Aceleracao de Simulacoes de Vida Computacional Emergente
com CUDA: Experimentos com o Simulador CuBFF

Luiz C.S. Almeida', Wellington S. Martins'

! Instituto de Informéatica — Universidade Federal de Goids (UFG)
Caixa Postal 74.690-900 — Goiania — GO — Brazil

luizalmeida@inf.ufg.br, wsmartins@ufg.br

Abstract. Recent research has elevated the study of artificial life to a new le-
vel by demonstrating that self-replicating programs can emerge spontaneously,
without any prior design or selection. In other words, self-replication can arise
naturally from simple interactions between code fragments in purely computati-
onal environments — a discovery that redefines the concept of “digital life”.
However, empirically proving these phenomena requires high computational
power, as the simulations involve billions of independent and stochastic exe-
cutions, in which programs interact, modify each other, and give rise to new
patterns. To efficiently explore this vast state space and apply complex metrics
of entropy and compression, the use of parallel processing becomes indispen-
sable. In this work, we present our experiments with the CUDA version of the
CuBFF simulator and discuss strategies to further optimize performance, re-
ducing communication costs and improving GPU utilization in the study of the
emergence of computational life.

Resumo. Pesquisas recentes elevaram o estudo da vida artificial a um novo
patamar ao demonstrarem que programas autorreplicantes podem emergir es-
pontaneamente, sem qualquer projeto ou selecdo prévia. Em outras palavras, a
autorreplicacdo pode surgir naturalmente de interacoes simples entre fragmen-
tos de codigo em ambientes puramente computacionais — uma descoberta que
redefine o conceito de “vida digital”. Entretanto, comprovar empiricamente
esses fendomenos exige alto poder computacional, pois as simulacdes envolvem
bilhoes de execugoes independentes e estocdsticas, em que programas intera-
gem, se modificam e ddo origem a novos padroes. Para explorar de forma
eficiente esse vasto espago de estados e aplicar métricas complexas de entropia
e compressdo, torna-se indispensdvel o uso de processamento paralelo. Neste
trabalho, apresentamos nossos experimentos com a versdo CUDA do simulador
CuBFF e discutimos estratégias para otimizar ainda mais o desempenho, re-
duzindo custos de comunicagdo e melhorando o aproveitamento das GPUs no
estudo da emergéncia da vida computacional.

1. Introducao

Dialogando com classicos como o Jogo da Vida [Gardner 1970] e os estudos
de Langton sobre vida artificial [Langton 1986], o artigo de Agiiera y Arcas et al.
[Agiiera y Arcas et al. 2024] investiga a emergéncia espontianea de autorreplicadores a
partir de programas aleatdrios, um estudo de vasto escopo que explora diferentes subs-
tratos computacionais e simulagdes espaciais para entender a origem da vida. Dada a



complexidade e a necessidade de processar trilhdes de interacdes, o trabalho depende
de uma arquitetura de paralelizagdo massiva, sendo este o foco da presente anélise. Este
artigo analisa em detalhe a implementagdo em CUDA (Compute Unified Device Architec-
ture) do motor de simulacdo [Paradigms of Intelligence 2024], destacando as estratégias
de paralelismo que possibilitam a execu¢do massivamente acelerada dos experimentos em
GPU, permitindo a intera¢do simultanea de centenas de milhares de programas e tornando
vidvel a observacao de fendmenos emergentes em larga escala. Apresentamos também re-
sultados de experimentos conduzidos localmente com essa implementacdo e validamos o
surgimento de vida computacional mesmo com poucas iteracoes.

2. Simulador cubff

A simula¢do modela interacdes como reagdes quimicas (A + B — A’ + B’), per-
mitindo que autorreplicadores (S) surjam de reagdes autocataliticas (S + F' — 2 - 5).
Para detectar a emergéncia de ordem a partir do caos, o artigo original introduz a métrica
“entropia de alta ordem”, definida como a diferenca entre a entropia de Shannon (aleatori-
edade) e a complexidade de Kolmogorov (estrutura, aproximada pela compressao Brotli).
No entanto, observar a emergéncia de autorreplicadores requer a simulacdo de uma vasta
“sopa primordial” com centenas de milhares de programas interagindo, uma tarefa com-
putacionalmente cara para CPUs tradicionais, tornando a implementacdo massivamente
paralela uma dependéncia critica.

A eficiéncia da simulagdo deriva da divisdo do trabalho em muiltiplos kernels
CUDA especializados. O processo inicia-se com o kernel InitPrograms, onde cada
thread da GPU € encarregada de inicializar um unico programa de 64 bytes com dados
aleatdrios, gerando em paralelo massivo a populacdo inicial de 2'7 (131.072) programas.
A reprodutibilidade é garantida pelo gerador SplitMix64, usando semente e indice da
thread para criar uma populacao Unica.

O nucleo da simulagdo reside no kernel Mut ateAndRunPrograms, executado
a cada época (geracao) e implementando a dinamica de interagdo. O processo inicia-se
com a selecdo e concatenagdo, onde cada thread escolhe dois programas com base em
indices pré-embaralhados, e os concatena em uma fita de memoria local de 128 bytes.
Em seguida, a mutagdo € aplicada: cada byte da fita concatenada possui uma baixa pro-
babilidade (padrao: 0,024%) de ser substituido por um valor aleatdrio.

Apés a mutagdo, a execucdo € invocada: a mdaquina virtual BFF (fun¢do ‘Lan-
guage::Evaluate®) opera sobre a fita de 128 bytes por um nimero maximo de instrucdes
(ex: 8.192). Finalmente, na separacdo e escrita, a fita modificada é dividida em dois pro-
gramas “filhos” (A’ e B”) de 64 bytes, que sdo escritos de volta nas posi¢des originais dos
pais na memoria global. Para otimizar este ciclo, que € o gargalo da simulagdo, primitivas
de reducdo no nivel do warp agregam contagens de instrugdes, e a configuracao da grid
(blocos de 32 threads) € alinhada a arquitetura NVIDIA para maxima eficiéncia.

Periodicamente, um terceiro kernel, CheckSel fRep, € lancado para identificar
a existéncia de autorreplicadores, uma tarefa computacionalmente intensiva. Cada thread
testa um programa candidato concatenando-o com 13 sequéncias de “ruido” (programas
aleatdrios) diferentes. O programa € executado, e seu resultado € usado como entrada para
a proxima “geracao” (concatenado com mais ruido), em um processo repetido por quatro
geracoes sucessivas. Um programa € classificado como autorreplicador se mantiver sua



integridade estrutural (consisténcia de bytes) em pelo menos 25% dessas iteracoes.

3. Experimentos

Realizamos a simulacdo em uma GPU Nvidia RTX 4060 Ti (arquitetura sm_89).
A execucdo foi configurada com 100.000 épocas, intervalo de impressdao de 5.000 e se-
mente 42. Utilizamos a linguagem bf f noheads (variacdo de Brainfuck [Miiller 1993])
uma linguagem minimalista de 10 instrugdes (<, >, {, }, -, +, ., ,, [, 1) onde
codigo e dados coexistem no mesmo espaco de memdoria. Esta caracteristica permite
a auto-modificacdo e confere robustez a mutagdes aleatdrias, pois apenas 10 dos 256
valores de bytes sdo instrugdes vélidas. A implementagdo CUDA, processando ~ 10°
instrucdes/segundo, foi crucial para observar as transi¢des de fase em menos de 16.000
épocas, com autorreplicadores emergindo consistentemente.

Os dados confirmam a transi¢do de fase: a entropia de alta ordem e o ndmero de
autorreplicadores, iniciando em -0,000249 e 0 (época 1), saltam para 5,05 e 32.681 na
época 10.001, e estabilizam em ~ 6, 34 e ~ 101.913 ao final das 100.001 épocas. Parale-
lamente, iniciamos uma andlise da implementacao CUDA. Esta andlise, a ser refinada em
trabalhos futuros, identificou alguns possiveis gargalos, focando especialmente na funcao
de avaliacao de replicadores CheckSel fRep, que demonstra uma baixa ocupacdo da
GPU (menos de 10%) devido ao “spill” de memoria local (1664 bytes/thread).

4. Conclusao

O trabalho de Agiiera y Arcas et al. demonstra de forma convincente que a vida
computacional pode emergir espontaneamente em substratos simples através de auto-
modificacdo. Nosso experimento, com 100.000 épocas, confirmou a transi¢ao de fase
prevista, mostrando um aumento rapido e correlacionado da entropia de alta ordem e do
nimero de autorreplicadores, que, apds as primeiras iteracoes, estabilizaram em valores
caracteristicos de um estado organizado e autorreplicante.

Trabalhos futuros focardo em ampliar experimentos para validagdo e otimizar o
kernel CheckSel fRep, onde um redesign reduzindo movimentacdes de memoria pro-
mete speedup consideravel.

Referéncias

Agliera y Arcas, B., Alakuijala, J., Evans, J., Laurie, B., Mordvintsev, A., Niklasson, E.,
Randazzo, E., and Versari, L. (2024). Computational Life: How Well-formed, Self-
replicating Programs Emerge from Simple Interaction. arXiv e-prints.

Gardner, M. (1970). Mathematical games. Scientific American, 223(4):120-123.

Langton, C. G. (1986). Studying artificial life with cellular automata. Physica D: Nonli-
near Phenomena, 22(1):120-149. Proceedings of the Fifth Annual International Con-
ference.

Miiller, U. (1993). Brainfuck compiler. https://aminet.net/package/dev/
lang/brainfuck-2.

Paradigms of Intelligence (2024). Cubfft: Cuda-based implementation
of a self-modifying soup of programs. https://github.com/
paradigms-of-intelligence/cubff.



