Avaliacao da Automatabilidade como Estratégia de Garantia
de Qualidade no Front-end do Projeto SobreVidas - ‘“Cancer
de Boca”

Tallya J. S. Barbosa', Gabriel F. dos Reis', Leandro Pedrosa®, Luiza de O. Costa',
Renata D. Braga', Rejane F. Ribeiro-Rotta®

nstituto de Informatica — UFG — Goiania — GO — Brasil

ZPrograma de P6s-Graduagdo em Ciéncias da Sadde
Faculdade de Medicina - UFG - Goiénia - GO - Brasil

3Faculdade de Odontologia — UFG - Goiénia - GO - Brasil

{tallyabarbosa, freitas.gabriel, leandropedrosa,luizaluiza}
@discente.ufg.br, {renatadbraga,rejanefrr}@ufg.br,
oliveiraluiza20l2ufg@gmail.com

Abstract. Testability has gained relevance as a criterion for evaluating software
quality. In critical systems, such as healthcare systems, ensuring that software
is comprehensively testable and effectively tested is essential. In agile environ-
ments, automatability emerges as a key factor for software testability, enabling
fast, repeatable, and reliable test execution. This study evaluates the automa-
tability of the Web interface of the SobreVidas - “Oral Cancer” platform, iden-
tifying deficiencies and proposing improvements aimed at strengthening soft-
ware quality assurance and enhancing system reliability.

Resumo. A testabilidade tem ganhado grande relevdancia como critério de
avaliacdo da qualidade de software. Em sistemas criticos, como sistemas para
a drea da saiide, é essencial que o software seja amplamente testdvel e efe-
tivamente testado. Em ambientes dgeis, a automatabilidade surge como um
fator central para a testabilidade, possibilitando a execugdo rdpida, repetivel
e confidvel de testes. Este estudo avalia a automatabilidade da interface Web
da plataforma SobreVidas — “Cdancer de Boca”, identificando deficiéncias e
propondo melhorias voltadas ao fortalecimento da garantia de qualidade e ao
aumento da confiabilidade do sistema.

1. Introducao

A diversidade de dispositivos, o uso de frameworks modernos e a ado¢ao de padrdes de
arquitetura aumentaram, significativamente, a complexidade das interfaces Web. Essa
crescente complexidade, aliada ao fato de que a camada de front-end é o ponto primério
de contato do usudrio com o software, torna fundamental que praticas de Garantia de
Qualidade de Software (Software Quality Assurance - SQA) sejam aplicadas ao desen-
volvimento do front-end, assegurando a confiabilidade do software e uma experiéncia
satisfatdria ao usudrio final [Ronchieri and Canaparo 2023].

O SobreVidas - “Cancer de Boca” € uma aplicacao multiplataforma e multiusuario
projetada com o intuito de rastrear € monitorar a populacao de risco na Aten¢ao Primaria

a Saude, e apresenta diversas interfaces grificas interativas. Em softwares voltados ao
dominio da saude, a robustez é ainda mais critica, visto que falhas podem impactar dire-
tamente na eficiéncia do atendimento e na seguranca dos pacientes. Dessa forma, a qua-
lidade do software transcende a simples usabilidade, configurando-se como uma questao
de segurancga em saude publica [Alotaibi and Federico 2017].

A testabilidade € um atributo externo ao software que avalia a complexidade e o
esfor¢co necessdrio para testagem do software [Ratnani and Suri 2015]. A medida da tes-
tabilidade de um software é um resultado do conjunto formado pelo software a ser testado,
os objetivos de teste, os métodos de teste e os recursos de teste [Binder 1994]. Em outras
palavras, a testabilidade pode ser analisada sob multiplas perspectivas e é altamente de-
pendente do contexto de cada sistema ou componente, sendo determinante para a adoc¢ao
de estratégias eficazes de validacdo [Obigbesan et al. 2024].

Em ambientes de desenvolvimento agil, como € o caso do Projeto SobreVidas, em
que os periodos de desenvolvimento sdo curtos e ha a necessidade de entregas continuas,
o tempo para a realizacdo minuciosa de testes manuais € reduzido. Nesse cendrio, os
testes automatizados surgem como aliados fundamentais, permitindo execugdes rapidas,
repetiveis e consistentes. Além de acelerar o processo de validagao, a automagao possibi-
lita a deteccao precoce de defeitos e libera a equipe para atividades mais complexas que
elevam a qualidade do produto final [Basit et al. 2018].

Dessa forma, este estudo buscou avaliar a automatabilidade da interface Web
da Plataforma SobreVidas, identificando lacunas que possam dificultar ou impedir a
implementacdo de testes automatizados, além de propor prdticas para mitigar essas
limitacdes. O objetivo foi viabilizar uma automacao de testes eficiente e sustentavel, agre-
gando valor a estratégia de SQA e contribuindo para que o sistema cumpra plenamente
seu proposito de suporte ao rastreamento € monitoramento do cancer de boca.

As demais secOes deste artigo estdo organizadas da seguinte forma: a Secdo 2 de-
talha o método empregado, que inclui uma andlise documental e a implementacdo de uma
Prova de Conceito (PoC) para uma estrutura de testes automatizados; a Secao 3 apresenta
os resultados obtidos, destacando os principais desafios de automatabilidade encontra-
dos; a Secdo 4 discute as implicagdes desses achados para a manutencao e confiabilidade
dos testes; e, por fim, a Secdo 5 apresenta as conclusdes do estudo e recomendacdes de
trabalhos futuros.

2. Método

Inicialmente, foi realizada uma andlise documental dos artefatos relacionados ao projeto,
incluindo planos de sprint, backlog do produto, documentos de requisitos, defini¢des de
design e metas estabelecidas. O objetivo dessa etapa foi obter uma compreensao detalhada
do produto, suas caracteristicas e necessidades, bem como mapear as praticas de testagem
aplicadas na camada de front-end.

Com base nessa andlise, foi desenvolvida uma PoC (Proof of Concept/Prova de
Conceito) para uma infraestrutura de testes automatizados no front-end. Para essa PoC,
foram selecionadas duas abordagens principais:

» Testes e2e (end-to-end) baseados em script, que simulam a interacdo de um
usuario com a aplicacdo em diferentes fluxos;

» Testagem aleatdria (monkey testing), que gera interacoes nao deterministicas na
interface, de modo a explorar caminhos alternativos de uso nao previstos nos casos
de teste formais.

A implementacao utilizou o framework Cypress [Cypress.io 2025] para os testes
e2e, escolhido pela facilidade de instalacdo, integracdo e aceitacdo na comunidade de de-
senvolvedores. Para a testagem aleatoria, foi adotada a biblioteca Gremlins.js, selecionada
por sua capacidade de customizagdo e integracdo com o Cypress. Ambos os recursos fo-
ram escolhidos por serem open source, favorecendo a utilizacao de tecnologias acessiveis
e bem consolidadas, além de reduzir riscos de instabilidade ou descontinuidade.

3. Resultados

Na fase de andlise, foi identificado que, ao longo de aproximadamente duas sprints do So-
breVidas, nas quais a equipe empregou um esfor¢co maior que o habitual para a realiza¢ao
de testes manuais, foram identificados e catalogados 45 bugs. Desses, 35 eram relacio-
nados a front-end, e pelo menos 15 eram erros de funcionalidade que poderiam ter sido
identificados por meio de testes automatizados.

Durante a implementacdo da PoC para os testes automatizados, foram identifi-
cados dois desafios principais: a auséncia de identificadores consistentes e Unicos nos
elementos da interface; e a dificuldade de navegacdo em alguns componentes dinamicos
por meio de seletores CSS ou XPath.

3.1. Identificadores

A Figura 1 apresenta um exemplo de suite de testes automatizados criada para validacao
do fluxo de cadastro e consulta de pacientes. Nesse fluxo, observou-se que a auséncia de
identificadores bem definidos nos elementos da Ul levou a criacdo de seletores frageis,
um tipo de “fest smell” [Bicalho et al. 2024]. Esses seletores dependem excessivamente
da estrutura do DOM (Document Object Model) ou de classes CSS genéricas, tornando
os testes suscetiveis a falhas mesmo ap6s pequenas alteragdes na interface.

Para ilustrar o problema, analisou-se a interface de aceite do Termo de Consenti-
mento Livre e Esclarecido (TCLE) (Figura 2). Nela, o botdo de confirmacao do didlogo
(“Confirmar”) é renderizado sem atributos inicos, como id ou label (Figura 3).

Como evidenciado na Figura 3, o botdo ndo possui um seletor inico que possa
ser utilizado para identificagdo. Assim, a selecdo do botao foi feita pelo conteudo textual
via XPath //button[text=’' Confirmar ’]. Esse tipo de seletor é considerado
fragil, pois depende diretamente do texto exibido e pode gerar testes ndo robustos, de alta
manutencdo e com risco de falsos-negativos [Bernardo 2011].

A solucdo para melhorar a automatabilidade, portanto, é a refatoracdo de
codigo visando a implementacdo de boas praticas de testabilidade no desenvolvimento,
como a atribuicdo de IDs udnicos e estdveis aos principais componentes interativos
[Bernardo 2011]. Alternativamente, recomenda-se o uso de atributos dedicados, como
data-testid (Figura 4), que tornam os seletores mais concisos e resistentes a mudancas
visuais, aumentando a confiabilidade dos testes.

Running:

Paciente

Figura 1. Suite de testes automatizados criada para validacao do fluxo de cadas-
tro e consulta de pacientes

3.2. Bibliotecas de componentes

Outro desafio identificado refere-se ao uso de bibliotecas de componentes com geragao
dinamica de HTML. O front-end da Plataforma SobreVidas foi desenvolvido em Angular
com a biblioteca PrimeNG, além do FullCalendar para a gestdo de agendas.

A Figura 5 apresenta a tela de agenda semanal, onde os dias sdo divididos em
intervalos de 30 minutos, enquanto a Figura 6 exibe parte do HTML gerado para esse
componente.

Verificou-se que as linhas do calendario utilizam apenas classes genéricas e o atri-
buto data-time, que corresponde a semana inteira, dificultando a diferenciacao entre slots
de dia e hordrio. Além disso, a disponibilidade de agendamento é representada apenas
por cores (branco = disponivel; cinza = indisponivel), o que inviabiliza a automagado por
seletores.

Nesse cendrio, pode ser possivel realizar refatoracdes para que o componente se
torne melhor navegdvel via scripts de testes automatizados. No caso da biblioteca FullCa-
lendar, por exemplo, sdo oferecidos hooks que permitem interagir com 0 componente em
diferentes niveis e adicionar atributos aos elementos. Caso esse recurso nao seja suficiente

Termo de Consentimento Livre e Esclarecido (TCLE)

L UFG svsm s§§

k=1

TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

v
>

Abrir Termo de Consentimento Livre e Esclarecido em outra guia

Eu li e concordo com o Termo de Consentimento Livre e Esclarecido.

Eu ndo concordo com o Termo de Consentimento Livre e Esclarecido.

Figura 2. Tela de aceite do TCLE

w <div _ngcontent-ng-c589803851 class="flex flex-column ng-tns-cl946585645-42"> [+lex
¥ <div _ngcontent-ng-c5899@3851 class="flex align-items-center justify-content-center ng-tns-c5899@83851-41":
Flex
<button _ngcontent-ng-c589983851 pbutton class="p-element p-button-primary w-full text-center ng-tns-c589
9@3851-41 p-button p-component" disabled style="display: block;"> Confirmar </button:
£fdivy
<fdivy

Figura 3. HTML renderizado do botao “Confirmar”

e a biblioteca ndo oferega outros recursos uteis, a equipe deverd avaliar a viabilidade da
substituicao da biblioteca por outra que ofereca esse suporte. Por isso, é importante levar
em consideracao a testabilidade e a automatabilidade desde a etapa de design do software
[Ratnani and Suri 2015].

3.3. Testagem aleatoria (Monkey testing)

A testagem aleatdria foi realizada em trés etapas diferentes de utilizacdo da plataforma:
apos o login; apds a selecao da unidade de atendimento (pigina de agenda); e na pagina
de paciente (pesquisa e cadastro). A Figura 7 apresenta a suite de testes desenvolvida
nessa estratégia.

A biblioteca Gremlins.js foi utilizada para simular agdes aleatérias como cliques,
digitagdo, rolagem de tela e monitoramento de logs de erro. Até o momento, ndo foram
identificados erros relevantes a partir dessa estratégia, mas ela demonstrou potencial como
complemento aos testes e2e.

4. Discussao

A implementacdo da PoC para testes automatizados no front-end do Projeto SobreVi-
das exp0s as barreiras de automatabilidade presentes na aplicagdo. Entre os principais
desafios, destaca-se a auséncia de identificadores tnicos e estiveis nos elementos da in-
terface de usudrio (UI). A dependéncia de seletores frageis, baseados apenas na estrutura

w <div _ngcontent-ng-c5892083851 class="flex flex-column ng-tns-cl946585645-42"> (flex

w <div _ngcontent-ng-c589983851 class="flex align-items-center justify-content-center ng-tns-c58%99@3851-41">
Flax
<Eﬂ££25 _ngcontent-ng-c5829@83851 pbutton class="p-element p-buttom-primary w-full text-center ng-tns-c589
983851-41 p-button p-component” disabled style="display: block;" data-testid="confirmar-tcle"> Confirmar
</button>

<fdiv>
</div>

Figura 4. Codigo da Figura 3 modificado para maior automatabilidade

HOMOL JESSICA

= &) SobreVidas b B Eres

VERSAO DE HOMOLOGAGRO.

5 Agenda da Unidade

[Realizar Agendamento H & Configurago da Agenda l
USF PARQUE ATHENEU

© MEU LOCAL DE ATENDIMENTO
USF PARQUE ATHENEU.
GOIANIA/GO

HoME 29 de set. — 3 de out. de 2025 Mes Dia Lista

£ Agenda seg. 29/09 ter. 30/09 qua. 01/10 qui. 02/10 sex. 03/10 H
07 a

@ Dashboard
CADASTROS

. Paciente

© Atendimento

Qi Segunda Opiniso
MONITORAMENTO

Painel Gerencial
I
Inteligente

ADMINISTRAGAO

& Configuragio

© Legenda

S
® Agendado ® Atendido ® Remarcado @ Absenteista @)

Figura 5. Tela de agenda da unidade com exibicao do calendario

do DOM ou em conteudo textual, aumenta a complexidade e o custo de manutengdo dos
scripts de teste, além de comprometer a confiabilidade dos resultados, consumindo tempo
da equipe e reduzindo a efetividade do processo de automacao [Parry et al. 2021].

A adocao de atributos dedicados para testes representa uma solucao robusta para
esse problema. Essa pratica dissocia os testes automatizados da implementagdo visual e
estrutural, acoplando-os a implementacdo funcional, que é o alvo da validacdo. Dessa
forma, alteragdes visuais podem ser realizadas sem impactar a suite de testes. No en-
tanto, a implementacdo dessa abordagem requer comprometimento da equipe de desen-
volvimento, que deve tratar a testabilidade e a automatabilidade como requisitos do soft-
ware desde as etapas iniciais do ciclo de vida, e ndo como uma atividade secundaria
[Xu et al. 2025].

Além disso, a andlise revelou que a utilizagao de bibliotecas de componentes de
terceiros, como a FullCalendar, embora acelere o desenvolvimento, pode introduzir de-
safios de automatabilidade. A dificuldade em simular, por meio de scripts, agdes basicas
de usudrios, como o agendamento de consultas em hordrios disponiveis, transforma
funcionalidades-chave em ‘“‘caixas-pretas” para os testes automatizados. Esse cendrio
reduz os beneficios da automacdo e obriga a manuten¢do de testes manuais em fluxos
essenciais, 0 que contraria os objetivos de agilidade e entrega continua caracteristicos de
ambientes dgeis [De Luca et al. 2024].

w <tbody>
¥ <tr>
w <td data-time="87:00:00" class="fc-timegrid-slot fc-timegrid-slot-label fc-scrollgrid-shrink™>
w ¢div class="fc-timegrid-slot-label-frame fc-scrollgrid-shrink-frame™>
¢div class="fc-timegrid-slot-label-cushion fc-scrollgrid-shrink-cushion™»@7</div:
<fdiv>
</td>
b <td data-time="87:00:88" class="fc-timegrid-slot fc-timegrid-slot-lane™s == </td>
<t
¥ <tr>
b <td class="fc-timegrid-slot fc-timegrid-slot-label fc-timegrid-slot-minor® data-time="@7:30:80"> =</ /td>
P <td data-time="07:38:88" class="fc-timegrid-slot fc-timegrid-slot-lane fc-timegrid-slot-minor™s - </td:
/trx
v ir»
¥ <td data-time="08:80:080" class="fc-timegrid-slot fc-timegrid-slot-label fc-scrollgrid-shrink™>
w <div class="fc-timegrid-slot-label-frame fc-scrollgrid-shrink-frame™>
<div class="fc-timegrid-slot-label-cushion fc-scrollgrid-shrink-cushion”»@8</div>
<fdivy
</td>
P <td data-time="08:00:80" class="fc-timegrid-slot fc-timegrid-slot-lane™> = </td>
</t
¥ Ltr>
P <td class="fc-timegrid-slot fc-timegrid-slot-label fo-timegrid-slot-minor® data-time="08:38:80">--</td>
B <td data-time="@8:30:00" class="fc-timegrid-slot fc-timegrid-slot-lane fc-timegrid-slot-minor®» e </td>
<ftrs

Figura 6. HTML renderizado para alguns horarios do calendario

Nesse contexto, é fundamental que sejam avaliadas alternativas como a
customizagao da biblioteca existente ou, quando necessdrio, a substitui¢ao por ferramen-
tas mais adequadas a automacdo. Essa decisdo deve considerar ndo apenas os custos
imediatos de adaptacdo ou troca, mas também os custos decorrentes da manutengdo de
testes manuais € os riscos associados a introducdo de falhas em producdo. As dificul-
dades observadas reforcam a necessidade de considerar a automatabilidade como critério
estratégico desde a concepg¢ao do sistema, incluindo a sele¢io de frameworks e bibliotecas
externas.

5. Conclusoes

Este estudo avaliou a automatabilidade da interface web do Projeto SobreVidas - “Cancer
de Boca” e identificou deficiéncias que impedem a implementacio eficaz de uma es-
tratégia de testes automatizados. Entre os principais obstaculos destacam-se a auséncia
de identificadores tnicos nos elementos da interface e a baixa acessibilidade de compo-
nentes gerados por bibliotecas externas, como os calendarios interativos. Essas barreiras
resultam na criag@o de testes frgeis, de alta manutencio e com baixa confiabilidade.

Os achados reforcam que, em sistemas criticos na area da saude, a confiabilidade
¢ um pilar de seguranga para os usudrios, e, portanto, a garantia de qualidade de soft-
ware nao pode ser negligenciada. A automacao de testes no front-end configura-se como
ferramenta essencial para elevar a robustez do sistema, permitindo execugdes rapidas, re-
petiveis e consistentes, além de viabilizar a detec¢do precoce de defeitos que poderiam
impactar diretamente o atendimento a pacientes.

Conclui-se que é imperativo para a equipe do Projeto SobreVidas adotar préticas
de desenvolvimento que promovam a testabilidade desde a concep¢do do sistema. A
implementagao das melhorias propostas neste estudo tornard a automacao de testes viavel

Running:

Monkey Testing

Figura 7. Suite de testagem aleatoria

e sustentavel, fortalecerd as praticas de SQA do projeto e ampliard a confiabilidade e a
qualidade do software entregue aos profissionais de satide e a populagdo atendida.

Recomenda-se, para trabalhos futuros, a implantacdo das melhorias sugeridas
neste artigo e de uma estrutura robusta de testes automatizados na plataforma SobreVi-
das, com alta cobertura de c6digo e execucdo automatizada via esteira de CI/CD. E reco-
mendavel também o estudo da implementacdo de bibliotecas e frameworks com geracao
dindmica de HTML, a fim de entender suas particularidades de implementacao e identifi-
car oportunidades de melhoria quanto a automatabilidade.

6. Agradecimentos

Agradecemos ao Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico
(CNPq) pelo financiamento desta pesquisa, concedido através da Chamada n° 21/2023
— Estudos Transdisciplinares em Saide Coletiva.

Referéncias

Aghazadeh, S., Pirnejad, H., Aliyev, A., and Moradkhani, A. (2015). Evaluating the effect
of software quality characteristics on health care quality indicators. Journal of Health
Management, 2:67-73.

Aho, P. and Vos, T. (2018). Challenges in automated testing through graphical user in-
terface. In 2018 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pages 118-121.

Alotaibi, Y. K. and Federico, F. (2017). The impact of health information technology on
patient safety. Saudi Medical Journal, 38(12):1173-1180.

Basit, M., Baldwin, K., Kannan, V., Flahaven, E., Parks, C., Ott, J., and Willett, D. (2018).
Agile acceptance test—driven development of clinical decision support advisories: Fe-
asibility of using open source software. JMIR Medical Informatics, 6:€23.

Bernardo, P. C. (2011). Padrdes de testes automatizados. Dissertacdo (mestrado em
ciéncia da computacdo), Instituto de Matematica e Estatistica, Universidade de Sao
Paulo, Sao Paulo.

Bicalho, L., Montandon, J., and Valente, M. (2024). Identificacdo de smells em testes fim-
a-fim implementados em cypress. In Anais do XII Workshop de Visualizacdo, Evolucdo
e Manutencdo de Software, pages 1-12, Porto Alegre, RS, Brasil. SBC.

Binder, R. V. (1994). Design for testability in object-oriented systems. Commun. ACM,
37(9):87-101.

Cypress.io (2025). Why cypress? https://docs.cypress.io/app/
get-started/why—-cypress [Accessed: 2025-09-05].

De Luca, M., Fasolino, A. R., and Tramontana, P. (2024). Investigating the robustness
of locators in template-based web application testing using a gui change classification
model. Journal of Systems and Software, 210:111932.

IEEE (2014). IEEE Standard for Software Quality Assurance Processes. IEEE Std 730-
2014 (Revision of IEEE Std 730-2002), pages 1-138.

International Organization for Standardization (2011). ISO/IEC 25010: Systems and
software engineering — Systems and software Quality Requirements and Evaluation
(SQuaRE) — System and software quality models.

Kaur, G. and Tiwari, R. G. (2023). Comparison and analysis of popular frontend fra-
meworks and libraries: An evaluation of parameters for frontend web development.
In 2023 4th International Conference on Electronics and Sustainable Communication
Systems (ICESC), pages 1067-1073.

Kulesza, R., Sousa, M., Lima, M., Araujo, C., and Filho, A. (2018). Evolu¢do das Arqui-
teturas de Software Rumo a Web 3.0, pages 1-38.

Lalband, N. and Dwaram, K. (2019). Software engineering for smart healthcare. Inter-
national Journal of Innovative Technology and Exploring Engineering, 8:325-331.

Obigbesan, O., Graham, K., and Benzies, K. M. (2024). Software testing of ehealth
interventions: Existing practices and the future of an iterative strategy. JMIR Nursing,
7:€56585.

Parry, O., Kapthammer, G. M., Hilton, M., and McMinn, P. (2021). A survey of flaky
tests. ACM Trans. Softw. Eng. Methodol., 31(1).

Pathak, K., Ninoria, S., and Bharadwaj, S. (2022). Scope of agile approach for software
testing process. In 2022 11th International Conference on System Modeling Advance-
ment in Research Trends (SMART), pages 1079—-1083.

Ratnani, H. and Suri, P. (2015). Object oriented software testability survey at designing
and implementation phase. International Journal of Science and Research (IJSR), 438.

Richardson, I., Reid, L., and O’Leary, P. (2016). Healthcare systems quality: development
and use. pages 50-53.

Ronchieri, E. and Canaparo, M. (2023). Assessing the impact of software quality models
in healthcare software systems. Health Systems, 12:1-13.

Smith, A. and Jones, B. (1999). On the complexity of computing. In Advances in Com-
puter Science, pages 555-566. Publishing Press.

Xu, Z., Li, Q., and Tan, S. H. (2025). Guiding ChatGPT to Fix Web UI Tests via
Explanation-Consistency Checking.

