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Abstract. Testability has gained relevance as a criterion for evaluating software
quality. In critical systems, such as healthcare systems, ensuring that software
is comprehensively testable and effectively tested is essential. In agile environ-
ments, automatability emerges as a key factor for software testability, enabling
fast, repeatable, and reliable test execution. This study evaluates the automa-
tability of the Web interface of the SobreVidas - “Oral Cancer” platform, iden-
tifying deficiencies and proposing improvements aimed at strengthening soft-
ware quality assurance and enhancing system reliability.

Resumo. A testabilidade tem ganhado grande relevdancia como critério de
avaliacdo da qualidade de software. Em sistemas criticos, como sistemas para
a drea da saiide, é essencial que o software seja amplamente testdvel e efe-
tivamente testado. Em ambientes dgeis, a automatabilidade surge como um
fator central para a testabilidade, possibilitando a execugdo rdpida, repetivel
e confidvel de testes. Este estudo avalia a automatabilidade da interface Web
da plataforma SobreVidas — “Cdancer de Boca”, identificando deficiéncias e
propondo melhorias voltadas ao fortalecimento da garantia de qualidade e ao
aumento da confiabilidade do sistema.

1. Introducao

A diversidade de dispositivos, o uso de frameworks modernos e a ado¢ao de padrdes de
arquitetura aumentaram, significativamente, a complexidade das interfaces Web. Essa
crescente complexidade, aliada ao fato de que a camada de front-end é o ponto primério
de contato do usudrio com o software, torna fundamental que praticas de Garantia de
Qualidade de Software (Software Quality Assurance - SQA) sejam aplicadas ao desen-
volvimento do front-end, assegurando a confiabilidade do software e uma experiéncia
satisfatdria ao usudrio final [Ronchieri and Canaparo 2023].

O SobreVidas - “Cancer de Boca” € uma aplicacao multiplataforma e multiusuario
projetada com o intuito de rastrear € monitorar a populacao de risco na Aten¢ao Primaria



a Saude, e apresenta diversas interfaces grificas interativas. Em softwares voltados ao
dominio da saude, a robustez é ainda mais critica, visto que falhas podem impactar dire-
tamente na eficiéncia do atendimento e na seguranca dos pacientes. Dessa forma, a qua-
lidade do software transcende a simples usabilidade, configurando-se como uma questao
de segurancga em saude publica [Alotaibi and Federico 2017].

A testabilidade € um atributo externo ao software que avalia a complexidade e o
esfor¢co necessdrio para testagem do software [Ratnani and Suri 2015]. A medida da tes-
tabilidade de um software é um resultado do conjunto formado pelo software a ser testado,
os objetivos de teste, os métodos de teste e os recursos de teste [Binder 1994]. Em outras
palavras, a testabilidade pode ser analisada sob multiplas perspectivas e é altamente de-
pendente do contexto de cada sistema ou componente, sendo determinante para a adoc¢ao
de estratégias eficazes de validacdo [Obigbesan et al. 2024].

Em ambientes de desenvolvimento agil, como € o caso do Projeto SobreVidas, em
que os periodos de desenvolvimento sdo curtos e ha a necessidade de entregas continuas,
o tempo para a realizacdo minuciosa de testes manuais € reduzido. Nesse cendrio, os
testes automatizados surgem como aliados fundamentais, permitindo execugdes rapidas,
repetiveis e consistentes. Além de acelerar o processo de validagao, a automagao possibi-
lita a deteccao precoce de defeitos e libera a equipe para atividades mais complexas que
elevam a qualidade do produto final [Basit et al. 2018].

Dessa forma, este estudo buscou avaliar a automatabilidade da interface Web
da Plataforma SobreVidas, identificando lacunas que possam dificultar ou impedir a
implementacdo de testes automatizados, além de propor prdticas para mitigar essas
limitacdes. O objetivo foi viabilizar uma automacao de testes eficiente e sustentavel, agre-
gando valor a estratégia de SQA e contribuindo para que o sistema cumpra plenamente
seu proposito de suporte ao rastreamento € monitoramento do cancer de boca.

As demais secOes deste artigo estdo organizadas da seguinte forma: a Secdo 2 de-
talha o método empregado, que inclui uma andlise documental e a implementacdo de uma
Prova de Conceito (PoC) para uma estrutura de testes automatizados; a Secao 3 apresenta
os resultados obtidos, destacando os principais desafios de automatabilidade encontra-
dos; a Secdo 4 discute as implicagdes desses achados para a manutencao e confiabilidade
dos testes; e, por fim, a Secdo 5 apresenta as conclusdes do estudo e recomendacdes de
trabalhos futuros.

2. Método

Inicialmente, foi realizada uma andlise documental dos artefatos relacionados ao projeto,
incluindo planos de sprint, backlog do produto, documentos de requisitos, defini¢des de
design e metas estabelecidas. O objetivo dessa etapa foi obter uma compreensao detalhada
do produto, suas caracteristicas e necessidades, bem como mapear as praticas de testagem
aplicadas na camada de front-end.

Com base nessa andlise, foi desenvolvida uma PoC (Proof of Concept/Prova de
Conceito) para uma infraestrutura de testes automatizados no front-end. Para essa PoC,
foram selecionadas duas abordagens principais:

» Testes e2e (end-to-end) baseados em script, que simulam a interacdo de um
usuario com a aplicacdo em diferentes fluxos;



» Testagem aleatdria (monkey testing), que gera interacoes nao deterministicas na
interface, de modo a explorar caminhos alternativos de uso nao previstos nos casos
de teste formais.

A implementacao utilizou o framework Cypress [Cypress.io 2025] para os testes
e2e, escolhido pela facilidade de instalacdo, integracdo e aceitacdo na comunidade de de-
senvolvedores. Para a testagem aleatoria, foi adotada a biblioteca Gremlins.js, selecionada
por sua capacidade de customizagdo e integracdo com o Cypress. Ambos os recursos fo-
ram escolhidos por serem open source, favorecendo a utilizacao de tecnologias acessiveis
e bem consolidadas, além de reduzir riscos de instabilidade ou descontinuidade.

3. Resultados

Na fase de andlise, foi identificado que, ao longo de aproximadamente duas sprints do So-
breVidas, nas quais a equipe empregou um esfor¢co maior que o habitual para a realiza¢ao
de testes manuais, foram identificados e catalogados 45 bugs. Desses, 35 eram relacio-
nados a front-end, e pelo menos 15 eram erros de funcionalidade que poderiam ter sido
identificados por meio de testes automatizados.

Durante a implementacdo da PoC para os testes automatizados, foram identifi-
cados dois desafios principais: a auséncia de identificadores consistentes e Unicos nos
elementos da interface; e a dificuldade de navegacdo em alguns componentes dinamicos
por meio de seletores CSS ou XPath.

3.1. Identificadores

A Figura 1 apresenta um exemplo de suite de testes automatizados criada para validacao
do fluxo de cadastro e consulta de pacientes. Nesse fluxo, observou-se que a auséncia de
identificadores bem definidos nos elementos da Ul levou a criacdo de seletores frageis,
um tipo de “fest smell” [Bicalho et al. 2024]. Esses seletores dependem excessivamente
da estrutura do DOM (Document Object Model) ou de classes CSS genéricas, tornando
os testes suscetiveis a falhas mesmo ap6s pequenas alteragdes na interface.

Para ilustrar o problema, analisou-se a interface de aceite do Termo de Consenti-
mento Livre e Esclarecido (TCLE) (Figura 2). Nela, o botdo de confirmacao do didlogo
(“Confirmar”) é renderizado sem atributos inicos, como id ou label (Figura 3).

Como evidenciado na Figura 3, o botdo ndo possui um seletor inico que possa
ser utilizado para identificagdo. Assim, a selecdo do botao foi feita pelo conteudo textual
via XPath //button[text=’' Confirmar ’]. Esse tipo de seletor é considerado
fragil, pois depende diretamente do texto exibido e pode gerar testes ndo robustos, de alta
manutencdo e com risco de falsos-negativos [Bernardo 2011].

A solucdo para melhorar a automatabilidade, portanto, é a refatoracdo de
codigo visando a implementacdo de boas praticas de testabilidade no desenvolvimento,
como a atribuicdo de IDs udnicos e estdveis aos principais componentes interativos
[Bernardo 2011]. Alternativamente, recomenda-se o uso de atributos dedicados, como
data-testid (Figura 4), que tornam os seletores mais concisos e resistentes a mudancas
visuais, aumentando a confiabilidade dos testes.
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Figura 1. Suite de testes automatizados criada para validacao do fluxo de cadas-
tro e consulta de pacientes

3.2. Bibliotecas de componentes

Outro desafio identificado refere-se ao uso de bibliotecas de componentes com geragao
dinamica de HTML. O front-end da Plataforma SobreVidas foi desenvolvido em Angular
com a biblioteca PrimeNG, além do FullCalendar para a gestdo de agendas.

A Figura 5 apresenta a tela de agenda semanal, onde os dias sdo divididos em
intervalos de 30 minutos, enquanto a Figura 6 exibe parte do HTML gerado para esse
componente.

Verificou-se que as linhas do calendario utilizam apenas classes genéricas e o atri-
buto data-time, que corresponde a semana inteira, dificultando a diferenciacao entre slots
de dia e hordrio. Além disso, a disponibilidade de agendamento é representada apenas
por cores (branco = disponivel; cinza = indisponivel), o que inviabiliza a automagado por
seletores.

Nesse cendrio, pode ser possivel realizar refatoracdes para que o componente se
torne melhor navegdvel via scripts de testes automatizados. No caso da biblioteca FullCa-
lendar, por exemplo, sdo oferecidos hooks que permitem interagir com 0 componente em
diferentes niveis e adicionar atributos aos elementos. Caso esse recurso nao seja suficiente
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Figura 2. Tela de aceite do TCLE

w <div _ngcontent-ng-c589803851 class="flex flex-column ng-tns-cl946585645-42"> [ +lex
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9@3851-41 p-button p-component" disabled style="display: block;"> Confirmar </button:
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Figura 3. HTML renderizado do botao “Confirmar”

e a biblioteca ndo oferega outros recursos uteis, a equipe deverd avaliar a viabilidade da
substituicao da biblioteca por outra que ofereca esse suporte. Por isso, é importante levar
em consideracao a testabilidade e a automatabilidade desde a etapa de design do software
[Ratnani and Suri 2015].

3.3. Testagem aleatoria (Monkey testing)

A testagem aleatdria foi realizada em trés etapas diferentes de utilizacdo da plataforma:
apos o login; apds a selecao da unidade de atendimento (pigina de agenda); e na pagina
de paciente (pesquisa e cadastro). A Figura 7 apresenta a suite de testes desenvolvida
nessa estratégia.

A biblioteca Gremlins.js foi utilizada para simular agdes aleatérias como cliques,
digitagdo, rolagem de tela e monitoramento de logs de erro. Até o momento, ndo foram
identificados erros relevantes a partir dessa estratégia, mas ela demonstrou potencial como
complemento aos testes e2e.

4. Discussao

A implementacdo da PoC para testes automatizados no front-end do Projeto SobreVi-
das exp0s as barreiras de automatabilidade presentes na aplicagdo. Entre os principais
desafios, destaca-se a auséncia de identificadores tnicos e estiveis nos elementos da in-
terface de usudrio (UI). A dependéncia de seletores frageis, baseados apenas na estrutura
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Figura 4. Codigo da Figura 3 modificado para maior automatabilidade
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Figura 5. Tela de agenda da unidade com exibicao do calendario

do DOM ou em conteudo textual, aumenta a complexidade e o custo de manutengdo dos
scripts de teste, além de comprometer a confiabilidade dos resultados, consumindo tempo
da equipe e reduzindo a efetividade do processo de automacao [Parry et al. 2021].

A adocao de atributos dedicados para testes representa uma solucao robusta para
esse problema. Essa pratica dissocia os testes automatizados da implementagdo visual e
estrutural, acoplando-os a implementacdo funcional, que é o alvo da validacdo. Dessa
forma, alteragdes visuais podem ser realizadas sem impactar a suite de testes. No en-
tanto, a implementacdo dessa abordagem requer comprometimento da equipe de desen-
volvimento, que deve tratar a testabilidade e a automatabilidade como requisitos do soft-
ware desde as etapas iniciais do ciclo de vida, e ndo como uma atividade secundaria
[Xu et al. 2025].

Além disso, a andlise revelou que a utilizagao de bibliotecas de componentes de
terceiros, como a FullCalendar, embora acelere o desenvolvimento, pode introduzir de-
safios de automatabilidade. A dificuldade em simular, por meio de scripts, agdes basicas
de usudrios, como o agendamento de consultas em hordrios disponiveis, transforma
funcionalidades-chave em ‘“‘caixas-pretas” para os testes automatizados. Esse cendrio
reduz os beneficios da automacdo e obriga a manuten¢do de testes manuais em fluxos
essenciais, 0 que contraria os objetivos de agilidade e entrega continua caracteristicos de
ambientes dgeis [De Luca et al. 2024].
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Figura 6. HTML renderizado para alguns horarios do calendario

Nesse contexto, é fundamental que sejam avaliadas alternativas como a
customizagao da biblioteca existente ou, quando necessdrio, a substitui¢ao por ferramen-
tas mais adequadas a automacdo. Essa decisdo deve considerar ndo apenas os custos
imediatos de adaptacdo ou troca, mas também os custos decorrentes da manutengdo de
testes manuais € os riscos associados a introducdo de falhas em producdo. As dificul-
dades observadas reforcam a necessidade de considerar a automatabilidade como critério
estratégico desde a concepg¢ao do sistema, incluindo a sele¢io de frameworks e bibliotecas
externas.

5. Conclusoes

Este estudo avaliou a automatabilidade da interface web do Projeto SobreVidas - “Cancer
de Boca” e identificou deficiéncias que impedem a implementacio eficaz de uma es-
tratégia de testes automatizados. Entre os principais obstaculos destacam-se a auséncia
de identificadores tnicos nos elementos da interface e a baixa acessibilidade de compo-
nentes gerados por bibliotecas externas, como os calendarios interativos. Essas barreiras
resultam na criag@o de testes frgeis, de alta manutencio e com baixa confiabilidade.

Os achados reforcam que, em sistemas criticos na area da saude, a confiabilidade
¢ um pilar de seguranga para os usudrios, e, portanto, a garantia de qualidade de soft-
ware nao pode ser negligenciada. A automacao de testes no front-end configura-se como
ferramenta essencial para elevar a robustez do sistema, permitindo execugdes rapidas, re-
petiveis e consistentes, além de viabilizar a detec¢do precoce de defeitos que poderiam
impactar diretamente o atendimento a pacientes.

Conclui-se que é imperativo para a equipe do Projeto SobreVidas adotar préticas
de desenvolvimento que promovam a testabilidade desde a concep¢do do sistema. A
implementagao das melhorias propostas neste estudo tornard a automacao de testes viavel
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e sustentavel, fortalecerd as praticas de SQA do projeto e ampliard a confiabilidade e a
qualidade do software entregue aos profissionais de satide e a populagdo atendida.

Recomenda-se, para trabalhos futuros, a implantacdo das melhorias sugeridas
neste artigo e de uma estrutura robusta de testes automatizados na plataforma SobreVi-
das, com alta cobertura de c6digo e execucdo automatizada via esteira de CI/CD. E reco-
mendavel também o estudo da implementacdo de bibliotecas e frameworks com geracao
dindmica de HTML, a fim de entender suas particularidades de implementacao e identifi-
car oportunidades de melhoria quanto a automatabilidade.
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