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1Federal University of Pará (UFPA) - Belém, PA, Brazil

{livia.pires, amanda.lopes,manoel.clipes}@itec.ufpa.br,

lucas.bastos@itec.ufpa.br

Resumo. Este trabalho apresenta o framework de defesa GAIA, desenvolvido
para detectar e mitigar ataques de envenenamento por parâmetros aleatórios
em Aprendizado Federado (FL). Tais ataques, os quais envolvem a submissão
de tensores com valores aleatórios por agentes maliciosos, comprometem a
integridade e a acurácia dos modelos globais. A metodologia utiliza as nor-
mas vetoriais L1 e L2 para extrair caracterı́sticas das atualizações de modelo.
As atualizações de clientes benignos seguem padrões estatisticos consistentes,
enquanto as de atacantes exibem distribuições divergentes. A análise dessas
assinaturas permite ao servidor de agregação identificar atualizações malici-
osas e garantir a estabilidade e precisão do modelo federado. Por meio de
demonstração experimental, a eficácia da estrutura proposta foi validada ao
atingir 40% de acurácia, o que representa um aumento de mais de 30% em
relação ao modelo sem defesa.

Abstract. This work presents the GAIA defense framework to detect and miti-
gate poisoning attacks using random parameters in Federated Learning (FL).
These attacks, involving the submission of tensors with random values by ma-
licious agents, compromise the integrity and accuracy of global models. The
methodology uses L1 and L2 vector norms to extract features from the model up-
dates. Updates from benign clients follow consistent statistical patterns, while
those from attackers exhibit divergent distributions. Analyzing these signatu-
res allows the aggregation server to identify malicious updates and ensure the
stability and accuracy of the federated model. Through experimental demons-
tration, the effectiveness of the proposed framework was validated by achieving
40% accuracy, representing an improvement of over 30% compared to the model
without defense.

1. Introdução
Ao longo dos anos, com o fortalecimento da LGPD (Lei Geral de Proteção de Dados) e o
contı́nuo avanço no desenvolvimento de redes neurais, tem-se observado um aumento de
demanda sem precedentes. No entanto, a necessidade de treinar modelos sem o compar-
tilhamento de dados tornou-se um grande desafio para empresas que desenvolvem redes
neurais, uma vez que seus clientes relutam em fornecer dados sensı́veis [Korkmaz et al.
2022]. O Aprendizado Federado (do inglês, Federated Learning – FL) surge como uma



solução, sendo uma abordagem de treinamento de modelos de aprendizado de máquina
que opera em um paradigma descentralizado. Diferentemente das metodologias centra-
lizadas tradicionais, as quais exigem a agregação de dados em um servidor único para
processamento, o FL permite que o treinamento ocorra diretamente nos dispositivos lo-
cais (ou nós), onde os dados são originalmente gerados e armazenados [AbdulRahman
et al. 2020].

Ao modificar o método tradicional de treinamento de máquinas, surgem novos de-
safios para garantir a generalização da tarefa treinada pela rede [de Souza et al. 2024]. A
ameaça de dados falsos ou manipulados durante o treinamento local é uma preocupação
crı́tica que afeta diretamente a confiabilidade e a integridade do modelo final em sistemas
de aprendizado de máquina [Blanchard et al. 2017]. Essa vulnerabilidade é particular-
mente acentuada em contextos de FL, onde a descentralização do treinamento pode in-
troduzir desafios adicionais. A falta de monitoramento adequado na seleção dos clientes
participantes agrava a situação, permitindo que atores mal-intencionados injetem dados
corrompidos ou tendenciosos sem detecção.

Uma abordagem em menor escala pode ser uma solução eficaz para reduzir
a quantidade de dados a serem comparados e para a exclusão de clientes maliciosos
[de Souza et al. 2023]. Nesse cenário, algumas abordagens utilizam a clusterização como
método principal para classificar clientes como benignos ou maliciosos. No entanto, es-
ses métodos geralmente enfrentam limitações de escalabilidade. Em contraste, o uso de
normas vetoriais, como as normas L1 e L2, que descrevem caracterı́sticas especı́ficas dos
clientes, oferece uma alternativa eficiente, contribuindo para a atualização do modelo de
forma mais escalável e robusta.

Este trabalho apresenta o algoritmo de defesa GAIA, projetado para detectar e
mitigar ataques de envenenamento com parâmetros aleatórios em FL. Nesses ataques,
agentes maliciosos enviam tensores aleatórios para comprometer a acurácia e a integri-
dade do modelo global. GAIA utiliza as normas vetoriais L1 e L2 para gerar uma ”as-
sinatura”que resume a magnitude das atualizações. Atualizações benignas seguem um
padrão estatı́stico estável, enquanto ataques exibem desvios detectáveis. Com base nes-
sas assinaturas, o servidor identifica e descarta contribuições maliciosas, preservando a
convergência e a qualidade do modelo.

O restante deste trabalho está organizado da seguinte forma: a Seção 2 apresenta
uma visão geral dos trabalhos relacionados à detecção de clientes maliciosos e ao FL.
A Seção 3 descreve nossa metodologia para a detecção de clientes maliciosos. A Seção
4 explora os resultados alcançados neste trabalho. Finalmente, a Seção 5 apresenta as
conclusões deste artigo.

2. Trabalhos Relacionados
Morais et al. no campo da segurança em FL, a análise de normas de parâmetros tem se
mostrado uma estratégia promissora. Utilizando um conjunto tridimensional de carac-
terı́sticas, calculando a norma L3 para cada atualização de cliente. Subsequentemente,
aplica algoritmos de clusterização sobre esses vetores de caracterı́sticas com o objetivo
de segregar os agentes em grupos distintos de ”benignos”e ”maliciosos”. Em contraste,
nossa pesquisa adota uma perspectiva diferente e mais fundamental [Morais et al. 2024].

Assumção e Villas apresentam uma abordagem de FL que otimiza o treinamento



em cenários com dados não-IID (não independentes e identicamente distribuı́dos) por
meio da seleção estratégica de clientes. Além disso, o trabalho propõe um método de
avaliação de treinamento compatı́vel com criptografia homomórfica, garantindo um mo-
nitoramento seguro e privado. Essa funcionalidade é crucial para preservar o progresso
do treinamento em caso de um ataque de envenenamento, garantindo que o conhecimento
adquirido não seja perdido [Assumpção and Villas 2024].

Em vez de combinar múltiplas normas para clusterização, nosso trabalho foca em
uma avaliação empı́rica e comparativa da eficácia individual das normas L1 e L2 como
detectores diretos de envenenamento. O objetivo central é usar estas duas propostas de
regularização como termos únicos para classificar distorções no processo de treino,, desta
forma detectando clientes indesejáveis ou maliciosos da agregação.

3. GAIA
Esta seção apresenta o algoritmo GAIA, que identifica ataques realizados por clientes
maliciosos em ambientes de FL, nos quais esses clientes enviam atualizações com valores
que não contribuem para o aprendizado da rede. O algoritmo utiliza as normas vetoriais
como base para classificar de forma eficiente os clientes que não agregam conhecimento
útil à rede, permitindo uma análise ordenada. Esta seção descreve o modelo do sistema e
os detalhes operacionais do GAIA.

3.1. Visão geral do cenário
Consideramos um cenário com n dispositivos U = {u1, . . . , un}, onde, a cada rodada
de FL, é selecionado um subconjunto C ⊆ U para treinar o modelo global Mg com seus
dados locais Di. O mecanismo de seleção escolhe os clientes cujos dados têm maior im-
pacto no treinamento do modelo, ajustando seus respectivos modelos locais Mi com base
nesses dados. A agregação dos modelos locais em um modelo global é feita utilizando
a abordagem FedAvg, que calcula a média ponderada dos parâmetros θglobal conforme a
Eq. 1, com os pesos wi determinados pelo tamanho dos conjuntos de dados |Di| de cada
cliente.

θglobal =
1

n

n∑
i=1

wiθi (1)

Aqui, wi representa o peso atribuı́do a cada cliente com base no tamanho de seu
conjunto de dados Di, enquanto θi são os parâmetros locais treinados por cada cliente,
calculados conforme a Eq. 2. Dessa forma, o FedAvg ajusta o modelo global levando em
conta a contribuição proporcional de cada cliente, com base no tamanho de seus dados.

wi =
|Di|∑n
i=1 |Di|

(2)

3.2. Funcionamento da prevenção de ataques
Este trabalho foca em identificar diferenças entre clientes com base em seus modelos.
Para detectar clientes maliciosos, é essencial reconhecer mudanças abruptas ou padrões
fora do comum. Em termos matemáticos, isso se assemelha a um sistema comparativo,
onde interseções e distâncias entre conjuntos destacam comportamentos atı́picos.



Nesta proposta, a abordagem inspirada no trabalho de [Morais et al. 2024], uti-
lizando as normas L1 e L2, mostrou-se muito útil para comparar a distorção dos dados
de um modelo quando comparados com um cluster maior, definindo, assim, critérios para
a exclusão de dados discrepantes. A norma L1 mede a “distância” total ao longo dos
eixos coordenados, sendo bastante eficaz para problemas de otimização e aprendizado de
máquinas. A regularização L1 é dada pela soma dos valores absolutos de seus componen-
tes, conforme mostrado na equação 3.

∥x∥1 =
n∑

i=1

|xi| (3)

Agora, a função L2 é dada pela raiz quadrada da soma dos quadrados dos seus
componentes, como mostrado na equação 4. A norma L2 calcula a distância euclidiana
de um vetor ao ponto de origem no espaço, ou seja, ela representa a raiz quadrada da soma
dos quadrados de cada componente do vetor.

∥x∥2 =

√√√√ n∑
i=1

x2
i (4)

O cálculo das raı́zes da matriz e das distâncias entre seus parâmetros ajuda a identificar
distorções e vieses na rede. Esses indicadores facilitam a escolha dos clientes e revelam
comportamentos anômalos, como no caso dos ataques com valores randômicos simula-
dos.

O GAIA utiliza o algoritmo K-means para agrupar atualizações de modelo em
clusters com comportamentos semelhantes. A expectativa é que clientes maliciosos,
por apresentarem atualizações divergentes, formem um cluster separado. O K-means
agrupa os dados X = {x1, x2, . . . , xn} em k clusters, minimizando a soma das distâncias
quadráticas aos centros, conforme a equação 5. Usando os vetores calculados com L1 e
L2, são formados os clusters que indicam o aprendizado de cada modelo. O cluster com
menos clientes deve conter os destoantes, que serão removidos da agregação.

J =
k∑

k=1

∑
xi∈Ck

∥xi − ck∥2 (5)

4. Avaliação

Nesta seção, apresentamos os resultados das simulações realizadas com 100 rodadas, 50
clientes e uma taxa fixa de 10% de clientes maliciosos, ajustável conforme necessário
usando o dataset de imagens CIFAR-10 contendo 10 classes diferentes de 32x32 pixels,
em cores RGB. Foram utilizados métodos de classificação baseados nas normas L1 e
L2, além de um cenário sem defesa para validar a eficácia dos ataques e servir como re-
ferência ideal de FL sem comprometimento. As quatro simulações representam os prin-
cipais métodos utilizados na validação da proposta, permitindo comparar a acurácia e a
perda em cenários de FL sob ataque.



A Figura 1 mostra os resultados de acurácia. No cenário ideal, sem ataques, a
agregação dos modelos foi consistente, alcançando valores acima de 60% de acurácia em
40 rodadas, enquanto o mesmo modelo, sofrendo os ataques, não consegue evoluir mais
de 10%. Os modelos de defesa L1 e L2 apresentaram cerca de 40% de acurácia, superando
o modelo sem defesa, que teve um aumento de mais de 30% em relação ao modelo com
ataques. Enquanto o modelo sem defesa não evoluiu, os modelos com defesa mostraram
evolução constante, evidenciando a eficácia da defesa.
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Figura 1. Medição de Acurácia

A Figura 2 mostra que no cenário sem defesa, os resultados indicam o desapren-
dizado que pode ocorrer quando o servidor de agregação recebe um ataque, o que gera
vários saltos, com valores de perda superiores a 10 em diversos casos. Em outros cenários,
como o de defesa, observamos uma estagnação devido à quantidade de clientes agrega-
dos. Ou seja, a quantidade de clientes não aprende tanto, mas não há um método de
desaprendizado, já que os clientes aprendem e mantêm valores de perda abaixo de 2.
Além disso, o cenário ideal, onde não há ataque, apresenta perda inferiores a 1, indicando
um aprendizado quase completo em relação ao dataset utilizado.
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5. Conclusão
Este trabalho propôs uma abordagem para mitigar ataques de envenenamento de modelos
em ambientes de FL , utilizando normas vetoriais L1 e L2 como critérios de defesa. O
algoritmo GAIA demonstrou elevada eficácia na identificação e mitigação de atualizações
maliciosas, assegurando a integridade e a precisão do modelo global. As simulações
evidenciaram que, mesmo sob ataques, os mecanismos de defesa baseados nas normas L1
e L2 superaram significativamente o desempenho do modelo sem proteção, alcançando
até 30% de melhoria na acurácia em comparação ao cenário atacado sem defesa. No
cenário ideal, sem ataques, os resultados também validaram a efetividade da abordagem,
embora tenham revelado gargalos que ainda precisam ser superados como a necessidade
de estratégias complementares, por exemplo, uma seleção mais criteriosa de clientes para
o treinamento.

Como trabalho futuro, buscamos aprimorar o algoritmo GAIA com a
implementação de métodos adaptativos de agregação local e explorar sua aplicação
em cenários FL mais dinâmicos, com fluxos de dados variáveis para cada cliente. A
integração desses métodos visa aumentar ainda mais a robustez e a eficiência do aprendi-
zado federado em ambientes sujeitos a ataques.
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