
Aceleração de Simulações de Vida Computacional Emergente
com CUDA: Experimentos com o Simulador CuBFF

Luiz C.S. Almeida1, Wellington S. Martins1

1 Instituto de Informática – Universidade Federal de Goiás (UFG)
Caixa Postal 74.690-900 – Goiânia – GO – Brazil

luizalmeida@inf.ufg.br, wsmartins@ufg.br

Abstract. Recent research has elevated the study of artificial life to a new le-
vel by demonstrating that self-replicating programs can emerge spontaneously,
without any prior design or selection. In other words, self-replication can arise
naturally from simple interactions between code fragments in purely computati-
onal environments — a discovery that redefines the concept of “digital life”.
However, empirically proving these phenomena requires high computational
power, as the simulations involve billions of independent and stochastic exe-
cutions, in which programs interact, modify each other, and give rise to new
patterns. To efficiently explore this vast state space and apply complex metrics
of entropy and compression, the use of parallel processing becomes indispen-
sable. In this work, we present our experiments with the CUDA version of the
CuBFF simulator and discuss strategies to further optimize performance, re-
ducing communication costs and improving GPU utilization in the study of the
emergence of computational life.

Resumo. Pesquisas recentes elevaram o estudo da vida artificial a um novo
patamar ao demonstrarem que programas autorreplicantes podem emergir es-
pontaneamente, sem qualquer projeto ou seleção prévia. Em outras palavras, a
autorreplicação pode surgir naturalmente de interações simples entre fragmen-
tos de código em ambientes puramente computacionais — uma descoberta que
redefine o conceito de “vida digital”. Entretanto, comprovar empiricamente
esses fenômenos exige alto poder computacional, pois as simulações envolvem
bilhões de execuções independentes e estocásticas, em que programas intera-
gem, se modificam e dão origem a novos padrões. Para explorar de forma
eficiente esse vasto espaço de estados e aplicar métricas complexas de entropia
e compressão, torna-se indispensável o uso de processamento paralelo. Neste
trabalho, apresentamos nossos experimentos com a versão CUDA do simulador
CuBFF e discutimos estratégias para otimizar ainda mais o desempenho, re-
duzindo custos de comunicação e melhorando o aproveitamento das GPUs no
estudo da emergência da vida computacional.

1. Introdução
Dialogando com clássicos como o Jogo da Vida [Gardner 1970] e os estudos

de Langton sobre vida artificial [Langton 1986], o artigo de Agüera y Arcas et al.
[Agüera y Arcas et al. 2024] investiga a emergência espontânea de autorreplicadores a
partir de programas aleatórios, um estudo de vasto escopo que explora diferentes subs-
tratos computacionais e simulações espaciais para entender a origem da vida. Dada a



complexidade e a necessidade de processar trilhões de interações, o trabalho depende
de uma arquitetura de paralelização massiva, sendo este o foco da presente análise. Este
artigo analisa em detalhe a implementação em CUDA (Compute Unified Device Architec-
ture) do motor de simulação [Paradigms of Intelligence 2024], destacando as estratégias
de paralelismo que possibilitam a execução massivamente acelerada dos experimentos em
GPU, permitindo a interação simultânea de centenas de milhares de programas e tornando
viável a observação de fenômenos emergentes em larga escala. Apresentamos também re-
sultados de experimentos conduzidos localmente com essa implementação e validamos o
surgimento de vida computacional mesmo com poucas iterações.

2. Simulador cubff
A simulação modela interações como reações quı́micas (A+B → A′ +B′), per-

mitindo que autorreplicadores (S) surjam de reações autocatalı́ticas (S + F → 2 · S).
Para detectar a emergência de ordem a partir do caos, o artigo original introduz a métrica
“entropia de alta ordem”, definida como a diferença entre a entropia de Shannon (aleatori-
edade) e a complexidade de Kolmogorov (estrutura, aproximada pela compressão Brotli).
No entanto, observar a emergência de autorreplicadores requer a simulação de uma vasta
“sopa primordial” com centenas de milhares de programas interagindo, uma tarefa com-
putacionalmente cara para CPUs tradicionais, tornando a implementação massivamente
paralela uma dependência crı́tica.

A eficiência da simulação deriva da divisão do trabalho em múltiplos kernels
CUDA especializados. O processo inicia-se com o kernel InitPrograms, onde cada
thread da GPU é encarregada de inicializar um único programa de 64 bytes com dados
aleatórios, gerando em paralelo massivo a população inicial de 217 (131.072) programas.
A reprodutibilidade é garantida pelo gerador SplitMix64, usando semente e ı́ndice da
thread para criar uma população única.

O núcleo da simulação reside no kernel MutateAndRunPrograms, executado
a cada época (geração) e implementando a dinâmica de interação. O processo inicia-se
com a seleção e concatenação, onde cada thread escolhe dois programas com base em
ı́ndices pré-embaralhados, e os concatena em uma fita de memória local de 128 bytes.
Em seguida, a mutação é aplicada: cada byte da fita concatenada possui uma baixa pro-
babilidade (padrão: 0,024%) de ser substituı́do por um valor aleatório.

Após a mutação, a execução é invocada: a máquina virtual BFF (função ‘Lan-
guage::Evaluate‘) opera sobre a fita de 128 bytes por um número máximo de instruções
(ex: 8.192). Finalmente, na separação e escrita, a fita modificada é dividida em dois pro-
gramas “filhos” (A’ e B’) de 64 bytes, que são escritos de volta nas posições originais dos
pais na memória global. Para otimizar este ciclo, que é o gargalo da simulação, primitivas
de redução no nı́vel do warp agregam contagens de instruções, e a configuração da grid
(blocos de 32 threads) é alinhada à arquitetura NVIDIA para máxima eficiência.

Periodicamente, um terceiro kernel, CheckSelfRep, é lançado para identificar
a existência de autorreplicadores, uma tarefa computacionalmente intensiva. Cada thread
testa um programa candidato concatenando-o com 13 sequências de “ruı́do” (programas
aleatórios) diferentes. O programa é executado, e seu resultado é usado como entrada para
a próxima “geração” (concatenado com mais ruı́do), em um processo repetido por quatro
gerações sucessivas. Um programa é classificado como autorreplicador se mantiver sua



integridade estrutural (consistência de bytes) em pelo menos 25% dessas iterações.

3. Experimentos
Realizamos a simulação em uma GPU Nvidia RTX 4060 Ti (arquitetura sm 89).

A execução foi configurada com 100.000 épocas, intervalo de impressão de 5.000 e se-
mente 42. Utilizamos a linguagem bff noheads (variação de Brainfuck [Müller 1993])
uma linguagem minimalista de 10 instruções (<, >, {, }, -, +, ., ,, [, ]) onde
código e dados coexistem no mesmo espaço de memória. Esta caracterı́stica permite
a auto-modificação e confere robustez a mutações aleatórias, pois apenas 10 dos 256
valores de bytes são instruções válidas. A implementação CUDA, processando ≈ 109

instruções/segundo, foi crucial para observar as transições de fase em menos de 16.000
épocas, com autorreplicadores emergindo consistentemente.

Os dados confirmam a transição de fase: a entropia de alta ordem e o número de
autorreplicadores, iniciando em -0,000249 e 0 (época 1), saltam para 5,05 e 32.681 na
época 10.001, e estabilizam em ≈ 6, 34 e ≈ 101.913 ao final das 100.001 épocas. Parale-
lamente, iniciamos uma análise da implementação CUDA. Esta análise, a ser refinada em
trabalhos futuros, identificou alguns possı́veis gargalos, focando especialmente na função
de avaliação de replicadores CheckSelfRep, que demonstra uma baixa ocupação da
GPU (menos de 10%) devido ao “spill” de memória local (1664 bytes/thread).

4. Conclusão
O trabalho de Agüera y Arcas et al. demonstra de forma convincente que a vida

computacional pode emergir espontaneamente em substratos simples através de auto-
modificação. Nosso experimento, com 100.000 épocas, confirmou a transição de fase
prevista, mostrando um aumento rápido e correlacionado da entropia de alta ordem e do
número de autorreplicadores, que, após as primeiras iterações, estabilizaram em valores
caracterı́sticos de um estado organizado e autorreplicante.

Trabalhos futuros focarão em ampliar experimentos para validação e otimizar o
kernel CheckSelfRep, onde um redesign reduzindo movimentações de memória pro-
mete speedup considerável.

Referências
Agüera y Arcas, B., Alakuijala, J., Evans, J., Laurie, B., Mordvintsev, A., Niklasson, E.,

Randazzo, E., and Versari, L. (2024). Computational Life: How Well-formed, Self-
replicating Programs Emerge from Simple Interaction. arXiv e-prints.

Gardner, M. (1970). Mathematical games. Scientific American, 223(4):120–123.

Langton, C. G. (1986). Studying artificial life with cellular automata. Physica D: Nonli-
near Phenomena, 22(1):120–149. Proceedings of the Fifth Annual International Con-
ference.

Müller, U. (1993). Brainfuck compiler. https://aminet.net/package/dev/
lang/brainfuck-2.

Paradigms of Intelligence (2024). Cubff: Cuda-based implementation
of a self-modifying soup of programs. https://github.com/
paradigms-of-intelligence/cubff.


