Aplicacao de Machine Learning a Predicao de Tempo de
Execucao em FaaS com o Framework Orama

Leonardo Reboucas de Carvalho', Geraldo Pereira Rocha Filho'?, Aleteia Araujo'

'Depto de Ciéncia da Computagio - Universidade de Brasilia
Campus Darcy Ribeiro — Brasilia — DF — Brazil

2Depto de Ciéncias Exatas e Tecnolégicas, Universidade Estadual do Sudoeste da Bahia
Vitéria da Conquista — BA — Brazil.

leouesb@gmail.com, geraldo.rocha@uesb.edu.br, aleteialunb.br

Resumo. Um dos principais desafios em Function-as-a-Service (FaaS) é a im-
previsibilidade do tempo de execucdo das funcées, o que pode causar aumento
de custos e degradacdo de desempenho em aplicacoes distribuidas entre prove-
dores de nuvem. Este artigo apresenta um preditor baseado em Machine Le-
arning (ML) integrado ao Framework Orama, que combina métricas estdticas
de codigo (medidas de complexidade de Halstead) e dados empiricos de desem-
penho para estimar o tempo de execucdo diretamente a partir do codigo-fonte.
Foram avaliadas trés arquiteturas de redes neurais (Dense, LSTM e BLSTM),
sendo a BLSTM a que apresentou maior precisdo.

1. Introducao

A computacdo Serverless [Nupponen and Taibi 2020] tornou-se um paradigma central
para aplicagdes baseadas em microsservigos, permitindo execucdo sob demanda de
fungdes via Function-as-a-Service (FaaS) com escalabilidade automadtica e sem neces-
sidade de gerenciar infraestrutura. Porém, a imprevisibilidade do tempo de execucao con-
tinua sendo um desafio, especialmente em ambientes multicloud, onde pequenas variagoes
podem afetar a experi€ncia do usudrio e custos.

O desempenho das fungdes € influenciado por fatores como complexidade do
codigo, ambiente de execucdo, memoria, politicas de escalonamento e caracteristicas
especificas de provedores como AWS Lambda, Google Cloud Functions, Azure Func-
tions e Alibaba Function Compute. Ferramentas tradicionais de benchmarking apre-
sentam limitacdes de reprodutibilidade e suporte a multiplos provedores, dificultando
comparacoes e decisdes de implantagdo.

Para contornar essas limitagdOes, este trabalho estende o Framework Orama
[Carvalho et al. 2024]' com um preditor de tempo de execucdo baseado em Machine Le-
arning (ML), combinando métricas estéticas de cddigo, principalmente as de Halstead,
com dados empiricos de benchmarks. Trés arquiteturas de redes neurais (Dense, LSTM
e BLSTM) foram avaliadas, destacando-se a BLSTM (R? = 0,91 e MSE 20% menor).
O preditor foi integrado ao Orama via APIs e interface gréfica, permitindo comparagdes
entre provedores, planejamento de implantagdes e otimizacao de custo e desempenho em
aplicacoes Serverless.

Thttps://github.com/unb-faas/orama



O restante deste artigo estd organizado da seguinte forma: a Secdo 2 apresenta
os principais conceitos por trds da ferramenta de predicao do Orama; a Secdo 3 discute
os trabalhos relacionados; a Secdo 4 descreve a metodologia utilizada para a geracdo
do conjunto de dados e o treinamento dos modelos; a Secdo 5 apresenta os resultados
experimentais; e a Secdo 6 conclui o artigo e indica dire¢des para trabalhos futuros.

2. Fundamentacao

A avaliag@o de desempenho em ambientes FaaS enfrenta desafios como instrumentacao,
testes automatizados, coleta de métricas e andlise estatistica em multiplos provedores.
Ferramentas tradicionais de benchmarking apresentam limitacdes de reprodutibilidade,
granularidade e suporte multicloud. Para contornar isso, o Framework Orama foi desen-
volvido como uma infraestrutura modular e escaldvel, integrando médulos de provisao de
fungdes, orquestracdo, coleta de métricas, andlise estatistica e geracdo de relatdrios, com
suporte a AWS Lambda, Google Cloud Functions, Azure Functions e Alibaba Function
Compute. Os dados coletados serviram de base para treinar os modelos de predi¢ao de
tempo de execugao deste trabalho.

O ML € usado no Orama para estimar o tempo de execugao a partir do codigo-
fonte, com aprendizado supervisionado e regressdo. Foram testadas trés arquiteturas de
redes neurais, tais como: Dense; LSTM e BLSTM, sendo que LSTM e BLSTM ex-
ploram dependéncias sequenciais e contextos bidirecionais nas métricas do codigo. O
pré-processamento incluiu tratamento de valores ausentes, codificacdo de varidveis ca-
tegoricas, normalizacio, remog¢do de outliers e andlise de correlacdo para garantir con-
sisténcia e qualidade dos dados.

A extracdo de métricas de codigo-fonte € essencial para transformar software em
dados estruturados para ML. As métricas lexicais de Halstead destacam-se por analisar
o codigo estaticamente, capturando tamanho de vocabulério, volume e esfor¢o cognitivo,
oferecendo visdo mais detalhada que complexidade ciclomatica ou contagem de linhas.
Sua natureza estética e agndstica a linguagens torna-as ideais para aplicagdes escaldveis,
como no Orama, estabelecendo a base para preditores precisos e robustos de desempenho
em FaaS.

3. Trabalhos relacionados

Diversos estudos exploram a predi¢do de tempo de execucdo em FaaS, como o SLOPE
[Tomaras et al. 2023], que usa redes neurais para estimar instancias, mas depende de
contéineres; o FaaStest [Horovitz et al. 2019], que otimiza custo e desempenho sem anali-
sar codigo-fonte; o TrIMS [Dakkak et al. 2019] e o FuncMem [Pandey and Kwon 2024],
que reduzem laténcia e melhoram throughput, mas sem métricas de cédigo; e o ML-FaaS
[Filippini et al. 2025], que prevé sobrecarga com precisdo, porém sem considerar com-
plexidade do cédigo.

Embora eficazes em otimizagdo de recursos, essas solucdes dependem de métricas
de infraestrutura ou sdo limitadas a plataformas especificas. O Framework Orama
[Carvalho et al. 2024] se diferencia ao unir dados de execu¢do com métricas estiticas
de cdédigo, permitindo prever tempos de execugcdao em multiplos provedores e oferecendo
suporte pratico para decisoes de implantacdo e planejamento multicloud em cenarios Ser-
verless.



4. Metodologia

A construgdo do preditor de tempo de execugao para FaaS no Framework Orama iniciou-
se com a definicdo e normalizacdo de um conjunto de casos de uso multiplataforma.
Essa padronizacdo garante a comparabilidade entre plataformas heterogéneas, reduz vie-
ses causados por diferencas de nomenclatura ou recursos nativos e permite a reutilizacdo
automatizada de experimentos. Foram definidos trés tipos de casos de uso: “Calcula-
tor”, “API for Object Storage” e “API for DBaaS”. Todos foram implementados usando o
Orama. Para cada implementacdo, foram extraidas métricas de complexidade de cédigo
com base na familia de métricas de Halstead, por meio do servico interno Halsteader, in-
tegrado ao Orama. As métricas utilizadas foram: comprimento, vocabuldrio, dificuldade,
volume e esfor¢o estimado.

Somente métricas de c6digo nao capturam variagdes causadas por infraestrutura,
cold starts, politicas de escalonamento ou limita¢des especificas de cada provedor. Para
incorporar esses fatores, foram reutilizados resultados empiricos de execucdes de bench-
marking realizadas anteriormente com o Orama, publicadas em estudos prévios, abran-
gendo tempos de execugdo sob diferentes niveis de concorréncia, tamanhos de carga e
configuracdes regionais. O processo de constru¢ao do dataset utilizado no treinamento
do preditor é composto por quatro macrofases: Experimentos — Resultados Consolidados
— Extracdo de Métricas Halstead — Dataset final. Os experimentos foram executados
de forma controlada e reproduzivel nos quatro provedores; os resultados consolidados in-
cluem metadados contextuais (regido, carga, nimero de invocacoes) e tempos medidos;
e, por fim, as métricas de Halstead sao integradas em um dataset analitico tabular, pronto

para as etapas de pré-processamento e modelagem.
Aceitavel @

Pré-pi del; Otimizaca il Avaliagao Modelo Pronto

=
M=:

Inaceitavel

Figura 1. Processo de treinamento do modelo.

A Figura 1 apresenta o pipeline de ML usado para construir o preditor, com-
posto pelas etapas: Pré-processamento — Modelagem — Otimizacdo — Treinamento
— Avaliagdo — Decisdo. Durante o pré-processamento, sdo realizadas tarefas como
remocgao de outliers, imputacao de valores ausentes, codificagdo categdrica de provedores
e normalizacdo de atributos numéricos (incluindo as métricas de Halstead). Na mode-
lagem, sdo avaliadas diferentes familias de modelos de regressdo — Dense, LSTM e
BLSTM. A otimizag¢do aplica busca multiobjetivo de hiperparametros, considerando erro
quadratico médio e robustez entre provedores. Apos o treinamento, os modelos candida-
tos sdo avaliados e, caso atendam aos critérios de desempenho, sdo congelados e versio-
nados; caso contrdrio, o ciclo retorna ao pré-processamento para ajustes em engenharia
de atributos, filtragem ou balanceamento de amostras.

A arquitetura atualizada do Framework Orama incorpora dois novos servigos: (i)
Halsteader, responsével pela andlise estatica de codigo e geragdo das métricas de Hals-



tead; e (i1) Predictor, que utiliza o modelo treinado para estimar tempos de execugao es-
perados por provedor e nivel de concorréncia. Embora o backend ofereca APIs unificadas
para automacao de experimentos e consulta de predi¢des, identificou-se a necessidade de
aprimorar a interface grafica que permita ao usudrio enviar o cdédigo-fonte de uma fungao
FaaS, definir parametros de carga e obter estimativas comparativas de tempo de execucao
entre AWS, Google Cloud, Azure e Alibaba Cloud. Essa funcionalidade € essencial para
estudos de portabilidade, analise custo-desempenho e planejamento multicloud.

5. Resultados

Esta sec@o apresenta os resultados da avaliagdo dos modelos de predicdo de tempo de
execucao integrados ao Framework Orama. O desempenho de trés arquiteturas de redes
neurais (Dense, LSTM e BLSTM) foi comparado utilizando MSE e R?. Essas métricas
foram calculadas por meio de cross-validation no conjunto de validacdo do dataset. Os
trés modelos apresentaram convergéncia durante o treinamento, sendo que as arquiteturas
Dense e BLSTM demonstraram reducdes de perda mais estaveis e rapidas.

Dense LST™M BLSTM

Figura 2. R? Boxplot for Dense, LSTM, and BLSTM models.

A Figura 2 apresenta boxplots dos valores de R? para cada modelo. O modelo
BLSTM obteve a menor mediana de MSE e o maior R?, indicando superior precisio
e capacidade de generalizacdo entre casos de uso e provedores de nuvem. O modelo
Dense apresentou desempenho proximo, enquanto o LSTM mostrou erros de predi¢dao
ligeiramente maiores e maior variabilidade, provavelmente devido a sua sensibilidade ao
comprimento e a complexidade da sequéncia de entrada.

BLSTM

—e— Observations
Predictions

Value

|
7(‘\"'%-'—;—;‘*-.—\;/0\\.-@"'.\;%1““&-; &Au '\(&ir-a/\"'avf\—-@"' L '\—v/\ﬁ

150 160 170 180 190 200
Time / Data Point

Figura 3. Observations vs. Predictions in BLSTM model.

A Figura 3 apresenta os tempos observados versus os previstos para o modelo com
melhor desempenho (BLSTM). Os pontos de dados alinham-se de forma proxima a dia-



gonal, confirmando forte concordancia preditiva. Pequenas variacdes sdo observaveis em
casos extremos, com alta complexidade ou combina¢des incomuns de métricas de Hals-
tead e comportamentos de provedores; entretanto, o preditor mantém robustez ao longo
do dataset. Os resultados confirmam a eficdcia do uso de métricas lexicais de cddigo para
prever tempos de execucdo em FaaS. Entre os modelos avaliados, a arquitetura BLSTM
destacou-se pela maior precisdo e capacidade de generalizacdo, sendo adotada como base
para o novo componente Predictor no Framework Orama.

6. Conclusao e trabalhos futuros

Este trabalho apresentou um preditor de tempo de execucdo para funcdes Serverless in-
tegrado ao Framework Orama, combinando métricas de Halstead e dados de benchmar-
king para estimar desempenho diretamente do cédigo-fonte. Entre os modelos testados,
0 BLSTM se destacou (R? = 0,91, MSE 20% menor que as baselines), e o preditor ja
estd disponivel via APIs e interface grafica, permitindo estimativas em tempo real por
provedor.

Como préximos passos, planeja-se expandir o suporte a mais linguagens e pro-
vedores, incluir predi¢do de custos e explorar arquiteturas avangadas, como BERT e
LLaMA, para melhorar a interpretacdo do cédigo. Além disso, a ampliacdo do dataset e
o aprimoramento da interface grafica devem tornar a ferramenta mais versatil e acessivel.

Referéncias

Carvalho, L. R. d., Kamienski, B., and Araujo, A. (2024). Main FaaS Providers Behavior
Under High Concurrency: An Evaluation with Orama Framework Distributed Archi-
tecture. SN Computer Science, 5(5):541.

Dakkak, A., Li, C., Garcia de Gonzalo, S., Xiong, J., and Hwu, W.-m. (2019). Trims:
Transparent and isolated model sharing for low latency deep learning inference in
function-as-a-service. In 2019 IEEE 12th International Conference on Cloud Com-
puting (CLOUD), pages 372-382.

Filippini, F., Cavenaghi, L., Calmi, N., Savi, M., and Ciavotta, M. (2025). MIl-based
performance modeling in edge faas systems. In European Conference on Service-
Oriented and Cloud Computing, pages 112—-127. Springer.

Horovitz, S., Amos, R., Baruch, O., Cohen, T., Oyar, T., and Deri, A. (2019). Faastest
- machine learning based cost and performance faas optimization. In Coppola, M.,
Carlini, E., D’Agostino, D., Altmann, J., and Bafares, J. A., editors, Economics of
Grids, Clouds, Systems, and Services, pages 171-186, Cham. Springer International
Publishing.

Nupponen, J. and Taibi, D. (2020). Serverless: What it is, what to do and what not to do.
In 2020 IEEE ICSA-C, pages 49-50.

Pandey, M. and Kwon, Y.-W. (2024). Funcmem: reducing cold start latency in serverless
computing through memory prediction and adaptive task execution. In Proceedings of
the 39th ACM/SIGAPP symposium on applied computing, pages 131-138.

Tomaras, D., Tsenos, M., and Kalogeraki, V. (2023). Prediction-driven resource provi-
sioning for serverless container runtimes. In 2023 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems (ACSOS), pages 1-6.



