Benchmarking de Aplicacoes na AWS:
Comparacao de Desempenho entre EC2, ECS e Lambda

Andressa Araujo' e Aleteia Araujo'

Universidade de Brasilia — Programa de Graduagio!

araujo.pereira@aluno.unb.br

aleteia@unb.br

Abstract. This work presents a practical benchmark comparing EC2, ECS on
EC2, and Lambda across three real applications: a REST API, a thumbnail
generator, and a CSV file processor. The analysis focuses on end-to-end latency,
cold start, CPU and RAM usage, total execution time, and internal processing
time, highlighting performance differences between the models.

Resumo. Este trabalho apresenta um benchmark prdtico comparando EC2,
ECS sobre EC2 e Lambda em trés aplicacoes reais: uma API REST, um ger-
ador de thumbnails e um processador de arquivos CSV. A andlise foca laténcia
fim-a-fim, cold start, CPU, RAM, tempo total de execucdo e de processamento
interno, evidenciando diferencas de desempenho entre os modelos.

1. Introducao

A AWS disponibiliza multiplos modelos de execucdo, como maquinas virtuais (EC2),
contéineres (ECS) e fungdes Serverless (Lambda), cada um com diferentes niveis de elas-
ticidade e overhead. Comparagdes entre esses ambientes ja foram exploradas em estu-
dos anteriores [3, 2, 5], mas geralmente focando em servicos isolados. Este trabalho
complementa tais andlises avaliando trés aplicacdes completas sob carga padronizada e
infraestrutura unificada.

O objetivo € comparar, de forma reprodutivel, o desempenho de EC2, ECS e
Lambda considerando laténcia fim-a-fim, tempo de processamento interno, tempo total
de execucdao, RAM e CPU, fornecendo evidéncias préticas que auxiliam na escolha ar-
quitetural.

2. Metodologia e Ambiente Experimental

As trés aplicacdes avaliadas — a API REST, o gerador de thumbnails e o processador de
arquivos CSV — foram executadas nos trés ambientes com o mesmo cddigo e a mesma
configuracdo funcional. A geracdo de carga foi feita com Artillery em HTTPS, e as
métricas foram coletadas com Prometheus, Pushgateway e Grafana. Os testes seguem
o mesmo plano de 15 minutos, com fases de warm-up, carga estavel, pico e recuperagao.

No que diz respeito a stack, a API REST AniLove utiliza Node.js/Express, JWT,
berypt e PostgreSQL. O gerador de thumbnails usa Node.js e Sharp, recebendo imagens
viamultipart/form-data. O processador de arquivos CSV € implementado com
Python, FastAPI e Pandas, realizando filtros, agregacdes e retornando um novo arquivo



CSV. Sendo assim, a infraestrutura foi padronizada da seguinte forma, EC2 (Amazon
Linux 2023, 1 vCPU), ECS com contéineres no ECR (Amazon Linux 2023, 1 vCPU) e
Lambda empacotado como imagem (1792 MB, 30s de timeout). Todos os servicos foram
expostos via HTTPS, com artefatos versionados e a mesma VPC, sub-redes e security
groups.

3. Resultados e Discussao

Nesta secdo sdo apresentados os resultados obtidos nas trés aplicacdes avaliadas, dis-
cutindo o comportamento dos diferentes ambientes e o impacto do cold start.

Figure 1. Graficos CPU/RAM internos do gerador de thumbnails

No gerador de thumbnails, o EC2 atinge quase 100% de CPU em um pico inicial,
mas geralmente os picos permanecem menores do que no ECS. Essa diferenca ocorre
porque o ECS executa contéineres sobre uma instancia EC2, adicionando sobrecarga adi-
cional em comparagdo ao ambiente direto da VM. Ja o Lambda e o ECS oscilam até cerca
de 60%, indicando picos mais moderados gracas a orquestragao do ECS e a elasticidade
do Lambda, padrao ja identificado em benchmarks anteriores [2].

No uso de memoria, o ECS mostra o comportamento mais estdvel, variando pouco
em torno de 80 MB. O EC2 permanece em torno de 120 MB, enquanto o Lambda oscila
entre 0 e 80 MB devido ao ciclo de vida intermitente das funcdes e a liberagao automatica
do ambiente apos cada execugdo. Essa diferenca evidencia o impacto do modelo Server-
less em workloads de processamento de imagem que operam em janelas curtas.

Figure 2. Graficos do processador de arquivos CSV

No processador de arquivos CSV, o Lambda apresenta os maiores tempos interno
e total, resultado direto da inicializa¢do do runtime e do cold start, que afetam especial-
mente workloads de curta duracdo. Em contraste, EC2 e ECS permanecem consistente-
mente abaixo de 20 ms, exibindo um comportamento estdvel e com baixa variabilidade
temporal. Esse padrao € coerente com estudos que destacam a vantagem de ambientes
persistentes para execucdes rapidas e repetitivas [5]. Ao longo do teste, o EC2 apre-
senta estabilidade ligeiramente superior ao ECS, reflexo da auséncia de sobrecarga de
orquestracdo. No entanto, o ECS, mesmo com essa camada adicional, mantém desem-
penho muito préximo.



Figure 3. Graficos da API REST

Na API REST, o Lambda registra a maior laténcia total por requisi¢do, resultado
da reativacdao do ambiente, inicializacdo de dependéncias e restabelecimento de conexdes
com o banco de dados a cada cold start. EC2 e ECS exibem tempos menores € mais
estaveis, beneficiando-se de conexdes persistentes e inicializacdo tnica do servidor. O
comportamento observado estd alinhado a literatura sobre plataformas Serverless para
aplicagdes interativas [3].

Quanto ao uso de CPU da infraestrutura, o ECS tende a consumir mais proces-
samento por conta da camada de orquestragdo, enquanto o EC2 mantém um perfil mais
estavel e previsivel. Essa estabilidade resulta em laténcias mais consistentes no EC2, com
o ECS exibindo apenas variacoes discretas.

4. Conclusao e Trabalhos Futuros

Os resultados mostram que cada ambiente apresenta um comportamento distinto sob a
mesma carga. O EC2 mantém a maior estabilidade e as menores variagdes, oferecendo
laténcias consistentes e uso previsivel de recursos. O ECS acompanha esse desempenho
de perto, sofrendo apenas pequenas oscilagdes devido a camada de orquestracdo, mas
ainda entregando resultados solidos nas trés aplicacdes. O Lambda, por sua vez, apre-
senta maior laténcia e variabilidade, sobretudo em cendrios afetados por cold start ou
inicializacOes repetidas.

Mesmo assim, o Lambda continua adequado para workloads esparsos e acionados
por eventos, enquanto EC2 e ECS se mostram mais eficientes para execucoes continuas
e sensiveis ao tempo de resposta. Como trabalhos futuros, pretende-se incorporar mais
métricas de observabilidade e aprofundar a andlise do comportamento de acesso a banco
de dados em ambientes Lambda, ampliando a compreensdo das limitagdes e otimizacoes
possiveis nesse modelo.

References
[1] Amazon Web Services. AWS Documentation. https://docs.aws.amazon.com.

[2] Ducharme, C. AWS Services Performance Benchmark. Medium / Linux Academy, 2018.

[3] Agarwal, S. et al. Benchmarking Serverless Efficiency for E-Learning Platforms. Inter-
national Journal of Intelligent Systems, 2024.

[4] Amazon Web Services. Amazon ECS Best Practices. https://docs.aws.amazon.
com/AmazonECS/latest/developerguide/ecs—-best-practices.
html.

[5] Lynn, T. et al. Performance Evaluation of Serverless Computing Platforms. IEEE Cloud,
2017.



