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Abstract. Testability has gained relevance as a criterion for evaluating software
quality. In critical systems, such as healthcare systems, ensuring that software
is comprehensively testable and effectively tested is essential. In agile environ-
ments, automatability emerges as a key factor for software testability, enabling
fast, repeatable, and reliable test execution. This study evaluates the automa-
tability of the Web interface of the SobreVidas - “Oral Cancer” platform, iden-
tifying deficiencies and proposing improvements aimed at strengthening soft-
ware quality assurance and enhancing system reliability.

Resumo. A testabilidade tem ganhado grande relevância como critério de
avaliação da qualidade de software. Em sistemas crı́ticos, como sistemas para
a área da saúde, é essencial que o software seja amplamente testável e efe-
tivamente testado. Em ambientes ágeis, a automatabilidade surge como um
fator central para a testabilidade, possibilitando a execução rápida, repetı́vel
e confiável de testes. Este estudo avalia a automatabilidade da interface Web
da plataforma SobreVidas – “Câncer de Boca”, identificando deficiências e
propondo melhorias voltadas ao fortalecimento da garantia de qualidade e ao
aumento da confiabilidade do sistema.

1. Introdução
A diversidade de dispositivos, o uso de frameworks modernos e a adoção de padrões de
arquitetura aumentaram, significativamente, a complexidade das interfaces Web. Essa
crescente complexidade, aliada ao fato de que a camada de front-end é o ponto primário
de contato do usuário com o software, torna fundamental que práticas de Garantia de
Qualidade de Software (Software Quality Assurance - SQA) sejam aplicadas ao desen-
volvimento do front-end, assegurando a confiabilidade do software e uma experiência
satisfatória ao usuário final [Ronchieri and Canaparo 2023].

O SobreVidas - “Câncer de Boca” é uma aplicação multiplataforma e multiusuário
projetada com o intuito de rastrear e monitorar a população de risco na Atenção Primária



à Saúde, e apresenta diversas interfaces gráficas interativas. Em softwares voltados ao
domı́nio da saúde, a robustez é ainda mais crı́tica, visto que falhas podem impactar dire-
tamente na eficiência do atendimento e na segurança dos pacientes. Dessa forma, a qua-
lidade do software transcende a simples usabilidade, configurando-se como uma questão
de segurança em saúde pública [Alotaibi and Federico 2017].

A testabilidade é um atributo externo ao software que avalia a complexidade e o
esforço necessário para testagem do software [Ratnani and Suri 2015]. A medida da tes-
tabilidade de um software é um resultado do conjunto formado pelo software a ser testado,
os objetivos de teste, os métodos de teste e os recursos de teste [Binder 1994]. Em outras
palavras, a testabilidade pode ser analisada sob múltiplas perspectivas e é altamente de-
pendente do contexto de cada sistema ou componente, sendo determinante para a adoção
de estratégias eficazes de validação [Obigbesan et al. 2024].

Em ambientes de desenvolvimento ágil, como é o caso do Projeto SobreVidas, em
que os perı́odos de desenvolvimento são curtos e há a necessidade de entregas contı́nuas,
o tempo para a realização minuciosa de testes manuais é reduzido. Nesse cenário, os
testes automatizados surgem como aliados fundamentais, permitindo execuções rápidas,
repetı́veis e consistentes. Além de acelerar o processo de validação, a automação possibi-
lita a detecção precoce de defeitos e libera a equipe para atividades mais complexas que
elevam a qualidade do produto final [Basit et al. 2018].

Dessa forma, este estudo buscou avaliar a automatabilidade da interface Web
da Plataforma SobreVidas, identificando lacunas que possam dificultar ou impedir a
implementação de testes automatizados, além de propor práticas para mitigar essas
limitações. O objetivo foi viabilizar uma automação de testes eficiente e sustentável, agre-
gando valor à estratégia de SQA e contribuindo para que o sistema cumpra plenamente
seu propósito de suporte ao rastreamento e monitoramento do câncer de boca.

As demais seções deste artigo estão organizadas da seguinte forma: a Seção 2 de-
talha o método empregado, que inclui uma análise documental e a implementação de uma
Prova de Conceito (PoC) para uma estrutura de testes automatizados; a Seção 3 apresenta
os resultados obtidos, destacando os principais desafios de automatabilidade encontra-
dos; a Seção 4 discute as implicações desses achados para a manutenção e confiabilidade
dos testes; e, por fim, a Seção 5 apresenta as conclusões do estudo e recomendações de
trabalhos futuros.

2. Método
Inicialmente, foi realizada uma análise documental dos artefatos relacionados ao projeto,
incluindo planos de sprint, backlog do produto, documentos de requisitos, definições de
design e metas estabelecidas. O objetivo dessa etapa foi obter uma compreensão detalhada
do produto, suas caracterı́sticas e necessidades, bem como mapear as práticas de testagem
aplicadas na camada de front-end.

Com base nessa análise, foi desenvolvida uma PoC (Proof of Concept/Prova de
Conceito) para uma infraestrutura de testes automatizados no front-end. Para essa PoC,
foram selecionadas duas abordagens principais:

• Testes e2e (end-to-end) baseados em script, que simulam a interação de um
usuário com a aplicação em diferentes fluxos;



• Testagem aleatória (monkey testing), que gera interações não determinı́sticas na
interface, de modo a explorar caminhos alternativos de uso não previstos nos casos
de teste formais.

A implementação utilizou o framework Cypress [Cypress.io 2025] para os testes
e2e, escolhido pela facilidade de instalação, integração e aceitação na comunidade de de-
senvolvedores. Para a testagem aleatória, foi adotada a biblioteca Gremlins.js, selecionada
por sua capacidade de customização e integração com o Cypress. Ambos os recursos fo-
ram escolhidos por serem open source, favorecendo a utilização de tecnologias acessı́veis
e bem consolidadas, além de reduzir riscos de instabilidade ou descontinuidade.

3. Resultados

Na fase de análise, foi identificado que, ao longo de aproximadamente duas sprints do So-
breVidas, nas quais a equipe empregou um esforço maior que o habitual para a realização
de testes manuais, foram identificados e catalogados 45 bugs. Desses, 35 eram relacio-
nados a front-end, e pelo menos 15 eram erros de funcionalidade que poderiam ter sido
identificados por meio de testes automatizados.

Durante a implementação da PoC para os testes automatizados, foram identifi-
cados dois desafios principais: a ausência de identificadores consistentes e únicos nos
elementos da interface; e a dificuldade de navegação em alguns componentes dinâmicos
por meio de seletores CSS ou XPath.

3.1. Identificadores

A Figura 1 apresenta um exemplo de suite de testes automatizados criada para validação
do fluxo de cadastro e consulta de pacientes. Nesse fluxo, observou-se que a ausência de
identificadores bem definidos nos elementos da UI levou à criação de seletores frágeis,
um tipo de “test smell” [Bicalho et al. 2024]. Esses seletores dependem excessivamente
da estrutura do DOM (Document Object Model) ou de classes CSS genéricas, tornando
os testes suscetı́veis a falhas mesmo após pequenas alterações na interface.

Para ilustrar o problema, analisou-se a interface de aceite do Termo de Consenti-
mento Livre e Esclarecido (TCLE) (Figura 2). Nela, o botão de confirmação do diálogo
(“Confirmar”) é renderizado sem atributos únicos, como id ou label (Figura 3).

Como evidenciado na Figura 3, o botão não possui um seletor único que possa
ser utilizado para identificação. Assim, a seleção do botão foi feita pelo conteúdo textual
via XPath //button[text=’ Confirmar ’]. Esse tipo de seletor é considerado
frágil, pois depende diretamente do texto exibido e pode gerar testes não robustos, de alta
manutenção e com risco de falsos-negativos [Bernardo 2011].

A solução para melhorar a automatabilidade, portanto, é a refatoração de
código visando a implementação de boas práticas de testabilidade no desenvolvimento,
como a atribuição de IDs únicos e estáveis aos principais componentes interativos
[Bernardo 2011]. Alternativamente, recomenda-se o uso de atributos dedicados, como
data-testid (Figura 4), que tornam os seletores mais concisos e resistentes a mudanças
visuais, aumentando a confiabilidade dos testes.



Figura 1. Suite de testes automatizados criada para validação do fluxo de cadas-
tro e consulta de pacientes

3.2. Bibliotecas de componentes

Outro desafio identificado refere-se ao uso de bibliotecas de componentes com geração
dinâmica de HTML. O front-end da Plataforma SobreVidas foi desenvolvido em Angular
com a biblioteca PrimeNG, além do FullCalendar para a gestão de agendas.

A Figura 5 apresenta a tela de agenda semanal, onde os dias são divididos em
intervalos de 30 minutos, enquanto a Figura 6 exibe parte do HTML gerado para esse
componente.

Verificou-se que as linhas do calendário utilizam apenas classes genéricas e o atri-
buto data-time, que corresponde à semana inteira, dificultando a diferenciação entre slots
de dia e horário. Além disso, a disponibilidade de agendamento é representada apenas
por cores (branco = disponı́vel; cinza = indisponı́vel), o que inviabiliza a automação por
seletores.

Nesse cenário, pode ser possı́vel realizar refatorações para que o componente se
torne melhor navegável via scripts de testes automatizados. No caso da biblioteca FullCa-
lendar, por exemplo, são oferecidos hooks que permitem interagir com o componente em
diferentes nı́veis e adicionar atributos aos elementos. Caso esse recurso não seja suficiente



Figura 2. Tela de aceite do TCLE

Figura 3. HTML renderizado do botão “Confirmar”

e a biblioteca não ofereça outros recursos úteis, a equipe deverá avaliar a viabilidade da
substituição da biblioteca por outra que ofereça esse suporte. Por isso, é importante levar
em consideração a testabilidade e a automatabilidade desde a etapa de design do software
[Ratnani and Suri 2015].

3.3. Testagem aleatória (Monkey testing)

A testagem aleatória foi realizada em três etapas diferentes de utilização da plataforma:
após o login; após a seleção da unidade de atendimento (página de agenda); e na página
de paciente (pesquisa e cadastro). A Figura 7 apresenta a suı́te de testes desenvolvida
nessa estratégia.

A biblioteca Gremlins.js foi utilizada para simular ações aleatórias como cliques,
digitação, rolagem de tela e monitoramento de logs de erro. Até o momento, não foram
identificados erros relevantes a partir dessa estratégia, mas ela demonstrou potencial como
complemento aos testes e2e.

4. Discussão

A implementação da PoC para testes automatizados no front-end do Projeto SobreVi-
das expôs as barreiras de automatabilidade presentes na aplicação. Entre os principais
desafios, destaca-se a ausência de identificadores únicos e estáveis nos elementos da in-
terface de usuário (UI). A dependência de seletores frágeis, baseados apenas na estrutura



Figura 4. Código da Figura 3 modificado para maior automatabilidade

Figura 5. Tela de agenda da unidade com exibição do calendário

do DOM ou em conteúdo textual, aumenta a complexidade e o custo de manutenção dos
scripts de teste, além de comprometer a confiabilidade dos resultados, consumindo tempo
da equipe e reduzindo a efetividade do processo de automação [Parry et al. 2021].

A adoção de atributos dedicados para testes representa uma solução robusta para
esse problema. Essa prática dissocia os testes automatizados da implementação visual e
estrutural, acoplando-os à implementação funcional, que é o alvo da validação. Dessa
forma, alterações visuais podem ser realizadas sem impactar a suı́te de testes. No en-
tanto, a implementação dessa abordagem requer comprometimento da equipe de desen-
volvimento, que deve tratar a testabilidade e a automatabilidade como requisitos do soft-
ware desde as etapas iniciais do ciclo de vida, e não como uma atividade secundária
[Xu et al. 2025].

Além disso, a análise revelou que a utilização de bibliotecas de componentes de
terceiros, como a FullCalendar, embora acelere o desenvolvimento, pode introduzir de-
safios de automatabilidade. A dificuldade em simular, por meio de scripts, ações básicas
de usuários, como o agendamento de consultas em horários disponı́veis, transforma
funcionalidades-chave em “caixas-pretas” para os testes automatizados. Esse cenário
reduz os benefı́cios da automação e obriga a manutenção de testes manuais em fluxos
essenciais, o que contraria os objetivos de agilidade e entrega contı́nua caracterı́sticos de
ambientes ágeis [De Luca et al. 2024].



Figura 6. HTML renderizado para alguns horários do calendário

Nesse contexto, é fundamental que sejam avaliadas alternativas como a
customização da biblioteca existente ou, quando necessário, a substituição por ferramen-
tas mais adequadas à automação. Essa decisão deve considerar não apenas os custos
imediatos de adaptação ou troca, mas também os custos decorrentes da manutenção de
testes manuais e os riscos associados à introdução de falhas em produção. As dificul-
dades observadas reforçam a necessidade de considerar a automatabilidade como critério
estratégico desde a concepção do sistema, incluindo a seleção de frameworks e bibliotecas
externas.

5. Conclusões

Este estudo avaliou a automatabilidade da interface web do Projeto SobreVidas - “Câncer
de Boca” e identificou deficiências que impedem a implementação eficaz de uma es-
tratégia de testes automatizados. Entre os principais obstáculos destacam-se a ausência
de identificadores únicos nos elementos da interface e a baixa acessibilidade de compo-
nentes gerados por bibliotecas externas, como os calendários interativos. Essas barreiras
resultam na criação de testes frágeis, de alta manutenção e com baixa confiabilidade.

Os achados reforçam que, em sistemas crı́ticos na área da saúde, a confiabilidade
é um pilar de segurança para os usuários, e, portanto, a garantia de qualidade de soft-
ware não pode ser negligenciada. A automação de testes no front-end configura-se como
ferramenta essencial para elevar a robustez do sistema, permitindo execuções rápidas, re-
petı́veis e consistentes, além de viabilizar a detecção precoce de defeitos que poderiam
impactar diretamente o atendimento a pacientes.

Conclui-se que é imperativo para a equipe do Projeto SobreVidas adotar práticas
de desenvolvimento que promovam a testabilidade desde a concepção do sistema. A
implementação das melhorias propostas neste estudo tornará a automação de testes viável



Figura 7. Suı́te de testagem aleatória

e sustentável, fortalecerá as práticas de SQA do projeto e ampliará a confiabilidade e a
qualidade do software entregue aos profissionais de saúde e à população atendida.

Recomenda-se, para trabalhos futuros, a implantação das melhorias sugeridas
neste artigo e de uma estrutura robusta de testes automatizados na plataforma SobreVi-
das, com alta cobertura de código e execução automatizada via esteira de CI/CD. É reco-
mendável também o estudo da implementação de bibliotecas e frameworks com geração
dinâmica de HTML, a fim de entender suas particularidades de implementação e identifi-
car oportunidades de melhoria quanto à automatabilidade.
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