
Aplicação de Machine Learning à Predição de Tempo de
Execução em FaaS com o Framework Orama

Leonardo Rebouças de Carvalho1, Geraldo Pereira Rocha Filho1,2, Aleteia Araujo1

1Depto de Ciência da Computação - Universidade de Brasilia
Campus Darcy Ribeiro – Brasilia – DF – Brazil

2Depto de Ciências Exatas e Tecnológicas, Universidade Estadual do Sudoeste da Bahia
Vitória da Conquista – BA – Brazil.

leouesb@gmail.com, geraldo.rocha@uesb.edu.br, aleteia@unb.br

Resumo. Um dos principais desafios em Function-as-a-Service (FaaS) é a im-
previsibilidade do tempo de execução das funções, o que pode causar aumento
de custos e degradação de desempenho em aplicações distribuı́das entre prove-
dores de nuvem. Este artigo apresenta um preditor baseado em Machine Le-
arning (ML) integrado ao Framework Orama, que combina métricas estáticas
de código (medidas de complexidade de Halstead) e dados empı́ricos de desem-
penho para estimar o tempo de execução diretamente a partir do código-fonte.
Foram avaliadas três arquiteturas de redes neurais (Dense, LSTM e BLSTM),
sendo a BLSTM a que apresentou maior precisão.

1. Introdução

A computação Serverless [Nupponen and Taibi 2020] tornou-se um paradigma central
para aplicações baseadas em microsserviços, permitindo execução sob demanda de
funções via Function-as-a-Service (FaaS) com escalabilidade automática e sem neces-
sidade de gerenciar infraestrutura. Porém, a imprevisibilidade do tempo de execução con-
tinua sendo um desafio, especialmente em ambientes multicloud, onde pequenas variações
podem afetar a experiência do usuário e custos.

O desempenho das funções é influenciado por fatores como complexidade do
código, ambiente de execução, memória, polı́ticas de escalonamento e caracterı́sticas
especı́ficas de provedores como AWS Lambda, Google Cloud Functions, Azure Func-
tions e Alibaba Function Compute. Ferramentas tradicionais de benchmarking apre-
sentam limitações de reprodutibilidade e suporte a múltiplos provedores, dificultando
comparações e decisões de implantação.

Para contornar essas limitações, este trabalho estende o Framework Orama
[Carvalho et al. 2024]1 com um preditor de tempo de execução baseado em Machine Le-
arning (ML), combinando métricas estáticas de código, principalmente as de Halstead,
com dados empı́ricos de benchmarks. Três arquiteturas de redes neurais (Dense, LSTM
e BLSTM) foram avaliadas, destacando-se a BLSTM (R2 = 0, 91 e MSE 20% menor).
O preditor foi integrado ao Orama via APIs e interface gráfica, permitindo comparações
entre provedores, planejamento de implantações e otimização de custo e desempenho em
aplicações Serverless.

1https://github.com/unb-faas/orama

O restante deste artigo está organizado da seguinte forma: a Seção 2 apresenta
os principais conceitos por trás da ferramenta de predição do Orama; a Seção 3 discute
os trabalhos relacionados; a Seção 4 descreve a metodologia utilizada para a geração
do conjunto de dados e o treinamento dos modelos; a Seção 5 apresenta os resultados
experimentais; e a Seção 6 conclui o artigo e indica direções para trabalhos futuros.

2. Fundamentação
A avaliação de desempenho em ambientes FaaS enfrenta desafios como instrumentação,
testes automatizados, coleta de métricas e análise estatı́stica em múltiplos provedores.
Ferramentas tradicionais de benchmarking apresentam limitações de reprodutibilidade,
granularidade e suporte multicloud. Para contornar isso, o Framework Orama foi desen-
volvido como uma infraestrutura modular e escalável, integrando módulos de provisão de
funções, orquestração, coleta de métricas, análise estatı́stica e geração de relatórios, com
suporte a AWS Lambda, Google Cloud Functions, Azure Functions e Alibaba Function
Compute. Os dados coletados serviram de base para treinar os modelos de predição de
tempo de execução deste trabalho.

O ML é usado no Orama para estimar o tempo de execução a partir do código-
fonte, com aprendizado supervisionado e regressão. Foram testadas três arquiteturas de
redes neurais, tais como: Dense; LSTM e BLSTM, sendo que LSTM e BLSTM ex-
ploram dependências sequenciais e contextos bidirecionais nas métricas do código. O
pré-processamento incluiu tratamento de valores ausentes, codificação de variáveis ca-
tegóricas, normalização, remoção de outliers e análise de correlação para garantir con-
sistência e qualidade dos dados.

A extração de métricas de código-fonte é essencial para transformar software em
dados estruturados para ML. As métricas lexicais de Halstead destacam-se por analisar
o código estaticamente, capturando tamanho de vocabulário, volume e esforço cognitivo,
oferecendo visão mais detalhada que complexidade ciclomática ou contagem de linhas.
Sua natureza estática e agnóstica a linguagens torna-as ideais para aplicações escaláveis,
como no Orama, estabelecendo a base para preditores precisos e robustos de desempenho
em FaaS.

3. Trabalhos relacionados
Diversos estudos exploram a predição de tempo de execução em FaaS, como o SLOPE
[Tomaras et al. 2023], que usa redes neurais para estimar instâncias, mas depende de
contêineres; o FaaStest [Horovitz et al. 2019], que otimiza custo e desempenho sem anali-
sar código-fonte; o TrIMS [Dakkak et al. 2019] e o FuncMem [Pandey and Kwon 2024],
que reduzem latência e melhoram throughput, mas sem métricas de código; e o ML-FaaS
[Filippini et al. 2025], que prevê sobrecarga com precisão, porém sem considerar com-
plexidade do código.

Embora eficazes em otimização de recursos, essas soluções dependem de métricas
de infraestrutura ou são limitadas a plataformas especı́ficas. O Framework Orama
[Carvalho et al. 2024] se diferencia ao unir dados de execução com métricas estáticas
de código, permitindo prever tempos de execução em múltiplos provedores e oferecendo
suporte prático para decisões de implantação e planejamento multicloud em cenários Ser-
verless.

4. Metodologia

A construção do preditor de tempo de execução para FaaS no Framework Orama iniciou-
se com a definição e normalização de um conjunto de casos de uso multiplataforma.
Essa padronização garante a comparabilidade entre plataformas heterogêneas, reduz vie-
ses causados por diferenças de nomenclatura ou recursos nativos e permite a reutilização
automatizada de experimentos. Foram definidos três tipos de casos de uso: “Calcula-
tor”, “API for Object Storage” e “API for DBaaS”. Todos foram implementados usando o
Orama. Para cada implementação, foram extraı́das métricas de complexidade de código
com base na famı́lia de métricas de Halstead, por meio do serviço interno Halsteader, in-
tegrado ao Orama. As métricas utilizadas foram: comprimento, vocabulário, dificuldade,
volume e esforço estimado.

Somente métricas de código não capturam variações causadas por infraestrutura,
cold starts, polı́ticas de escalonamento ou limitações especı́ficas de cada provedor. Para
incorporar esses fatores, foram reutilizados resultados empı́ricos de execuções de bench-
marking realizadas anteriormente com o Orama, publicadas em estudos prévios, abran-
gendo tempos de execução sob diferentes nı́veis de concorrência, tamanhos de carga e
configurações regionais. O processo de construção do dataset utilizado no treinamento
do preditor é composto por quatro macrofases: Experimentos → Resultados Consolidados
→ Extração de Métricas Halstead → Dataset final. Os experimentos foram executados
de forma controlada e reproduzı́vel nos quatro provedores; os resultados consolidados in-
cluem metadados contextuais (região, carga, número de invocações) e tempos medidos;
e, por fim, as métricas de Halstead são integradas em um dataset analı́tico tabular, pronto
para as etapas de pré-processamento e modelagem.

Pré-processamento Modelagem Otimização Treinamento Avaliação Modelo Pronto

Aceitável

Inaceitável

Figura 1. Processo de treinamento do modelo.

A Figura 1 apresenta o pipeline de ML usado para construir o preditor, com-
posto pelas etapas: Pré-processamento → Modelagem → Otimização → Treinamento
→ Avaliação → Decisão. Durante o pré-processamento, são realizadas tarefas como
remoção de outliers, imputação de valores ausentes, codificação categórica de provedores
e normalização de atributos numéricos (incluindo as métricas de Halstead). Na mode-
lagem, são avaliadas diferentes famı́lias de modelos de regressão — Dense, LSTM e
BLSTM. A otimização aplica busca multiobjetivo de hiperparâmetros, considerando erro
quadrático médio e robustez entre provedores. Após o treinamento, os modelos candida-
tos são avaliados e, caso atendam aos critérios de desempenho, são congelados e versio-
nados; caso contrário, o ciclo retorna ao pré-processamento para ajustes em engenharia
de atributos, filtragem ou balanceamento de amostras.

A arquitetura atualizada do Framework Orama incorpora dois novos serviços: (i)
Halsteader, responsável pela análise estática de código e geração das métricas de Hals-

tead; e (ii) Predictor, que utiliza o modelo treinado para estimar tempos de execução es-
perados por provedor e nı́vel de concorrência. Embora o backend ofereça APIs unificadas
para automação de experimentos e consulta de predições, identificou-se a necessidade de
aprimorar a interface gráfica que permita ao usuário enviar o código-fonte de uma função
FaaS, definir parâmetros de carga e obter estimativas comparativas de tempo de execução
entre AWS, Google Cloud, Azure e Alibaba Cloud. Essa funcionalidade é essencial para
estudos de portabilidade, análise custo-desempenho e planejamento multicloud.

5. Resultados
Esta seção apresenta os resultados da avaliação dos modelos de predição de tempo de
execução integrados ao Framework Orama. O desempenho de três arquiteturas de redes
neurais (Dense, LSTM e BLSTM) foi comparado utilizando MSE e R2. Essas métricas
foram calculadas por meio de cross-validation no conjunto de validação do dataset. Os
três modelos apresentaram convergência durante o treinamento, sendo que as arquiteturas
Dense e BLSTM demonstraram reduções de perda mais estáveis e rápidas.

Figura 2. R2 Boxplot for Dense, LSTM, and BLSTM models.

A Figura 2 apresenta boxplots dos valores de R2 para cada modelo. O modelo
BLSTM obteve a menor mediana de MSE e o maior R2, indicando superior precisão
e capacidade de generalização entre casos de uso e provedores de nuvem. O modelo
Dense apresentou desempenho próximo, enquanto o LSTM mostrou erros de predição
ligeiramente maiores e maior variabilidade, provavelmente devido à sua sensibilidade ao
comprimento e à complexidade da sequência de entrada.

Figura 3. Observations vs. Predictions in BLSTM model.

A Figura 3 apresenta os tempos observados versus os previstos para o modelo com
melhor desempenho (BLSTM). Os pontos de dados alinham-se de forma próxima à dia-

gonal, confirmando forte concordância preditiva. Pequenas variações são observáveis em
casos extremos, com alta complexidade ou combinações incomuns de métricas de Hals-
tead e comportamentos de provedores; entretanto, o preditor mantém robustez ao longo
do dataset. Os resultados confirmam a eficácia do uso de métricas lexicais de código para
prever tempos de execução em FaaS. Entre os modelos avaliados, a arquitetura BLSTM
destacou-se pela maior precisão e capacidade de generalização, sendo adotada como base
para o novo componente Predictor no Framework Orama.

6. Conclusão e trabalhos futuros
Este trabalho apresentou um preditor de tempo de execução para funções Serverless in-
tegrado ao Framework Orama, combinando métricas de Halstead e dados de benchmar-
king para estimar desempenho diretamente do código-fonte. Entre os modelos testados,
o BLSTM se destacou (R2 = 0, 91, MSE 20% menor que as baselines), e o preditor já
está disponı́vel via APIs e interface gráfica, permitindo estimativas em tempo real por
provedor.

Como próximos passos, planeja-se expandir o suporte a mais linguagens e pro-
vedores, incluir predição de custos e explorar arquiteturas avançadas, como BERT e
LLaMA, para melhorar a interpretação do código. Além disso, a ampliação do dataset e
o aprimoramento da interface gráfica devem tornar a ferramenta mais versátil e acessı́vel.

Referências
Carvalho, L. R. d., Kamienski, B., and Araujo, A. (2024). Main FaaS Providers Behavior

Under High Concurrency: An Evaluation with Orama Framework Distributed Archi-
tecture. SN Computer Science, 5(5):541.

Dakkak, A., Li, C., Garcia de Gonzalo, S., Xiong, J., and Hwu, W.-m. (2019). Trims:
Transparent and isolated model sharing for low latency deep learning inference in
function-as-a-service. In 2019 IEEE 12th International Conference on Cloud Com-
puting (CLOUD), pages 372–382.

Filippini, F., Cavenaghi, L., Calmi, N., Savi, M., and Ciavotta, M. (2025). Ml-based
performance modeling in edge faas systems. In European Conference on Service-
Oriented and Cloud Computing, pages 112–127. Springer.

Horovitz, S., Amos, R., Baruch, O., Cohen, T., Oyar, T., and Deri, A. (2019). Faastest
- machine learning based cost and performance faas optimization. In Coppola, M.,
Carlini, E., D’Agostino, D., Altmann, J., and Bañares, J. Á., editors, Economics of
Grids, Clouds, Systems, and Services, pages 171–186, Cham. Springer International
Publishing.

Nupponen, J. and Taibi, D. (2020). Serverless: What it is, what to do and what not to do.
In 2020 IEEE ICSA-C, pages 49–50.

Pandey, M. and Kwon, Y.-W. (2024). Funcmem: reducing cold start latency in serverless
computing through memory prediction and adaptive task execution. In Proceedings of
the 39th ACM/SIGAPP symposium on applied computing, pages 131–138.

Tomaras, D., Tsenos, M., and Kalogeraki, V. (2023). Prediction-driven resource provi-
sioning for serverless container runtimes. In 2023 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems (ACSOS), pages 1–6.

