
tenticado (claims do token) e o objeto solicitado (id na rota). A comprovacao técnica foi
conduzida com a ferramenta curl, presente em sistemas operacionais.

Conforme evidenciado na Figura I} a API retornou dados pessoais completos ao
se alterar apenas o identificador na URL, mesmo com foken pertencente a outro usudrio.

Iesystem:~

--compressed
"s ":true, "Tesul

lesEspeciai:

scricaoResumis

descricaoPesquisa”

ricao” D) " cp'_cnpj

,"primeiroNome" : :

o oDesejaReceberMensagens":false, "alergias":[],"
iadossaoParciais” : false, "nome" : " (D CHNNNNND i i WD)7
[

Figura 1. Resposta da APl a uma requisicaio aos endpoints
/dados—-pessoais/<id> com token valido, porém com id de ter-
ceiro. Campos sensiveis foram ofuscados.

Comportamento andlogo foi observado na rota /dados—-pagamentos/<id>,
que retornava metadados de pagamentos previamente utilizados (por exemplo, dltimos
digitos, bandeira e validade). Embora a aplicacdo ndo armazenasse dados sensiveis do
cartdo (tokenizacao realizada pelo adquirente), o acesso a metadados de terceiros confi-
gura exposicdo indevida de informagdes pessoais e financeiras.

Adicionalmente, verificou-se que os identificadores utilizados nas rotas eram se-
quenciais e de baixa entropia (por exemplo, 1, 2, 3, 4, ...). Tal caracteristica, quando com-
binada a auséncia de autorizagao por objeto evidenciada na Figural[l] facilita a enumeragao
sistematica de contas e a automacgao de requisi¢oes para diferentes identificadores. Em
um cendrio sem limitacdo de taxa, sem deteccdo de anomalias e com respostas deter-
ministicas, ferramentas triviais (por exemplo, curl encadeado em scripts) poderiam
iterar o parametro de id e, potencialmente, exfiltrar dados de grande parte da base de
usuarios. Por razoes éticas, nao foi realizada coleta massiva. A inferéncia decorre do
padrao de identificadores observado, do comportamento de autorizacdo descrito e na
prova de conceito, enviada prontamente aos responsaveis pelo sistema.

3.2. Sistema Beta

3.2.1. Contexto e escopo

O escopo incluiu a andlise do fluxo de autenticacdo do Sistema Befa, com foco na su-
perficie de ataque exposta por campos de entrada no formuldrio. O objetivo foi identificar
vulnerabilidades de alto impacto, validar de forma minimamente invasiva € comunicar
imediatamente aos responsaveis, seguindo praticas de divulgacao responsavel. Nao houve
exfiltracdo de dados. Os testes limitaram-se a comprovacao técnica da vulnerabilidade e

a comunicagdo imediata. As falhas reportadas ja se encontram corrigidas pelos mantene-
dores.

Adicionalmente, apos a identificagdo desta falha especifica (classificada como
critica), o autor decidiu nao prosseguir com testes adicionais, interrompendo a prova
de conceito no ponto minimo necessario e comunicando imediatamente a equipe res-
ponsavel, em conformidade com principios éticos e de divulgagdo responsavel. Em ter-
mos estritamente tedricos, vulnerabilidades dessa natureza podem servir como ponto de
partida para tentativas de elevacdo de privilégios, variando desde o acesso a dreas adminis-
trativas do sistema até, em cendrios extremos, a execucao remota de comandos e eventual
controle total do servidor. Ressalta-se, contudo, que tais hipdteses nido foram testadas
nem exploradas, justamente por se tratar de uma falha de alto impacto, tendo prevalecido
a decisdo prudente de priorizar a mitigacdo rapida e a protecao dos dados.

3.2.2. Vulnerabilidades identificadas

A principal vulnerabilidade observada foi uma inje¢ao de SQL no ponto de login, causada
pela concatenacdo direta de entrada do usudrio na constru¢do de consultas, sem uso de
parametros vinculados (prepared statements) e sem saneamento robusto. Na sondagem
inicial, a simples inser¢ao de um apdstrofo (”) no campo de login gerou o alerta de sintaxe
SQL

Warning: sqglanywhere_qguery () [function.sglanywhere-query]:
SQLAnywhere: [-131] Syntax error near

o que ¢ um forte indicio de que o valor foi interpolado dentro de um literal
de string na cldusula WHERE. Em cendrios dessa natureza, payloads classicos como
’ OR 1=1;-- podem alterar a 16gica da consulta, resultando em autenticacdo indevida.

o}

Attacker SELECT *
posT FROM documents

httpi//beta.br/login WHERE loginId =

=
m Sql Database

Retorna os documentos de todos
Web Api Server o5 usudrios para o atacante.

" OR 1=1;

©

Retorna os documentos
de todos os usuarios
para o atacante.

Figura 2. Fluxo do bypass por SQL Injection no login: em vermelho, o payload
injetado; em cinza, a parte comentada que é ignorada, levando o backend
a retornar todos os documentos.

Conforme ilustrado na Figura [2] o atacante preenche o campo de login com o
payload ' OR 1=1;—-- e um valor qualquer no campo password. A aplicacdo, ao con-
catenar diretamente esses valores na WHERE, acaba gerando uma consulta semelhante a:

SELECT « FROM documents WHERE loginId = '’
OR 1=1;—-—- ' AND senha = "123';

Na figura, em vermelho estd destacado o payload inserido (* OR 1=1;--); em cinza,
a parte da consulta que passa a ser ignorada por causa do comentario. O resultado prético
€ que a condic¢do fica sempre verdadeira e o banco retorna todos os documentos de todos
0s usudrios, que acabam sendo enviados ao atacante pelo backend.

Por que o payload funciona: O payload funciona porque o primeiro apdstrofo (”) fecha
prematuramente o literal de string esperado para 1oginId, alterando a estrutura sintatica
da consulta. Em seguida, o operador OR introduz a tautologia 1=1, tornando a clausula
WHERE verdadeira para todas as linhas. Quando aceito pelo Sistema Gerenciador de
Banco de Dados (SGBD), o ; encerra a instrucdo atual, e o marcador de comentario
—-— faz com que todo o restante da linha seja ignorado pelo parser SQL, incluindo a
clausula legitima AND senha = ’123’. Como resultado, a WHERE efetiva reduz-
se a uma condi¢do verdadeira (... WHERE TRUE), removendo o filtro pretendido e
possibilitando o acesso indevido.

3.3. Sistema Omega

3.3.1. Contexto e escopo

O escopo contemplou a avaliacdo exploratdria de uma aplicacdo moével integrada ao ecos-
sistema institucional, com foco no comportamento de servigos de backend e na eventual
exposi¢cao de dados pessoais. A atividade foi conduzida de modo minimamente invasivo,
com inspecdo de trafego por meio de ferramenta genérica de andlise de rede. Como a ca-
mada cliente empregava verificacio de certificado (SSL pinning), foi necessario contornar
esse mecanismo exclusivamente para fins de observacdo e comprovacao técnica do fluxo
de requisi¢des/respostas entre aplicativo e servidor. Nao houve coleta massiva de dados,
tampouco retencao indevida de contetiidos sensiveis. A validacao restringiu-se a0 minimo
necessdrio para caracterizacio da vulnerabilidade e comunica¢do imediata e responsavel
aos mantenedores, em alinhamento a principios de divulgagdo responsavel. Apds o re-
porte, as corre¢des foram implementadas pela equipe técnica, que atestou a remediacao.
A validacdo final consistiu em requisicdes simples para confirmar a elimina¢ao do com-
portamento indevido.

3.3.2. Vulnerabilidades identificadas

A investiga¢cdo seguiu um encadeamento metodoldgico centrado na observacdo das ro-
tas efetivamente utilizadas pelo aplicativo. Inicialmente, realizou-se o contorno das
verificacdes de SSL pinning no aplicativo, possibilitando a inspecdo do trafego protegido
entre o aplicativo e os servicos de backend por meio de ferramenta genérica de andlise de
rede. Com a visibilidade do trafego, identificaram-se as rotas chamadas pelo aplicativo
para obtencao de recursos estaticos e dados pessoais, incluindo o caminho 16gico associ-
ado a imagens de perfil. A partir de entdo, a investigacao iniciou-se a partir da observagao
de que a URL utilizada pela aplicacdo para exibir a foto de perfil aparentava conter um
identificador coincidente com o CPF do usuério.

O padrao observado era compativel com caminhos do tipo:
https://bmega.br/sys623/fotos/18859946050. jpg

Sugeriu-se, entdo, como hipotese de trabalho, que o nome do arquivo (11 digitos + . jpg)
coincidisse com um identificador civil (CPF) do titular. A época, esta correlagio era uma
hipdtese, ndo uma certeza.

Ao solicitar o diretorio 16gico do recurso (/sys623/fotos) sem parametros
adicionais, o servigo retornou um documento Extensible Markup Language (XML) com

exatos 10 registros de pessoas, contendo id, nome_completo e o nome do arquivo de
foto, com padrao numérico de 11 digitos seguido de jpg. O documento era semelhante

a:
<?xml version="1.0" encoding="UTF-8"?>
<pessoas>
<pessoa>
<id>1234567</id>
<nome_completo>Ana Silva Santos</nome_completo>
<foto>12345678901.png</foto>
</pessoa>
</pessoas>
A partir desse ponto, constatou-se que o endpoint de listagem respondia sem exigir prova
de autenticacdo ou, alternativamente, sem vincular a autorizacdo ao titular dos dados. O
atributo fot o apresentava um nome de arquivo numericamente compativel com um CPF
em formato candnico (11 digitos, sem separadores), o que implica uma vinculacdo direta
entre um CPF e um dado biométrico identificdvel (imagem facial). Ainda que o CPF nado
seja classificado como ’sigiloso” por si, sua divulgacdo combinada com a fotografia e o

nome completo eleva substancialmente o potencial de danos ao titular.

Adicionalmente, como o documento retornava exatamente 10 elementos,
formulou-se a hipdtese de paginacao implicita e testaram-se parametros comumente em-
pregados por APIs para navegacdo de resultados (?offset= e ?max=), com o objetivo
de obter lotes adicionais e percorrer o conjunto. A hipdtese confirmou-se: ambos os
parametros foram aceitos e permitiram a navegacao deterministica entre paginas.

Observou-se, ainda, que o max nao parecia sofrer limitagcdo server-side adequada:
ao fornecé-lo com um valor suficientemente elevado, o servico retornou, em uma Unica
resposta, a totalidade dos registros disponiveis (isto €, todos os usudrios do aplicativo).
Embora a laténcia fosse elevada (ordem de minutos), o comportamento caracterizou
de forma inequivoca a vulnerabilidade de enumeracdo em escala. Para corroborar a
associacdo entre identificadores e imagens, realizou-se acesso pontual a um subconjunto
minimo de URLs de fotografia retornadas no XML, confirmando a disponibilidade das
imagens no formato utilizado pelo aplicativo. A coleta foi estritamente limitada e inter-
rompida assim que a hipétese foi confirmada, priorizando a comunica¢do imediata aos
responsaveis e a mitigacao célere do problema.

Sobretudo, € importante pontuar que, a possibilidade de observar o trafego do
aplicativo por ferramenta de anélise de rede foi relevante para a detec¢do, mas ndo consti-
tui a causa-raiz. A falha é predominantemente server-side, decorrente de controles de
autorizacdo insuficientes e de desenho inadequado da interface de listagem. Mesmo
que o aplicativo movel adote mecanismos de reforco (p.ex., verificagdo de certificado),
a corre¢ao correta deve residir no backend.

4. Consideracoes finais

Este trabalho realizou um estudo de caso, de maneira €tica e anonimizada de trés siste-
mas de uma institui¢do de ensino superior, com mapeamento dos achados as taxonomias
OWASP e correcdes verificadas via divulgagao responsdvel. Os resultados evidenciaram
a recorréncia de classes de risco bem documentadas na literatura. As notificagdes res-
ponsdveis resultaram na pronta correcao das vulnerabilidades, confirmada posteriormente
por validagdes pontuais.

O estudo, de natureza exploratdria e conduzido sob restri¢des éticas, teve escopo
limitado a rotas e funcionalidades especificas, sem coleta massiva ou testes destrutivos,
0 que inviabiliza estimativas quantitativas e pode deixar varidveis nao observadas. As
inferéncias decorrem de evidéncias empiricas, € a generalizacdo para outros contextos
exige cautela diante de diferencas arquiteturais e de governanca. Ainda assim, a con-
vergéncia com a recomendacdes de padroes como OWASP, sustenta a validade externa
das recomendagdes apresentadas pelas diretrizes definidas.

Em sintese, a contribui¢cdo deste trabalho estd na sistematizacdo de evidéncias
empiricas sobre vulnerabilidades representativas em ambientes académicos brasileiros e
no seu enquadramento as taxonomias OWASP.

5. References

Referéncias

Borges, J. G. and da Silva, C. A. (2025). Analise de seguranca em aplicacdes web
académicas.

de Carvalho, A. W. and de Castro Junior, A. P. (2014). Google hacking para ataques
sql injection. In Anais da Il Escola Regional de Informdtica de Goids, pages 65-77,
Goiania, GO, Brasil. Escola Regional de Informatica de Goids, SBC.

Fernandes, V. (2019). Hackeando instituicdes de ensino no brasil. https://
vitor—fernandes.github.io/Hacking-Universities/L Acessado em:
09 nov. 2025.

IBM (2024). O que é seguranc¢a da informacdo? https://www.ibm.com/br-pt/
think/topics/information-security. Acesso em: 09 nov. 2025.

Libaneo, M. C. and Carvalho, S. T. (2016). Defendendo aplicacdes web: Mapeando as
principais vulnerabilidades e seus controles de seguranca. In Anais da IV Escola Re-
gional de Informdtica de Goids, pages 167-179, Goiania, GO, Brasil. Escola Regional
de Informatica de Goids, SBC.

OWASP Foundation (2016). Owasp mobile top ten 2016. https://owasp.org/
www—project—-mobile—top—10/. Acessado em: 09 nov. 2025.

OWASP Foundation (2021a). Owasp top 10 - 2021. https://owasp.org/Topl0/.
Acessado em: 09 nov. 2025.

OWASP Foundation (2021b). Sql injection prevention cheat sheet. https:
//cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_
Prevention Cheat Sheet.html. Acessado em: 09 nov. 2025.

OWASP Foundation (2023). Owasp api security top 10 - 2023. https://owasp.
org/API-Security/editions/2023/en/0x00-introduction/. Aces-
sado em: 09 nov. 2025.

https://vitor-fernandes.github.io/Hacking-Universities/
https://vitor-fernandes.github.io/Hacking-Universities/
https://www.ibm.com/br-pt/think/topics/information-security
https://www.ibm.com/br-pt/think/topics/information-security
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/Top10/
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://owasp.org/API-Security/editions/2023/en/0x00-introduction/
https://owasp.org/API-Security/editions/2023/en/0x00-introduction/

	Introdução
	Fundamentação Teórica e Trabalhos Relacionados
	Taxonomias e Modelos Relevantes

	Estudos de Caso
	Sistema Alpha
	Contexto e escopo
	Vulnerabilidades identificadas

	Sistema Beta
	Contexto e escopo
	Vulnerabilidades identificadas

	Sistema Ômega
	Contexto e escopo
	Vulnerabilidades identificadas

	Considerações finais
	References

