
Avaliação da Automatabilidade como Estratégia de Garantia
de Qualidade no Front-end do Projeto SobreVidas - “Câncer

de Boca”

Tallya J. S. Barbosa1, Gabriel F. dos Reis1, Leandro Pedrosa2, Luiza de O. Costa1,
Renata D. Braga1, Rejane F. Ribeiro-Rotta3

1Instituto de Informática – UFG – Goiânia – GO – Brasil

2Programa de Pós-Graduação em Ciências da Saúde
Faculdade de Medicina - UFG - Goiânia - GO - Brasil

3Faculdade de Odontologia – UFG - Goiânia - GO - Brasil

{tallyabarbosa,freitas.gabriel,leandropedrosa,luizaluiza}
@discente.ufg.br, {renatadbraga,rejanefrr}@ufg.br,

oliveiraluiza2012ufg@gmail.com

Abstract. Testability has gained relevance as a criterion for evaluating software
quality. In critical systems, such as healthcare systems, ensuring that software
is comprehensively testable and effectively tested is essential. In agile environ-
ments, automatability emerges as a key factor for software testability, enabling
fast, repeatable, and reliable test execution. This study evaluates the automa-
tability of the Web interface of the SobreVidas - “Oral Cancer” platform, iden-
tifying deficiencies and proposing improvements aimed at strengthening soft-
ware quality assurance and enhancing system reliability.

Resumo. A testabilidade tem ganhado grande relevância como critério de
avaliação da qualidade de software. Em sistemas crı́ticos, como sistemas para
a área da saúde, é essencial que o software seja amplamente testável e efe-
tivamente testado. Em ambientes ágeis, a automatabilidade surge como um
fator central para a testabilidade, possibilitando a execução rápida, repetı́vel
e confiável de testes. Este estudo avalia a automatabilidade da interface Web
da plataforma SobreVidas – “Câncer de Boca”, identificando deficiências e
propondo melhorias voltadas ao fortalecimento da garantia de qualidade e ao
aumento da confiabilidade do sistema.

1. Introdução
A diversidade de dispositivos, o uso de frameworks modernos e a adoção de padrões de
arquitetura aumentaram, significativamente, a complexidade das interfaces Web. Essa
crescente complexidade, aliada ao fato de que a camada de front-end é o ponto primário
de contato do usuário com o software, torna fundamental que práticas de Garantia de
Qualidade de Software (Software Quality Assurance - SQA) sejam aplicadas ao desen-
volvimento do front-end, assegurando a confiabilidade do software e uma experiência
satisfatória ao usuário final [Ronchieri and Canaparo 2023].

O SobreVidas - “Câncer de Boca” é uma aplicação multiplataforma e multiusuário
projetada com o intuito de rastrear e monitorar a população de risco na Atenção Primária



à Saúde, e apresenta diversas interfaces gráficas interativas. Em softwares voltados ao
domı́nio da saúde, a robustez é ainda mais crı́tica, visto que falhas podem impactar dire-
tamente na eficiência do atendimento e na segurança dos pacientes. Dessa forma, a qua-
lidade do software transcende a simples usabilidade, configurando-se como uma questão
de segurança em saúde pública [Alotaibi and Federico 2017].

A testabilidade é um atributo externo ao software que avalia a complexidade e o
esforço necessário para testagem do software [Ratnani and Suri 2015]. A medida da tes-
tabilidade de um software é um resultado do conjunto formado pelo software a ser testado,
os objetivos de teste, os métodos de teste e os recursos de teste [Binder 1994]. Em outras
palavras, a testabilidade pode ser analisada sob múltiplas perspectivas e é altamente de-
pendente do contexto de cada sistema ou componente, sendo determinante para a adoção
de estratégias eficazes de validação [Obigbesan et al. 2024].

Em ambientes de desenvolvimento ágil, como é o caso do Projeto SobreVidas, em
que os perı́odos de desenvolvimento são curtos e há a necessidade de entregas contı́nuas,
o tempo para a realização minuciosa de testes manuais é reduzido. Nesse cenário, os
testes automatizados surgem como aliados fundamentais, permitindo execuções rápidas,
repetı́veis e consistentes. Além de acelerar o processo de validação, a automação possibi-
lita a detecção precoce de defeitos e libera a equipe para atividades mais complexas que
elevam a qualidade do produto final [Basit et al. 2018].

Dessa forma, este estudo buscou avaliar a automatabilidade da interface Web
da Plataforma SobreVidas, identificando lacunas que possam dificultar ou impedir a
implementação de testes automatizados, além de propor práticas para mitigar essas
limitações. O objetivo foi viabilizar uma automação de testes eficiente e sustentável, agre-
gando valor à estratégia de SQA e contribuindo para que o sistema cumpra plenamente
seu propósito de suporte ao rastreamento e monitoramento do câncer de boca.

As demais seções deste artigo estão organizadas da seguinte forma: a Seção 2 de-
talha o método empregado, que inclui uma análise documental e a implementação de uma
Prova de Conceito (PoC) para uma estrutura de testes automatizados; a Seção 3 apresenta
os resultados obtidos, destacando os principais desafios de automatabilidade encontra-
dos; a Seção 4 discute as implicações desses achados para a manutenção e confiabilidade
dos testes; e, por fim, a Seção 5 apresenta as conclusões do estudo e recomendações de
trabalhos futuros.

2. Método
Inicialmente, foi realizada uma análise documental dos artefatos relacionados ao projeto,
incluindo planos de sprint, backlog do produto, documentos de requisitos, definições de
design e metas estabelecidas. O objetivo dessa etapa foi obter uma compreensão detalhada
do produto, suas caracterı́sticas e necessidades, bem como mapear as práticas de testagem
aplicadas na camada de front-end.

Com base nessa análise, foi desenvolvida uma PoC (Proof of Concept/Prova de
Conceito) para uma infraestrutura de testes automatizados no front-end. Para essa PoC,
foram selecionadas duas abordagens principais:

• Testes e2e (end-to-end) baseados em script, que simulam a interação de um
usuário com a aplicação em diferentes fluxos;



• Testagem aleatória (monkey testing), que gera interações não determinı́sticas na
interface, de modo a explorar caminhos alternativos de uso não previstos nos casos
de teste formais.

A implementação utilizou o framework Cypress [Cypress.io 2025] para os testes
e2e, escolhido pela facilidade de instalação, integração e aceitação na comunidade de de-
senvolvedores. Para a testagem aleatória, foi adotada a biblioteca Gremlins.js, selecionada
por sua capacidade de customização e integração com o Cypress. Ambos os recursos fo-
ram escolhidos por serem open source, favorecendo a utilização de tecnologias acessı́veis
e bem consolidadas, além de reduzir riscos de instabilidade ou descontinuidade.

3. Resultados

Na fase de análise, foi identificado que, ao longo de aproximadamente duas sprints do So-
breVidas, nas quais a equipe empregou um esforço maior que o habitual para a realização
de testes manuais, foram identificados e catalogados 45 bugs. Desses, 35 eram relacio-
nados a front-end, e pelo menos 15 eram erros de funcionalidade que poderiam ter sido
identificados por meio de testes automatizados.

Durante a implementação da PoC para os testes automatizados, foram identifi-
cados dois desafios principais: a ausência de identificadores consistentes e únicos nos
elementos da interface; e a dificuldade de navegação em alguns componentes dinâmicos
por meio de seletores CSS ou XPath.

3.1. Identificadores

A Figura 1 apresenta um exemplo de suite de testes automatizados criada para validação
do fluxo de cadastro e consulta de pacientes. Nesse fluxo, observou-se que a ausência de
identificadores bem definidos nos elementos da UI levou à criação de seletores frágeis,
um tipo de “test smell” [Bicalho et al. 2024]. Esses seletores dependem excessivamente
da estrutura do DOM (Document Object Model) ou de classes CSS genéricas, tornando
os testes suscetı́veis a falhas mesmo após pequenas alterações na interface.

Para ilustrar o problema, analisou-se a interface de aceite do Termo de Consenti-
mento Livre e Esclarecido (TCLE) (Figura 2). Nela, o botão de confirmação do diálogo
(“Confirmar”) é renderizado sem atributos únicos, como id ou label (Figura 3).

Como evidenciado na Figura 3, o botão não possui um seletor único que possa
ser utilizado para identificação. Assim, a seleção do botão foi feita pelo conteúdo textual
via XPath //button[text=’ Confirmar ’]. Esse tipo de seletor é considerado
frágil, pois depende diretamente do texto exibido e pode gerar testes não robustos, de alta
manutenção e com risco de falsos-negativos [Bernardo 2011].

A solução para melhorar a automatabilidade, portanto, é a refatoração de
código visando a implementação de boas práticas de testabilidade no desenvolvimento,
como a atribuição de IDs únicos e estáveis aos principais componentes interativos
[Bernardo 2011]. Alternativamente, recomenda-se o uso de atributos dedicados, como
data-testid (Figura 4), que tornam os seletores mais concisos e resistentes a mudanças
visuais, aumentando a confiabilidade dos testes.



Figura 1. Suite de testes automatizados criada para validação do fluxo de cadas-
tro e consulta de pacientes

3.2. Bibliotecas de componentes

Outro desafio identificado refere-se ao uso de bibliotecas de componentes com geração
dinâmica de HTML. O front-end da Plataforma SobreVidas foi desenvolvido em Angular
com a biblioteca PrimeNG, além do FullCalendar para a gestão de agendas.

A Figura 5 apresenta a tela de agenda semanal, onde os dias são divididos em
intervalos de 30 minutos, enquanto a Figura 6 exibe parte do HTML gerado para esse
componente.

Verificou-se que as linhas do calendário utilizam apenas classes genéricas e o atri-
buto data-time, que corresponde à semana inteira, dificultando a diferenciação entre slots
de dia e horário. Além disso, a disponibilidade de agendamento é representada apenas
por cores (branco = disponı́vel; cinza = indisponı́vel), o que inviabiliza a automação por
seletores.

Nesse cenário, pode ser possı́vel realizar refatorações para que o componente se
torne melhor navegável via scripts de testes automatizados. No caso da biblioteca FullCa-
lendar, por exemplo, são oferecidos hooks que permitem interagir com o componente em
diferentes nı́veis e adicionar atributos aos elementos. Caso esse recurso não seja suficiente



Figura 2. Tela de aceite do TCLE

Figura 3. HTML renderizado do botão “Confirmar”

e a biblioteca não ofereça outros recursos úteis, a equipe deverá avaliar a viabilidade da
substituição da biblioteca por outra que ofereça esse suporte. Por isso, é importante levar
em consideração a testabilidade e a automatabilidade desde a etapa de design do software
[Ratnani and Suri 2015].

3.3. Testagem aleatória (Monkey testing)

A testagem aleatória foi realizada em três etapas diferentes de utilização da plataforma:
após o login; após a seleção da unidade de atendimento (página de agenda); e na página
de paciente (pesquisa e cadastro). A Figura 7 apresenta a suı́te de testes desenvolvida
nessa estratégia.

A biblioteca Gremlins.js foi utilizada para simular ações aleatórias como cliques,
digitação, rolagem de tela e monitoramento de logs de erro. Até o momento, não foram
identificados erros relevantes a partir dessa estratégia, mas ela demonstrou potencial como
complemento aos testes e2e.

4. Discussão

A implementação da PoC para testes automatizados no front-end do Projeto SobreVi-
das expôs as barreiras de automatabilidade presentes na aplicação. Entre os principais
desafios, destaca-se a ausência de identificadores únicos e estáveis nos elementos da in-
terface de usuário (UI). A dependência de seletores frágeis, baseados apenas na estrutura



Figura 4. Código da Figura 3 modificado para maior automatabilidade

Figura 5. Tela de agenda da unidade com exibição do calendário

do DOM ou em conteúdo textual, aumenta a complexidade e o custo de manutenção dos
scripts de teste, além de comprometer a confiabilidade dos resultados, consumindo tempo
da equipe e reduzindo a efetividade do processo de automação [Parry et al. 2021].

A adoção de atributos dedicados para testes representa uma solução robusta para
esse problema. Essa prática dissocia os testes automatizados da implementação visual e
estrutural, acoplando-os à implementação funcional, que é o alvo da validação. Dessa
forma, alterações visuais podem ser realizadas sem impactar a suı́te de testes. No en-
tanto, a implementação dessa abordagem requer comprometimento da equipe de desen-
volvimento, que deve tratar a testabilidade e a automatabilidade como requisitos do soft-
ware desde as etapas iniciais do ciclo de vida, e não como uma atividade secundária
[Xu et al. 2025].

Além disso, a análise revelou que a utilização de bibliotecas de componentes de
terceiros, como a FullCalendar, embora acelere o desenvolvimento, pode introduzir de-
safios de automatabilidade. A dificuldade em simular, por meio de scripts, ações básicas
de usuários, como o agendamento de consultas em horários disponı́veis, transforma
funcionalidades-chave em “caixas-pretas” para os testes automatizados. Esse cenário
reduz os benefı́cios da automação e obriga a manutenção de testes manuais em fluxos
essenciais, o que contraria os objetivos de agilidade e entrega contı́nua caracterı́sticos de
ambientes ágeis [De Luca et al. 2024].



Figura 6. HTML renderizado para alguns horários do calendário

Nesse contexto, é fundamental que sejam avaliadas alternativas como a
customização da biblioteca existente ou, quando necessário, a substituição por ferramen-
tas mais adequadas à automação. Essa decisão deve considerar não apenas os custos
imediatos de adaptação ou troca, mas também os custos decorrentes da manutenção de
testes manuais e os riscos associados à introdução de falhas em produção. As dificul-
dades observadas reforçam a necessidade de considerar a automatabilidade como critério
estratégico desde a concepção do sistema, incluindo a seleção de frameworks e bibliotecas
externas.

5. Conclusões

Este estudo avaliou a automatabilidade da interface web do Projeto SobreVidas - “Câncer
de Boca” e identificou deficiências que impedem a implementação eficaz de uma es-
tratégia de testes automatizados. Entre os principais obstáculos destacam-se a ausência
de identificadores únicos nos elementos da interface e a baixa acessibilidade de compo-
nentes gerados por bibliotecas externas, como os calendários interativos. Essas barreiras
resultam na criação de testes frágeis, de alta manutenção e com baixa confiabilidade.

Os achados reforçam que, em sistemas crı́ticos na área da saúde, a confiabilidade
é um pilar de segurança para os usuários, e, portanto, a garantia de qualidade de soft-
ware não pode ser negligenciada. A automação de testes no front-end configura-se como
ferramenta essencial para elevar a robustez do sistema, permitindo execuções rápidas, re-
petı́veis e consistentes, além de viabilizar a detecção precoce de defeitos que poderiam
impactar diretamente o atendimento a pacientes.

Conclui-se que é imperativo para a equipe do Projeto SobreVidas adotar práticas
de desenvolvimento que promovam a testabilidade desde a concepção do sistema. A
implementação das melhorias propostas neste estudo tornará a automação de testes viável



Figura 7. Suı́te de testagem aleatória

e sustentável, fortalecerá as práticas de SQA do projeto e ampliará a confiabilidade e a
qualidade do software entregue aos profissionais de saúde e à população atendida.

Recomenda-se, para trabalhos futuros, a implantação das melhorias sugeridas
neste artigo e de uma estrutura robusta de testes automatizados na plataforma SobreVi-
das, com alta cobertura de código e execução automatizada via esteira de CI/CD. É reco-
mendável também o estudo da implementação de bibliotecas e frameworks com geração
dinâmica de HTML, a fim de entender suas particularidades de implementação e identifi-
car oportunidades de melhoria quanto à automatabilidade.

6. Agradecimentos

Agradecemos ao Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico
(CNPq) pelo financiamento desta pesquisa, concedido através da Chamada nº 21/2023
– Estudos Transdisciplinares em Saúde Coletiva.

Referências

Aghazadeh, S., Pirnejad, H., Aliyev, A., and Moradkhani, A. (2015). Evaluating the effect
of software quality characteristics on health care quality indicators. Journal of Health
Management, 2:67–73.

Aho, P. and Vos, T. (2018). Challenges in automated testing through graphical user in-
terface. In 2018 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pages 118–121.

Alotaibi, Y. K. and Federico, F. (2017). The impact of health information technology on
patient safety. Saudi Medical Journal, 38(12):1173–1180.



Basit, M., Baldwin, K., Kannan, V., Flahaven, E., Parks, C., Ott, J., and Willett, D. (2018).
Agile acceptance test–driven development of clinical decision support advisories: Fe-
asibility of using open source software. JMIR Medical Informatics, 6:e23.

Bernardo, P. C. (2011). Padrões de testes automatizados. Dissertação (mestrado em
ciência da computação), Instituto de Matemática e Estatı́stica, Universidade de São
Paulo, São Paulo.

Bicalho, L., Montandon, J., and Valente, M. (2024). Identificação de smells em testes fim-
a-fim implementados em cypress. In Anais do XII Workshop de Visualização, Evolução
e Manutenção de Software, pages 1–12, Porto Alegre, RS, Brasil. SBC.

Binder, R. V. (1994). Design for testability in object-oriented systems. Commun. ACM,
37(9):87–101.

Cypress.io (2025). Why cypress? https://docs.cypress.io/app/
get-started/why-cypress [Accessed: 2025-09-05].

De Luca, M., Fasolino, A. R., and Tramontana, P. (2024). Investigating the robustness
of locators in template-based web application testing using a gui change classification
model. Journal of Systems and Software, 210:111932.

IEEE (2014). IEEE Standard for Software Quality Assurance Processes. IEEE Std 730-
2014 (Revision of IEEE Std 730-2002), pages 1–138.

International Organization for Standardization (2011). ISO/IEC 25010: Systems and
software engineering — Systems and software Quality Requirements and Evaluation
(SQuaRE) — System and software quality models.

Kaur, G. and Tiwari, R. G. (2023). Comparison and analysis of popular frontend fra-
meworks and libraries: An evaluation of parameters for frontend web development.
In 2023 4th International Conference on Electronics and Sustainable Communication
Systems (ICESC), pages 1067–1073.

Kulesza, R., Sousa, M., Lima, M., Araujo, C., and Filho, A. (2018). Evolução das Arqui-
teturas de Software Rumo à Web 3.0, pages 1–38.

Lalband, N. and Dwaram, K. (2019). Software engineering for smart healthcare. Inter-
national Journal of Innovative Technology and Exploring Engineering, 8:325–331.

Obigbesan, O., Graham, K., and Benzies, K. M. (2024). Software testing of ehealth
interventions: Existing practices and the future of an iterative strategy. JMIR Nursing,
7:e56585.

Parry, O., Kapfhammer, G. M., Hilton, M., and McMinn, P. (2021). A survey of flaky
tests. ACM Trans. Softw. Eng. Methodol., 31(1).

Pathak, K., Ninoria, S., and Bharadwaj, S. (2022). Scope of agile approach for software
testing process. In 2022 11th International Conference on System Modeling Advance-
ment in Research Trends (SMART), pages 1079–1083.

Ratnani, H. and Suri, P. (2015). Object oriented software testability survey at designing
and implementation phase. International Journal of Science and Research (IJSR), 438.

Richardson, I., Reid, L., and O’Leary, P. (2016). Healthcare systems quality: development
and use. pages 50–53.



Ronchieri, E. and Canaparo, M. (2023). Assessing the impact of software quality models
in healthcare software systems. Health Systems, 12:1–13.

Smith, A. and Jones, B. (1999). On the complexity of computing. In Advances in Com-
puter Science, pages 555–566. Publishing Press.

Xu, Z., Li, Q., and Tan, S. H. (2025). Guiding ChatGPT to Fix Web UI Tests via
Explanation-Consistency Checking.


