
Aplicação multithread para a aceleração do método
Particle-in-Cell (PIC)

Maurı́cio Ferreira de Araújo1, Lui Habl1, Daniel Sundfeld1

1Faculdade de Ciências e Tecnologias em Engenharias – Universidade de Brası́lia (UnB)
Campus Gama, Setor Leste - 72.444-240 - Gama - DF - Brasil

ferreira.mauricio@aluno.unb.br, {lui.habl,daniel.sundfeld}@unb.br

Resumo. A aceleração de partı́culas baseada em plasma envolve um meio não
linear e esse tipo de modelagem requer ferramentas de simulação adequa-
das. Particle-in-Cell (PIC) é uma importante técnica utilizada para se estu-
dar a fı́sica dos plasmas. No entanto, essa simulação pode precisar de muito
tempo e é desejável acelerar o resultado. Neste trabalho, propomos criar um
simulador PIC para arquiteturas multicore, aproveitando o paralelismo entre
vários núcleos e usando instruções SIMD. Nossos experimentos mostram que é
possı́vel otimizar a simulação em até 1,28x usando um computador portátil de
6 núcleos.

1. Introdução
A simulação numérica de plasmas pode ser realizada por diferentes abordagens, como os
modelos fluidos (baseados nas equações de magnetohidrodinâmica), os métodos hı́bridos
e os modelos cinéticos de partı́culas. Entre estes, o método Particle-in-Cell (PIC) destaca-
se por capturar com maior fidelidade os fenômenos microscópicos e as interações entre
partı́culas e campos eletromagnéticos.

Apesar de sua precisão, o método PIC apresenta alto custo computacional, espe-
cialmente em simulações de larga escala, o que motiva a investigação de estratégias de
paralelização e otimização de desempenho. Neste trabalho, é proposta a implementação
de uma simulação PIC em C++, com posterior aceleração utilizando OpenMP, de modo a
avaliar o impacto do paralelismo no tempo de execução e na escalabilidade do método.
2. Particle-in-Cell (PIC) Paralelo
O método PIC, estabelecido desde os trabalhos pioneiros de [Dawson 1962] e evolu-
indo ao longo das décadas [Taccogna et al. 2023, Birdsall and Langdon 1991], descreve
a interação entre partı́culas e campos. Em sua forma discreta, essa interação é descrita
pelas equações a seguir:

A abordagem PIC, em sua forma discreta, é matematicamente descrito pela
interação entre a densidade das partı́culas, o potencial e o campo elétrico resultante:

A interpolação da densidade (Equação 1) é dada por:

nj+ =
xj+1 − ri

∆x
e nj+1+ =

ri − xj

∆x
(1)

O potencial elétrico (Equação 2) é obtido a partir da densidade usando uma
aproximação de diferenças finitas para a Equação de Poisson:

d2ϕ(xj)

dx2
≈ ϕj−1 − 2ϕj + ϕj+1

(∆x)2
(2)



A Equação 3 apresenta o campo elétrico é calculado como o gradiente negativo
do potencial, também por diferenças finitas:

dϕ(xi)

dx
≈ ϕi+1 − ϕi−1

2∆x
(3)

Por fim, a Equação 4 representa a interpolação do campo elétrico para a posição
de uma única partı́cula:

Ei =
xj+1 − ri

∆x
Ej +

ri − xj

∆x
Ej+1 (4)

A paralelização via Single Instruction, Multiple Data (SIMD) foi aplicada nas
equações centrais do modelo 1D [Mocz 2020], especificamente na equação (1), corres-
pondente à interpolação da densidade numérica de partı́culas na malha, e na equação
(4), referente à interpolação do campo elétrico. Para as equações 2 (cálculo do potencial
elétrico) e 3 (determinação do campo elétrico), foi utilizada uma biblioteca sequencial
para a resolução de sistemas lineares com matrizes esparsas.

Para avaliar o ganho de desempenho da paralelização, as funções principais do
modelo 1D foram otimizadas com a API OpenMP, utilizando diretivas de paralelismo
de dados SIMD [Tanenbaum and Van Steen 2017]. Essa técnica é ideal pois permite que
uma única instrução opere sobre múltiplos elementos dos vetores (ı́ndice i) de uma só
vez, justificando-se pela natureza das equações que quando discretizadas iteram sobre
eles. Assim, a divisão das iterações do loop entre múltiplas threads torna-se altamente
eficiente.

3. Resultados Experimentais

Os testes foram realizados em um computador portátil equipado com um processador
AMD Ryzen 5 5500U, com 6 núcleos (12 threads), 8 GB de memória RAM, sistema
operacional Fedora 42 com o compilador GCC versão 15.2.1. Para executar a simulação,
foi selecionado um conjunto 1.000.000 de partı́culas em uma malha de 500 posições. A
Tabela 1 ilustra o tempo utilizado e resultados obtidos com o uso da paralelização de
dados, mostrando que o algoritmo possui um ganho de desempenho em comparação à sua
versão serial.

É possı́vel perceber que o tempo de execução diminui consideravelmente em
relação ao aumento de threads, ou seja, quanto mais threads for possı́vel utilizar, menor o
tempo gasto para execução. Dessa forma, alcançou-se uma melhoria de aproximadamente
28% no desempenho.

A Figura 1 ilustra um frame da execução da simulação desenvolvida. O espaço
de fase é plotado em um gráfico no qual o eixo x é a posição da partı́cula, e o eixo y,
por sua vez, a velocidade. As partı́culas em azul iniciaram a simulação com velocidade
positiva, e as vermelhas, com velocidade negativa. A distribuição observada confirma o
comportamento esperado do modelo PIC, indicando a correta evolução das partı́culas sob
a interação malha-partı́cula durante a simulação paralela.



Tabela 1. Resultados de Desempenho da Simulação de Partı́culas, Variando o
Número de Threads (N ).

Nº de Threads (N ) Tempo (s) Speedup
1 6,34 1,00
2 5,86 1,05
4 5,78 1,09
8 5,30 1,19

12 4,93 1,28

Figura 1. Execução da simulação PIC paralela

4. Conclusão e Trabalhos Futuros
Neste artigo, propusemos uma versão paralela para a simulação de plasma utilizando a
abordagem Particle-in-Cell (PIC). Os resultados mostram que o tempo de execução pode
ser reduzido de 6,34s para 4,93s utilizando 12 threads. Para trabalhos futuros, esperamos
ampliar o número de simulações, buscando diminuir a duração da execução e, possivel-
mente, melhorar o speedup. Posteriormente, também planeja-se a criação de uma versão
massivamente paralela utilizando a linguagem de programação CUDA para unidades de
processamento gráfico (GPUs).

Referências
Birdsall, C. K. and Langdon, A. B. (1991). Plasma Physics via Computer Simulation.

McGraw-Hill, New York.

Dawson, J. M. (1962). One-dimensional plasma model. Physical Review, 128(2):622–
633.

Mocz, P. (2020). Create your own plasma (pic) simu-
lation with python. https://medium.com/swlh/
create-your-own-plasma-pic-simulation-with-python-39145c66578b.
Acesso em: 27 out. 2025.

Taccogna, F., Cichocki, F., Eremin, D., Fubiani, G., and Garrigues, L. (2023). Plasma
propulsion modeling with particle-based algorithms. Journal of Applied Physics,
134(15):150901.

Tanenbaum, A. S. and Van Steen, M. (2017). Sistemas Distribuı́dos: Princı́pios e Para-
digmas. Pearson, São Paulo, 3 edition.


