Aplicacao de Machine Learning a Predicao de Tempo de
Execucao em FaaS com o Framework Orama

Leonardo Reboucas de Carvalho', Geraldo Pereira Rocha Filho'?, Aleteia Araujo'

'Depto de Ciéncia da Computagio - Universidade de Brasilia
Campus Darcy Ribeiro — Brasilia — DF — Brazil

2Depto de Ciéncias Exatas e Tecnolégicas, Universidade Estadual do Sudoeste da Bahia
Vitéria da Conquista — BA — Brazil.

leouesb@gmail.com, geraldo.rocha@uesb.edu.br, aleteialunb.br

Resumo. Um dos principais desafios em Function-as-a-Service (FaaS) é a im-
previsibilidade do tempo de execucdo das funcées, o que pode causar aumento
de custos e degradacdo de desempenho em aplicacoes distribuidas entre prove-
dores de nuvem. Este artigo apresenta um preditor baseado em Machine Le-
arning (ML) integrado ao Framework Orama, que combina métricas estdticas
de codigo (medidas de complexidade de Halstead) e dados empiricos de desem-
penho para estimar o tempo de execucdo diretamente a partir do codigo-fonte.
Foram avaliadas trés arquiteturas de redes neurais (Dense, LSTM e BLSTM),
sendo a BLSTM a que apresentou maior precisdo.

1. Introducao

A computacdo Serverless [Nupponen and Taibi 2020] tornou-se um paradigma central
para aplicagdes baseadas em microsservigos, permitindo execucdo sob demanda de
fungdes via Function-as-a-Service (FaaS) com escalabilidade automadtica e sem neces-
sidade de gerenciar infraestrutura. Porém, a imprevisibilidade do tempo de execucao con-
tinua sendo um desafio, especialmente em ambientes multicloud, onde pequenas variagoes
podem afetar a experi€ncia do usudrio e custos.

O desempenho das fungdes € influenciado por fatores como complexidade do
codigo, ambiente de execucdo, memoria, politicas de escalonamento e caracteristicas
especificas de provedores como AWS Lambda, Google Cloud Functions, Azure Func-
tions e Alibaba Function Compute. Ferramentas tradicionais de benchmarking apre-
sentam limitacdes de reprodutibilidade e suporte a multiplos provedores, dificultando
comparacoes e decisdes de implantagdo.

Para contornar essas limitagdOes, este trabalho estende o Framework Orama
[Carvalho et al. 2024]' com um preditor de tempo de execucdo baseado em Machine Le-
arning (ML), combinando métricas estéticas de cddigo, principalmente as de Halstead,
com dados empiricos de benchmarks. Trés arquiteturas de redes neurais (Dense, LSTM
e BLSTM) foram avaliadas, destacando-se a BLSTM (R? = 0,91 e MSE 20% menor).
O preditor foi integrado ao Orama via APIs e interface gréfica, permitindo comparagdes
entre provedores, planejamento de implantagdes e otimizacao de custo e desempenho em
aplicacoes Serverless.

Thttps://github.com/unb-faas/orama



O restante deste artigo estd organizado da seguinte forma: a Secdo 2 apresenta
os principais conceitos por trds da ferramenta de predicao do Orama; a Secdo 3 discute
os trabalhos relacionados; a Secdo 4 descreve a metodologia utilizada para a geracdo
do conjunto de dados e o treinamento dos modelos; a Secdo 5 apresenta os resultados
experimentais; e a Secdo 6 conclui o artigo e indica dire¢des para trabalhos futuros.

2. Fundamentacao

A avaliag@o de desempenho em ambientes FaaS enfrenta desafios como instrumentacao,
testes automatizados, coleta de métricas e andlise estatistica em multiplos provedores.
Ferramentas tradicionais de benchmarking apresentam limitacdes de reprodutibilidade,
granularidade e suporte multicloud. Para contornar isso, o Framework Orama foi desen-
volvido como uma infraestrutura modular e escaldvel, integrando médulos de provisao de
fungdes, orquestracdo, coleta de métricas, andlise estatistica e geracdo de relatdrios, com
suporte a AWS Lambda, Google Cloud Functions, Azure Functions e Alibaba Function
Compute. Os dados coletados serviram de base para treinar os modelos de predi¢ao de
tempo de execugao deste trabalho.

O ML € usado no Orama para estimar o tempo de execugao a partir do codigo-
fonte, com aprendizado supervisionado e regressdo. Foram testadas trés arquiteturas de
redes neurais, tais como: Dense; LSTM e BLSTM, sendo que LSTM e BLSTM ex-
ploram dependéncias sequenciais e contextos bidirecionais nas métricas do codigo. O
pré-processamento incluiu tratamento de valores ausentes, codificacdo de varidveis ca-
tegoricas, normalizacio, remog¢do de outliers e andlise de correlacdo para garantir con-
sisténcia e qualidade dos dados.

A extracdo de métricas de codigo-fonte € essencial para transformar software em
dados estruturados para ML. As métricas lexicais de Halstead destacam-se por analisar
o codigo estaticamente, capturando tamanho de vocabulério, volume e esfor¢o cognitivo,
oferecendo visdo mais detalhada que complexidade ciclomatica ou contagem de linhas.
Sua natureza estética e agndstica a linguagens torna-as ideais para aplicagdes escaldveis,
como no Orama, estabelecendo a base para preditores precisos e robustos de desempenho
em FaaS.

3. Trabalhos relacionados

Diversos estudos exploram a predi¢do de tempo de execucdo em FaaS, como o SLOPE
[Tomaras et al. 2023], que usa redes neurais para estimar instancias, mas depende de
contéineres; o FaaStest [Horovitz et al. 2019], que otimiza custo e desempenho sem anali-
sar codigo-fonte; o TrIMS [Dakkak et al. 2019] e o FuncMem [Pandey and Kwon 2024],
que reduzem laténcia e melhoram throughput, mas sem métricas de cédigo; e o ML-FaaS
[Filippini et al. 2025], que prevé sobrecarga com precisdo, porém sem considerar com-
plexidade do cédigo.

Embora eficazes em otimizagdo de recursos, essas solucdes dependem de métricas
de infraestrutura ou sdo limitadas a plataformas especificas. O Framework Orama
[Carvalho et al. 2024] se diferencia ao unir dados de execu¢do com métricas estiticas
de cdédigo, permitindo prever tempos de execugcdao em multiplos provedores e oferecendo
suporte pratico para decisoes de implantacdo e planejamento multicloud em cenarios Ser-
verless.



4. Metodologia

A construgdo do preditor de tempo de execugao para FaaS no Framework Orama iniciou-
se com a definicdo e normalizacdo de um conjunto de casos de uso multiplataforma.
Essa padronizacdo garante a comparabilidade entre plataformas heterogéneas, reduz vie-
ses causados por diferencas de nomenclatura ou recursos nativos e permite a reutilizacdo
automatizada de experimentos. Foram definidos trés tipos de casos de uso: “Calcula-
tor”, “API for Object Storage” e “API for DBaaS”. Todos foram implementados usando o
Orama. Para cada implementacdo, foram extraidas métricas de complexidade de cédigo
com base na familia de métricas de Halstead, por meio do servico interno Halsteader, in-
tegrado ao Orama. As métricas utilizadas foram: comprimento, vocabuldrio, dificuldade,
volume e esfor¢o estimado.

Somente métricas de c6digo nao capturam variagdes causadas por infraestrutura,
cold starts, politicas de escalonamento ou limita¢des especificas de cada provedor. Para
incorporar esses fatores, foram reutilizados resultados empiricos de execucdes de bench-
marking realizadas anteriormente com o Orama, publicadas em estudos prévios, abran-
gendo tempos de execugdo sob diferentes niveis de concorréncia, tamanhos de carga e
configuracdes regionais. O processo de constru¢ao do dataset utilizado no treinamento
do preditor é composto por quatro macrofases: Experimentos — Resultados Consolidados
— Extracdo de Métricas Halstead — Dataset final. Os experimentos foram executados
de forma controlada e reproduzivel nos quatro provedores; os resultados consolidados in-
cluem metadados contextuais (regido, carga, nimero de invocacoes) e tempos medidos;
e, por fim, as métricas de Halstead sao integradas em um dataset analitico tabular, pronto

para as etapas de pré-processamento e modelagem.
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Figura 1. Processo de treinamento do modelo.

A Figura 1 apresenta o pipeline de ML usado para construir o preditor, com-
posto pelas etapas: Pré-processamento — Modelagem — Otimizacdo — Treinamento
— Avaliagdo — Decisdo. Durante o pré-processamento, sdo realizadas tarefas como
remocgao de outliers, imputacao de valores ausentes, codificagdo categdrica de provedores
e normalizacdo de atributos numéricos (incluindo as métricas de Halstead). Na mode-
lagem, sdo avaliadas diferentes familias de modelos de regressdo — Dense, LSTM e
BLSTM. A otimizag¢do aplica busca multiobjetivo de hiperparametros, considerando erro
quadratico médio e robustez entre provedores. Apos o treinamento, os modelos candida-
tos sdo avaliados e, caso atendam aos critérios de desempenho, sdo congelados e versio-
nados; caso contrdrio, o ciclo retorna ao pré-processamento para ajustes em engenharia
de atributos, filtragem ou balanceamento de amostras.

A arquitetura atualizada do Framework Orama incorpora dois novos servigos: (i)
Halsteader, responsével pela andlise estatica de codigo e geragdo das métricas de Hals-



tead; e (i1) Predictor, que utiliza o modelo treinado para estimar tempos de execugao es-
perados por provedor e nivel de concorréncia. Embora o backend ofereca APIs unificadas
para automacao de experimentos e consulta de predi¢des, identificou-se a necessidade de
aprimorar a interface grafica que permita ao usudrio enviar o cdédigo-fonte de uma fungao
FaaS, definir parametros de carga e obter estimativas comparativas de tempo de execucao
entre AWS, Google Cloud, Azure e Alibaba Cloud. Essa funcionalidade € essencial para
estudos de portabilidade, analise custo-desempenho e planejamento multicloud.

5. Resultados

Esta sec@o apresenta os resultados da avaliagdo dos modelos de predicdo de tempo de
execucao integrados ao Framework Orama. O desempenho de trés arquiteturas de redes
neurais (Dense, LSTM e BLSTM) foi comparado utilizando MSE e R?. Essas métricas
foram calculadas por meio de cross-validation no conjunto de validacdo do dataset. Os
trés modelos apresentaram convergéncia durante o treinamento, sendo que as arquiteturas
Dense e BLSTM demonstraram reducdes de perda mais estaveis e rapidas.
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Figura 2. R? Boxplot for Dense, LSTM, and BLSTM models.

A Figura 2 apresenta boxplots dos valores de R? para cada modelo. O modelo
BLSTM obteve a menor mediana de MSE e o maior R?, indicando superior precisio
e capacidade de generalizacdo entre casos de uso e provedores de nuvem. O modelo
Dense apresentou desempenho proximo, enquanto o LSTM mostrou erros de predi¢dao
ligeiramente maiores e maior variabilidade, provavelmente devido a sua sensibilidade ao
comprimento e a complexidade da sequéncia de entrada.
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Figura 3. Observations vs. Predictions in BLSTM model.

A Figura 3 apresenta os tempos observados versus os previstos para o modelo com
melhor desempenho (BLSTM). Os pontos de dados alinham-se de forma proxima a dia-



gonal, confirmando forte concordancia preditiva. Pequenas variacdes sdo observaveis em
casos extremos, com alta complexidade ou combina¢des incomuns de métricas de Hals-
tead e comportamentos de provedores; entretanto, o preditor mantém robustez ao longo
do dataset. Os resultados confirmam a eficdcia do uso de métricas lexicais de cddigo para
prever tempos de execucdo em FaaS. Entre os modelos avaliados, a arquitetura BLSTM
destacou-se pela maior precisdo e capacidade de generalizacdo, sendo adotada como base
para o novo componente Predictor no Framework Orama.

6. Conclusao e trabalhos futuros

Este trabalho apresentou um preditor de tempo de execucdo para funcdes Serverless in-
tegrado ao Framework Orama, combinando métricas de Halstead e dados de benchmar-
king para estimar desempenho diretamente do cédigo-fonte. Entre os modelos testados,
0 BLSTM se destacou (R? = 0,91, MSE 20% menor que as baselines), e o preditor ja
estd disponivel via APIs e interface grafica, permitindo estimativas em tempo real por
provedor.

Como préximos passos, planeja-se expandir o suporte a mais linguagens e pro-
vedores, incluir predi¢do de custos e explorar arquiteturas avangadas, como BERT e
LLaMA, para melhorar a interpretacdo do cédigo. Além disso, a ampliacdo do dataset e
o aprimoramento da interface grafica devem tornar a ferramenta mais versatil e acessivel.
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