
Benchmarking de Aplicações na AWS:
Comparação de Desempenho entre EC2, ECS e Lambda

Andressa Araujo1 e Aleteia Araujo1

1Universidade de Brası́lia — Programa de Graduação1

araujo.pereira@aluno.unb.br

aleteia@unb.br

Abstract. This work presents a practical benchmark comparing EC2, ECS on
EC2, and Lambda across three real applications: a REST API, a thumbnail
generator, and a CSV file processor. The analysis focuses on end-to-end latency,
cold start, CPU and RAM usage, total execution time, and internal processing
time, highlighting performance differences between the models.

Resumo. Este trabalho apresenta um benchmark prático comparando EC2,
ECS sobre EC2 e Lambda em três aplicações reais: uma API REST, um ger-
ador de thumbnails e um processador de arquivos CSV. A análise foca latência
fim-a-fim, cold start, CPU, RAM, tempo total de execução e de processamento
interno, evidenciando diferenças de desempenho entre os modelos.

1. Introdução
A AWS disponibiliza múltiplos modelos de execução, como máquinas virtuais (EC2),
contêineres (ECS) e funções Serverless (Lambda), cada um com diferentes nı́veis de elas-
ticidade e overhead. Comparações entre esses ambientes já foram exploradas em estu-
dos anteriores [3, 2, 5], mas geralmente focando em serviços isolados. Este trabalho
complementa tais análises avaliando três aplicações completas sob carga padronizada e
infraestrutura unificada.

O objetivo é comparar, de forma reprodutı́vel, o desempenho de EC2, ECS e
Lambda considerando latência fim-a-fim, tempo de processamento interno, tempo total
de execução, RAM e CPU, fornecendo evidências práticas que auxiliam na escolha ar-
quitetural.

2. Metodologia e Ambiente Experimental
As três aplicações avaliadas — a API REST, o gerador de thumbnails e o processador de
arquivos CSV — foram executadas nos três ambientes com o mesmo código e a mesma
configuração funcional. A geração de carga foi feita com Artillery em HTTPS, e as
métricas foram coletadas com Prometheus, Pushgateway e Grafana. Os testes seguem
o mesmo plano de 15 minutos, com fases de warm-up, carga estável, pico e recuperação.

No que diz respeito à stack, a API REST AniLove utiliza Node.js/Express, JWT,
bcrypt e PostgreSQL. O gerador de thumbnails usa Node.js e Sharp, recebendo imagens
via multipart/form-data. O processador de arquivos CSV é implementado com
Python, FastAPI e Pandas, realizando filtros, agregações e retornando um novo arquivo



CSV. Sendo assim, a infraestrutura foi padronizada da seguinte forma, EC2 (Amazon
Linux 2023, 1 vCPU), ECS com contêineres no ECR (Amazon Linux 2023, 1 vCPU) e
Lambda empacotado como imagem (1792 MB, 30s de timeout). Todos os serviços foram
expostos via HTTPS, com artefatos versionados e a mesma VPC, sub-redes e security
groups.

3. Resultados e Discussão
Nesta seção são apresentados os resultados obtidos nas três aplicações avaliadas, dis-
cutindo o comportamento dos diferentes ambientes e o impacto do cold start.

Figure 1. Gráficos CPU/RAM internos do gerador de thumbnails

No gerador de thumbnails, o EC2 atinge quase 100% de CPU em um pico inicial,
mas geralmente os picos permanecem menores do que no ECS. Essa diferença ocorre
porque o ECS executa contêineres sobre uma instância EC2, adicionando sobrecarga adi-
cional em comparação ao ambiente direto da VM. Já o Lambda e o ECS oscilam até cerca
de 60%, indicando picos mais moderados graças à orquestração do ECS e à elasticidade
do Lambda, padrão já identificado em benchmarks anteriores [2].

No uso de memória, o ECS mostra o comportamento mais estável, variando pouco
em torno de 80 MB. O EC2 permanece em torno de 120 MB, enquanto o Lambda oscila
entre 0 e 80 MB devido ao ciclo de vida intermitente das funções e à liberação automática
do ambiente após cada execução. Essa diferença evidencia o impacto do modelo Server-
less em workloads de processamento de imagem que operam em janelas curtas.

Figure 2. Gráficos do processador de arquivos CSV

No processador de arquivos CSV, o Lambda apresenta os maiores tempos interno
e total, resultado direto da inicialização do runtime e do cold start, que afetam especial-
mente workloads de curta duração. Em contraste, EC2 e ECS permanecem consistente-
mente abaixo de 20 ms, exibindo um comportamento estável e com baixa variabilidade
temporal. Esse padrão é coerente com estudos que destacam a vantagem de ambientes
persistentes para execuções rápidas e repetitivas [5]. Ao longo do teste, o EC2 apre-
senta estabilidade ligeiramente superior ao ECS, reflexo da ausência de sobrecarga de
orquestração. No entanto, o ECS, mesmo com essa camada adicional, mantém desem-
penho muito próximo.



Figure 3. Gráficos da API REST

Na API REST, o Lambda registra a maior latência total por requisição, resultado
da reativação do ambiente, inicialização de dependências e restabelecimento de conexões
com o banco de dados a cada cold start. EC2 e ECS exibem tempos menores e mais
estáveis, beneficiando-se de conexões persistentes e inicialização única do servidor. O
comportamento observado está alinhado à literatura sobre plataformas Serverless para
aplicações interativas [3].

Quanto ao uso de CPU da infraestrutura, o ECS tende a consumir mais proces-
samento por conta da camada de orquestração, enquanto o EC2 mantém um perfil mais
estável e previsı́vel. Essa estabilidade resulta em latências mais consistentes no EC2, com
o ECS exibindo apenas variações discretas.

4. Conclusão e Trabalhos Futuros
Os resultados mostram que cada ambiente apresenta um comportamento distinto sob a
mesma carga. O EC2 mantém a maior estabilidade e as menores variações, oferecendo
latências consistentes e uso previsı́vel de recursos. O ECS acompanha esse desempenho
de perto, sofrendo apenas pequenas oscilações devido à camada de orquestração, mas
ainda entregando resultados sólidos nas três aplicações. O Lambda, por sua vez, apre-
senta maior latência e variabilidade, sobretudo em cenários afetados por cold start ou
inicializações repetidas.

Mesmo assim, o Lambda continua adequado para workloads esparsos e acionados
por eventos, enquanto EC2 e ECS se mostram mais eficientes para execuções contı́nuas
e sensı́veis ao tempo de resposta. Como trabalhos futuros, pretende-se incorporar mais
métricas de observabilidade e aprofundar a análise do comportamento de acesso a banco
de dados em ambientes Lambda, ampliando a compreensão das limitações e otimizações
possı́veis nesse modelo.

References
[1] Amazon Web Services. AWS Documentation. https://docs.aws.amazon.com.

[2] Ducharme, C. AWS Services Performance Benchmark. Medium / Linux Academy, 2018.

[3] Agarwal, S. et al. Benchmarking Serverless Efficiency for E-Learning Platforms. Inter-
national Journal of Intelligent Systems, 2024.

[4] Amazon Web Services. Amazon ECS Best Practices. https://docs.aws.amazon.
com/AmazonECS/latest/developerguide/ecs-best-practices.
html.

[5] Lynn, T. et al. Performance Evaluation of Serverless Computing Platforms. IEEE Cloud,
2017.


