
Segurança da Informação em uma instituição de ensino
superior: Estudo de Caso de Falhas em Aplicações Web e

Mobile

Iaan Mesquita de Souza1, Sérgio Teixeira de Carvalho1

1Instituto de Informática – Universidade Federal de Goiás (UFG)

iaanmesquita@discente.ufg.br sergiocarvalho@ufg.br

Abstract. This article presents a security case study of three anonymized insti-
tutional systems at a higher education instituion - System Alpha, System Beta,
and System Omega. Using static and dynamic analysis, controlled traffic ins-
pection, and safe parameter manipulation, we identified: (i) improper exposure
of information in Alpha due to access control and configuration weaknesses;
(ii) SQL injection in Beta’s login, enabling unauthorized access to sensitive re-
cords; and (iii) in Omega, a predictable association between identifiers and
images and enumeration via pagination. The evidence was anonymized and res-
ponsibly disclosed; maintainers applied fixes that were subsequently validated.
The findings were mapped to the OWASP Top 10, and the paper systematizes
the results, provides a critical discussion of the vulnerabilities, and highlights
lessons learned.

Resumo. Este artigo apresenta um estudo de caso de segurança em três sis-
temas institucionais anonimizados de uma instituição de ensino superior - Sis-
tema Alpha, Sistema Beta e Sistema Ômega. Com análise estática e dinâmica,
inspeção controlada de tráfego e manipulação segura de parâmetros, identi-
ficamos: (i) exposição indevida de informações em Alpha, decorrente de fa-
lhas de controle de acesso e de configuração; (ii) injeção de SQL no login
de Beta, permitindo acesso não autorizado a registros sensı́veis; e (iii) em
Ômega, associação previsı́vel entre identificadores e imagens e enumeração
por paginação. As evidências foram anonimizadas e divulgadas de forma res-
ponsável e os mantenedores aplicaram correções, posteriormente validadas. As
falhas foram mapeadas ao OWASP Top 10, e o trabalho sistematiza os achados,
discute criticamente as vulnerabilidades e as lições aprendidas.

1. Introdução

A transformação digital nas universidades brasileiras intensificou a dependência de siste-
mas web e aplicações móveis para a gestão acadêmica e administrativa. Com a crescente
digitalização e dependência de sistemas conectados a internet para operações crı́ticas, a
segurança da informação tornou-se um requisito fundamental para organizações de todos
os portes e segmentos [IBM 2024], e as instituições de ensino superior não são exceção.
Esse movimento amplia a superfı́cie de ataque e expõe instituições, estudantes e servido-
res a riscos significativos quando princı́pios básicos de engenharia segura não são obser-
vados. Nesse contexto, iniciativas de avaliação proativa de segurança, alinhadas a boas



práticas internacionalmente reconhecidas, como o Open Web Application Security Pro-
ject (OWASP) [OWASP Foundation 2021a] Top 10, tornam-se essenciais para antecipar
ameaças, reduzir vulnerabilidades e fortalecer a confiança dos usuários e da sociedade.

Este artigo apresenta um estudo de caso conduzido em três sistemas de uma
instituição de ensino superior (denominados, Sistema Alpha, Sistema Beta e Sistema
Ômega), com foco em identificar, analisar, documentar e notificar de forma responsável
vulnerabilidades que pudessem afetar a confidencialidade, a integridade e a disponibi-
lidade de dados e serviços. A investigação foi realizada sem ações destrutivas e com
escopo estritamente técnico, combinando análise estática e dinâmica, inspeção contro-
lada de tráfego, manipulação de parâmetros e testes de enumeração, sempre observando
limites éticos e legais.

Justificativa da escolha dos sistemas: Os três sistemas analisados foram sele-
cionados especificamente por possuı́rem acesso público pela Internet, o que permitiu a
realização dos testes de segurança de forma ética e controlada, sem a necessidade de
credenciais privilegiadas. Esta escolha, porém, apresenta limitações: sistemas de acesso
público podem não representar toda a complexidade da infraestrutura institucional, e vul-
nerabilidades em sistemas internos ou com autenticação mais robusta podem não ter sido
detectadas. Ainda assim, a análise de sistemas públicos é relevante por estes serem fre-
quentemente o primeiro alvo de atacantes e por representarem a interface mais exposta da
instituição.

Todo o material coletado foi anonimizado, incluindo nomes de sistemas, URLs,
identificadores e quaisquer dados pessoais. O propósito deste artigo é cientı́fico e edu-
cativo, sem a intenção de expor indevidamente a instituição ou seus desenvolvedores.
Deliberadamente, o trabalho não apresenta ”receitas de ataque”, nem passos operacionais
detalhados, mitigando o risco de uso indevido.

Como sı́ntese das evidências e para orientar a leitura, a Tabela 1 resume as vulne-
rabilidades observadas em cada sistema, a gravidade atribuı́da, o mapeamento correspon-
dente ao OWASP Top 10 e os principais impactos. Em termos gerais, observou-se:

Sistema Alpha: Um caso tı́pico de Insecure Direct Object Reference (IDOR). O
backend validava o token de sessão, porém não aplicava verificação de autorização por
objeto (ownership), permitindo consultar, alterar e deletar dados de outros usuários.

Sistema Beta: Uma injeção de Script Query Language (SQL) no fluxo de
autenticação que possibilitava acesso não autorizado a registros sensı́veis e confidenci-
ais, e por consequência, a problemas de autorização.

Sistema Ômega: A associação determinı́stica entre identificadores e arquivos de
imagem, a possibilidade de enumerar usuários por paginação de uma Application Pro-
gramming Interface (API), possibilidade de sobrecarregar o servidor com requisições
custosas e fragilidades no uso de identificadores com potencial para consumo indevido
de créditos de terceiros.

Os impactos potenciais envolveram violação de privacidade, fraude transacional,
alteração de dados, indisponibilidade e ampliação não autorizada de privilégios, com se-
veridade predominante alta/crı́tica. O procedimento de divulgação responsável foi se-
guido rigorosamente: as falhas foram documentadas e comunicadas imediatamente à



Tabela 1. Resumo das vulnerabilidades observadas e mapeamento ao OWASP
(Top 10, API e Mobile).

Sistema Vulnerabilidades encontradas OWASP ID Gravidade

Alpha IDOR; enumeração de usuários;
leitura/alteração/exclusão de dados

A01:2021; A05:2021; API1:2023;
API3:2023; API8:2023

Alta

Beta SQL injection A03:2021; A01:2021 Crı́tica

Ômega IDs determinı́sticos em imagens;
paginação enumerável

A01:2021; A04:2021; A05:2021;
API1:2023; API3:2023;
API4:2023; API8:2023; M3; M8;
M9

Alta

coordenação do curso para conectar com às equipes responsáveis, que procederam com
as correções. A redação deste artigo foi concluı́da após a verificação das correções apli-
cadas às vulnerabilidades reportadas, assegurando que não seja mais possı́vel reproduzir
qualquer exploração aqui descrita.

Em resumo. as contribuições deste trabalho são:

• Sistematização de três estudos de caso anonimizados (Alpha, Beta e Ômega), re-
presentativos de classes recorrentes de vulnerabilidades.

• Mapeamento explı́cito ao OWASP Top 10, OWASP API Top 10 e OWASP Mobile
Top 10, facilitando a priorização de riscos e o diálogo entre equipes de desenvol-
vimento, segurança e gestão.

• Discussão sobre mitigações com referência a trabalhos relacionados que abor-
dam controles de segurança em maior profundidade [Libâneo and Carvalho 2016,
OWASP Foundation 2021a, OWASP Foundation 2021b].

• Ênfase em ética, privacidade e divulgação responsável como pilares para fortalecer
a segurança institucional e, por extensão, o ecossistema nacional de Segurança da
Informação.

O restante do artigo está organizado da seguinte forma: a Seção 2 apresenta a
fundamentação teórica e trabalhos relacionados. A Seção 3 detalha os três estudos de caso
(Sistema Alpha, Sistema Beta e Sistema Ômega) com uma análise crı́tica e implicações
práticas das vulnerabilidades encontradas. A Seção 4 conclui com as considerações finais.

2. Fundamentação Teórica e Trabalhos Relacionados
A segurança da informação pode ser definida como o conjunto de práticas e tecnologias
que protegem dados digitais contra acesso não autorizado, uso indevido ou roubo ao longo
de todo o seu ciclo de vida [IBM 2024]. Esta proteção abrange não apenas aspectos
técnicos, mas também processos organizacionais e conscientização humana.

Assim sendo, nesta seção são apresentados os conceitos fundamentais que
embasam este trabalho e trabalhos relacionados da literatura. Adotamos como
eixo principal o OWASP Top 10 para aplicações web [OWASP Foundation 2021a], o
OWASP API Top 10 para APIs [OWASP Foundation 2023] e o OWASP Mobile Top 10
[OWASP Foundation 2016] para aplicações móveis .



Ademais, a análise de vulnerabilidades em sistemas de instituições de ensino su-
perior tem se mostrado uma preocupação crescente no contexto brasileiro, especialmente
diante da crescente digitalização dos processos acadêmicos e administrativos.

[Libâneo and Carvalho 2016] apresentam um mapeamento abrangente das prin-
cipais vulnerabilidades em aplicações web e seus controles de segurança, baseando-se
no relatório OWASP Top 10. O trabalho detalha controles especı́ficos para cada classe de
vulnerabilidade, incluindo validação de entradas, gerenciamento de sessão, codificação de
saı́da, proteção de dados e controle de acesso. Este material é particularmente relevante
para o presente estudo, pois oferece diretrizes práticas de mitigação que complementam
nossa análise empı́rica. Como os autores destacam, técnicas como query parameteriza-
tion (consultas parametrizadas) são essenciais para prevenir injeção de SQL, enquanto o
gerenciamento adequado de sessão e autenticação de múltiplos fatores protegem contra
quebra de autenticação.

[Borges and da Silva 2025] realizaram uma análise de vulnerabilidades em
aplicações web de uma universidade privada e identificaram 517 falhas. Uma parcela
significativa permitia a execução de código arbitrário e a movimentação lateral pela rede,
evidenciando a fragilidade dos controles de segurança da informação em organizações que
administram ampla gama de dispositivos e dados sensı́veis de milhares de indivı́duos. O
estudo reforça a urgência de adoção de medidas e arquiteturas de cibersegurança robustas
para a proteção de dados pessoais e acadêmicos.

De forma complementar, [Fernandes 2019] identificou vulnerabilidades crı́ticas
no Sistema Integrado de Gestão de Atividades Acadêmicas (SIGAA), sistema am-
plamente utilizados por instituições de ensino, majoritariamente instituições públicas.
As vulnerabilidades documentadas pelo autor foram SQL Injection, Cross-Site Scrip-
ting (XSS) e Insecure Direct Object Reference (IDOR). O estudo documentou que 42
instituições de ensino superior utilizam o sistema, evidenciando o alcance potencial des-
sas falhas. O autor seguiu práticas de divulgação responsável, notificando previamente os
desenvolvedores sobre as vulnerabilidades identificadas.

[de Carvalho and de Castro Júnior 2014] investigaram a combinação de técnicas
de Google Hacking com exploração de SQL Injection, demonstrando como atacantes
utilizam operadores avançados de busca para identificar sistemas vulneráveis e, poste-
riormente, explorar falhas de injeção de SQL. O estudo de caso apresentado pelos au-
tores evidencia a facilidade com que sistemas web mal configurados podem ser desco-
bertos e comprometidos, reforçando a necessidade de testes proativos de segurança. As
recomendações incluem uso de consultas parametrizadas, configuração inteligente de pri-
vilégios do banco de dados e testes regulares com as mesmas técnicas usadas por atacan-
tes.

Estes estudos convergem ao destacar a importância crı́tica de avaliações proativas
de segurança para proteger dados pessoais e acadêmicos em ambientes universitários,
ressaltando a urgência de polı́ticas de segurança da informação alinhadas às melhores
práticas internacionais como as definidas pela OWASP.

2.1. Taxonomias e Modelos Relevantes
O OWASP Top 10 é um documento padrão de conscientização para desenvolvedores que
sintetiza classes recorrentes de risco em aplicações a partir de dezenas de fraquezas ma-



peadas. Ele representa um amplo consenso sobre os riscos de segurança mais crı́ticos para
aplicações web [OWASP Foundation 2021a]. Em conjunto com os OWASP API Top 10
[OWASP Foundation 2023] e OWASP Mobile Top 10 [OWASP Foundation 2016] esses
catálogos organizam mais de 30 categorias de risco, oferecendo um vocabulário comum
e prioridades práticas para mitigação.

À luz desses referenciais, os achados foram mapeados às categorias do OWASP,
conforme a Tabela 1, privilegiando uma leitura orientada a risco e a mitigação. Esse
enquadramento fornece a base conceitual para as recomendações técnicas e de processo
apresentadas nas seções seguintes, sem prescrever procedimentos operacionais detalha-
dos, em alinhamento à divulgação responsável.

3. Estudos de Caso
Este estudo integra uma avaliação de segurança com base nas diretrizes OWASP Top 10,
OWASP API Top 10 e OWASP Mobile Top 10.

3.1. Sistema Alpha
3.1.1. Contexto e escopo

O escopo abrangeu a análise pontual de duas rotas da API do Sistema Alpha, plataforma
de gestão acadêmica utilizada por discentes e docentes e acessı́vel via navegador web. A
abordagem foi minimamente invasiva, limitada à demonstração técnica da falha (prova
de conceito), sem exfiltração massiva de dados, seguida de comunicação imediata e res-
ponsável aos mantenedores, em conformidade com princı́pios de divulgacão responsável.
Após o reporte e a confirmação da vulnerabilidade, a equipe técnica implementou as
correções e emitiu parecer atestando sua remediação. A validação final consistiu na
execução de requisições simples às rotas afetadas, confirmando a eliminação do com-
portamento indevido.

3.1.2. Vulnerabilidades identificadas

A primeira etapa consistiu na inspeção das requisições realizadas pelo cliente (navegador
web) ao servidor. Foram identificadas duas rotas Representational State Transfer (REST)
parametrizadas por identificador no caminho da URL:
/dados-pessoais/123
/dados-pagamentos/123

em que ”123” correspondia ao identificador do próprio usuário autenticado. O recebi-
mento do identificador diretamente no path (parâmetro de rota), quando combinado a
validações incompletas no backend, é um padrão associado a falhas de controle de acesso
em nı́vel de objeto.

Teste 1 - Ausência de token. Visando verificar a existência de validação básica
de autenticação, foram emitidas requisições sem o cabeçalho de autorização. O sistema
rejeitou adequadamente tais requisições (por exemplo, com 401/403), indicando que de
fato havia checagem de existência/validade do token antes do processamento do recurso,
conforme esperado.

Teste 2 - Token válido e identificador (id) de terceiro. Para avaliar o controle
de autorização por objeto, repetiu-se a requisição agora com um token válido, porém



alterando-se apenas o id na URL para um valor pertencente a outro usuário. Nessas
condições, o backend retornou integralmente os dados do recurso associado ao id in-
formado, confirmando a ausência de verificação de posse/pertinência entre o usuário au-
tenticado (claims do token) e o objeto solicitado (id na rota). A comprovação técnica foi
conduzida com a ferramenta curl, presente em sistemas operacionais.

Conforme evidenciado na Figura 1, a API retornou dados pessoais completos ao
se alterar apenas o identificador na URL, mesmo com token pertencente a outro usuário.

Figura 1. Resposta da API a uma requisição aos endpoints
/dados-pessoais/<id> com token válido, porém com id de ter-
ceiro. Campos sensı́veis foram ofuscados.

Comportamento análogo foi observado na rota /dados-pagamentos/<id>,
que retornava metadados de pagamentos previamente utilizados (por exemplo, últimos
dı́gitos, bandeira e validade). Embora a aplicação não armazenasse dados sensı́veis do
cartão (tokenização realizada pelo adquirente), o acesso a metadados de terceiros confi-
gura exposição indevida de informações pessoais e financeiras.

Adicionalmente, verificou-se que os identificadores utilizados nas rotas eram se-
quenciais e de baixa entropia (por exemplo, 1, 2, 3, 4, ...). Tal caracterı́stica, quando com-
binada à ausência de autorização por objeto evidenciada na Figura 1, facilita a enumeração
sistemática de contas e a automação de requisições para diferentes identificadores. Em
um cenário sem limitação de taxa, sem detecção de anomalias e com respostas deter-
minı́sticas, ferramentas triviais (por exemplo, curl encadeado em scripts) poderiam
iterar o parâmetro de id e, potencialmente, exfiltrar dados de grande parte da base de
usuários. Por razões éticas, não foi realizada coleta massiva. A inferência decorre do
padrão de identificadores observado, do comportamento de autorização descrito e na
prova de conceito, enviada prontamente aos responsáveis pelo sistema.

3.2. Sistema Beta
3.2.1. Contexto e escopo

O escopo incluiu a análise do fluxo de autenticação do Sistema Beta, com foco na su-
perfı́cie de ataque exposta por campos de entrada no formulário. O objetivo foi identificar
vulnerabilidades de alto impacto, validar de forma minimamente invasiva e comunicar
imediatamente aos responsáveis, seguindo práticas de divulgação responsável. Não houve
exfiltração de dados. Os testes limitaram-se à comprovação técnica da vulnerabilidade e



à comunicação imediata. As falhas reportadas já se encontram corrigidas pelos mantene-
dores.

Adicionalmente, após a identificação desta falha especı́fica (classificada como
crı́tica), o autor decidiu não prosseguir com testes adicionais, interrompendo a prova
de conceito no ponto mı́nimo necessário e comunicando imediatamente a equipe res-
ponsável, em conformidade com princı́pios éticos e de divulgação responsável. Em ter-
mos estritamente teóricos, vulnerabilidades dessa natureza podem servir como ponto de
partida para tentativas de elevação de privilégios, variando desde o acesso a áreas adminis-
trativas do sistema até, em cenários extremos, a execução remota de comandos e eventual
controle total do servidor. Ressalta-se, contudo, que tais hipóteses não foram testadas
nem exploradas, justamente por se tratar de uma falha de alto impacto, tendo prevalecido
a decisão prudente de priorizar a mitigação rápida e a proteção dos dados.

3.2.2. Vulnerabilidades identificadas

A principal vulnerabilidade observada foi uma injeção de SQL no ponto de login, causada
pela concatenação direta de entrada do usuário na construção de consultas, sem uso de
parâmetros vinculados (prepared statements) e sem saneamento robusto. Na sondagem
inicial, a simples inserção de um apóstrofo (’) no campo de login gerou o alerta de sintaxe
SQL

Warning: sqlanywhere_query() [function.sqlanywhere-query]:
SQLAnywhere: [-131] Syntax error near ...

o que é um forte indı́cio de que o valor foi interpolado dentro de um literal
de string na cláusula WHERE. Em cenários dessa natureza, payloads clássicos como
’ OR 1=1;-- podem alterar a lógica da consulta, resultando em autenticação indevida.

Figura 2. Fluxo do bypass por SQL Injection no login: em vermelho, o payload
injetado; em cinza, a parte comentada que é ignorada, levando o backend
a retornar todos os documentos.

Conforme ilustrado na Figura 2, o atacante preenche o campo de login com o
payload ’ OR 1=1;-- e um valor qualquer no campo password. A aplicação, ao con-
catenar diretamente esses valores na WHERE, acaba gerando uma consulta semelhante a:

SELECT * FROM documents WHERE loginId = ’’
OR 1=1;-- ’ AND senha = ’123’;

Na figura, em vermelho está destacado o payload inserido (’ OR 1=1;--); em cinza,
a parte da consulta que passa a ser ignorada por causa do comentário. O resultado prático
é que a condição fica sempre verdadeira e o banco retorna todos os documentos de todos
os usuários, que acabam sendo enviados ao atacante pelo backend.



Por que o payload funciona: O payload funciona porque o primeiro apóstrofo (’) fecha
prematuramente o literal de string esperado para loginId, alterando a estrutura sintática
da consulta. Em seguida, o operador OR introduz a tautologia 1=1, tornando a cláusula
WHERE verdadeira para todas as linhas. Quando aceito pelo Sistema Gerenciador de
Banco de Dados (SGBD), o ; encerra a instrução atual, e o marcador de comentário
-- faz com que todo o restante da linha seja ignorado pelo parser SQL, incluindo a
cláusula legı́tima AND senha = ’123’. Como resultado, a WHERE efetiva reduz-
se a uma condição verdadeira (... WHERE TRUE), removendo o filtro pretendido e
possibilitando o acesso indevido.

3.3. Sistema Ômega
3.3.1. Contexto e escopo

O escopo contemplou a avaliação exploratória de uma aplicação móvel integrada ao ecos-
sistema institucional, com foco no comportamento de serviços de backend e na eventual
exposição de dados pessoais. A atividade foi conduzida de modo minimamente invasivo,
com inspeção de tráfego por meio de ferramenta genérica de análise de rede. Como a ca-
mada cliente empregava verificação de certificado (SSL pinning), foi necessário contornar
esse mecanismo exclusivamente para fins de observação e comprovação técnica do fluxo
de requisições/respostas entre aplicativo e servidor. Não houve coleta massiva de dados,
tampouco retenção indevida de conteúdos sensı́veis. A validação restringiu-se ao mı́nimo
necessário para caracterização da vulnerabilidade e comunicação imediata e responsável
aos mantenedores, em alinhamento a princı́pios de divulgação responsável. Após o re-
porte, as correções foram implementadas pela equipe técnica, que atestou a remediação.
A validação final consistiu em requisições simples para confirmar a eliminação do com-
portamento indevido.

3.3.2. Vulnerabilidades identificadas

A investigação seguiu um encadeamento metodológico centrado na observação das ro-
tas efetivamente utilizadas pelo aplicativo. Inicialmente, realizou-se o contorno das
verificações de SSL pinning no aplicativo, possibilitando a inspeção do tráfego protegido
entre o aplicativo e os serviços de backend por meio de ferramenta genérica de análise de
rede. Com a visibilidade do tráfego, identificaram-se as rotas chamadas pelo aplicativo
para obtenção de recursos estáticos e dados pessoais, incluindo o caminho lógico associ-
ado a imagens de perfil. A partir de então, a investigação iniciou-se a partir da observação
de que a URL utilizada pela aplicação para exibir a foto de perfil aparentava conter um
identificador coincidente com o CPF do usuário.

O padrão observado era compatı́vel com caminhos do tipo:

https://ômega.br/sys623/fotos/18859946050.jpg

Sugeriu-se, então, como hipótese de trabalho, que o nome do arquivo (11 dı́gitos + .jpg)
coincidisse com um identificador civil (CPF) do titular. À época, esta correlação era uma
hipótese, não uma certeza.

Ao solicitar o diretório lógico do recurso (/sys623/fotos) sem parâmetros
adicionais, o serviço retornou um documento Extensible Markup Language (XML) com



exatos 10 registros de pessoas, contendo id, nome completo e o nome do arquivo de
foto, com padrão numérico de 11 dı́gitos seguido de jpg. O documento era semelhante
à:
<?xml version="1.0" encoding="UTF-8"?>
<pessoas>

<pessoa>
<id>1234567</id>
<nome_completo>Ana Silva Santos</nome_completo>
<foto>12345678901.png</foto>

</pessoa>
...

</pessoas>

A partir desse ponto, constatou-se que o endpoint de listagem respondia sem exigir prova
de autenticação ou, alternativamente, sem vincular a autorização ao titular dos dados. O
atributo foto apresentava um nome de arquivo numericamente compatı́vel com um CPF
em formato canônico (11 dı́gitos, sem separadores), o que implica uma vinculação direta
entre um CPF e um dado biométrico identificável (imagem facial). Ainda que o CPF não
seja classificado como ”sigiloso” por si, sua divulgação combinada com a fotografia e o
nome completo eleva substancialmente o potencial de danos ao titular.

Adicionalmente, como o documento retornava exatamente 10 elementos,
formulou-se a hipótese de paginação implı́cita e testaram-se parâmetros comumente em-
pregados por APIs para navegação de resultados (?offset= e ?max=), com o objetivo
de obter lotes adicionais e percorrer o conjunto. A hipótese confirmou-se: ambos os
parâmetros foram aceitos e permitiram a navegação determinı́stica entre páginas.

Observou-se, ainda, que o max não parecia sofrer limitação server-side adequada:
ao fornecê-lo com um valor suficientemente elevado, o serviço retornou, em uma única
resposta, a totalidade dos registros disponı́veis (isto é, todos os usuários do aplicativo).
Embora a latência fosse elevada (ordem de minutos), o comportamento caracterizou
de forma inequı́voca a vulnerabilidade de enumeração em escala. Para corroborar a
associação entre identificadores e imagens, realizou-se acesso pontual a um subconjunto
mı́nimo de URLs de fotografia retornadas no XML, confirmando a disponibilidade das
imagens no formato utilizado pelo aplicativo. A coleta foi estritamente limitada e inter-
rompida assim que a hipótese foi confirmada, priorizando a comunicação imediata aos
responsáveis e a mitigação célere do problema.

Sobretudo, é importante pontuar que, a possibilidade de observar o tráfego do
aplicativo por ferramenta de análise de rede foi relevante para a detecção, mas não consti-
tui a causa-raiz. A falha é predominantemente server-side, decorrente de controles de
autorização insuficientes e de desenho inadequado da interface de listagem. Mesmo
que o aplicativo móvel adote mecanismos de reforço (p.ex., verificação de certificado),
a correção correta deve residir no backend.

4. Considerações finais
Este trabalho realizou um estudo de caso, de maneira ética e anonimizada de três siste-
mas de uma instituição de ensino superior, com mapeamento dos achados às taxonomias
OWASP e correções verificadas via divulgação responsável. Os resultados evidenciaram
a recorrência de classes de risco bem documentadas na literatura. As notificações res-
ponsáveis resultaram na pronta correção das vulnerabilidades, confirmada posteriormente
por validações pontuais.



O estudo, de natureza exploratória e conduzido sob restrições éticas, teve escopo
limitado a rotas e funcionalidades especı́ficas, sem coleta massiva ou testes destrutivos,
o que inviabiliza estimativas quantitativas e pode deixar variáveis não observadas. As
inferências decorrem de evidências empı́ricas, e a generalização para outros contextos
exige cautela diante de diferenças arquiteturais e de governança. Ainda assim, a con-
vergência com a recomendações de padrões como OWASP, sustenta a validade externa
das recomendações apresentadas pelas diretrizes definidas.

Em sı́ntese, a contribuição deste trabalho está na sistematização de evidências
empı́ricas sobre vulnerabilidades representativas em ambientes acadêmicos brasileiros e
no seu enquadramento às taxonomias OWASP.

5. References

Referências
Borges, J. G. and da Silva, C. A. (2025). Análise de segurança em aplicações web

acadêmicas.

de Carvalho, A. W. and de Castro Júnior, A. P. (2014). Google hacking para ataques
sql injection. In Anais da II Escola Regional de Informática de Goiás, pages 65–77,
Goiânia, GO, Brasil. Escola Regional de Informática de Goiás, SBC.

Fernandes, V. (2019). Hackeando instituições de ensino no brasil. https://
vitor-fernandes.github.io/Hacking-Universities/. Acessado em:
09 nov. 2025.

IBM (2024). O que é segurança da informação? https://www.ibm.com/br-pt/
think/topics/information-security. Acesso em: 09 nov. 2025.

Libâneo, M. C. and Carvalho, S. T. (2016). Defendendo aplicações web: Mapeando as
principais vulnerabilidades e seus controles de segurança. In Anais da IV Escola Re-
gional de Informática de Goiás, pages 167–179, Goiânia, GO, Brasil. Escola Regional
de Informática de Goiás, SBC.

OWASP Foundation (2016). Owasp mobile top ten 2016. https://owasp.org/
www-project-mobile-top-10/. Acessado em: 09 nov. 2025.

OWASP Foundation (2021a). Owasp top 10 - 2021. https://owasp.org/Top10/.
Acessado em: 09 nov. 2025.

OWASP Foundation (2021b). Sql injection prevention cheat sheet. https:
//cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_
Prevention_Cheat_Sheet.html. Acessado em: 09 nov. 2025.

OWASP Foundation (2023). Owasp api security top 10 - 2023. https://owasp.
org/API-Security/editions/2023/en/0x00-introduction/. Aces-
sado em: 09 nov. 2025.

https://vitor-fernandes.github.io/Hacking-Universities/
https://vitor-fernandes.github.io/Hacking-Universities/
https://www.ibm.com/br-pt/think/topics/information-security
https://www.ibm.com/br-pt/think/topics/information-security
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/Top10/
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://owasp.org/API-Security/editions/2023/en/0x00-introduction/
https://owasp.org/API-Security/editions/2023/en/0x00-introduction/

	Introdução
	Fundamentação Teórica e Trabalhos Relacionados
	Taxonomias e Modelos Relevantes

	Estudos de Caso
	Sistema Alpha
	Contexto e escopo
	Vulnerabilidades identificadas

	Sistema Beta
	Contexto e escopo
	Vulnerabilidades identificadas

	Sistema Ômega
	Contexto e escopo
	Vulnerabilidades identificadas


	Considerações finais
	References

