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Resumo. Este trabalho apresenta o framework de defesa GAIA, desenvolvido
para detectar e mitigar ataques de envenenamento por pardametros aleatorios
em Aprendizado Federado (FL). Tais ataques, os quais envolvem a submissdo
de tensores com valores aleatorios por agentes maliciosos, comprometem a
integridade e a acurdcia dos modelos globais. A metodologia utiliza as nor-
mas vetoriais L1 e L2 para extrair caracteristicas das atualizacées de modelo.
As atualizacées de clientes benignos seguem padroes estatisticos consistentes,
enquanto as de atacantes exibem distribuicées divergentes. A andlise dessas
assinaturas permite ao servidor de agregacdo identificar atualizacoes malici-
osas e garantir a estabilidade e precisdo do modelo federado. Por meio de
demonstracdo experimental, a eficdcia da estrutura proposta foi validada ao
atingir 40% de acurdcia, o que representa um aumento de mais de 30% em
relacdo ao modelo sem defesa.

Abstract. This work presents the GAIA defense framework to detect and miti-
gate poisoning attacks using random parameters in Federated Learning (FL).
These attacks, involving the submission of tensors with random values by ma-
licious agents, compromise the integrity and accuracy of global models. The
methodology uses L1 and L2 vector norms to extract features from the model up-
dates. Updates from benign clients follow consistent statistical patterns, while
those from attackers exhibit divergent distributions. Analyzing these signatu-
res allows the aggregation server to identify malicious updates and ensure the
stability and accuracy of the federated model. Through experimental demons-
tration, the effectiveness of the proposed framework was validated by achieving
40% accuracy, representing an improvement of over 30% compared to the model
without defense.

1. Introducao

Ao longo dos anos, com o fortalecimento da LGPD (Lei Geral de Protecao de Dados) e o
continuo avango no desenvolvimento de redes neurais, tem-se observado um aumento de
demanda sem precedentes. No entanto, a necessidade de treinar modelos sem o compar-
tilhamento de dados tornou-se um grande desafio para empresas que desenvolvem redes
neurais, uma vez que seus clientes relutam em fornecer dados sensiveis [Korkmaz et al.
2022]. O Aprendizado Federado (do inglés, Federated Learning — FL) surge como uma



solucdo, sendo uma abordagem de treinamento de modelos de aprendizado de maquina
que opera em um paradigma descentralizado. Diferentemente das metodologias centra-
lizadas tradicionais, as quais exigem a agregacdo de dados em um servidor unico para
processamento, o FLL permite que o treinamento ocorra diretamente nos dispositivos lo-
cais (ou nos), onde os dados sdo originalmente gerados e armazenados [AbdulRahman
et al. 2020].

Ao modificar o método tradicional de treinamento de maquinas, surgem novos de-
safios para garantir a generalizacdo da tarefa treinada pela rede [de Souza et al. 2024]. A
ameaca de dados falsos ou manipulados durante o treinamento local € uma preocupagao
critica que afeta diretamente a confiabilidade e a integridade do modelo final em sistemas
de aprendizado de maquina [Blanchard et al. 2017]. Essa vulnerabilidade € particular-
mente acentuada em contextos de FL, onde a descentraliza¢do do treinamento pode in-
troduzir desafios adicionais. A falta de monitoramento adequado na selecao dos clientes
participantes agrava a situacdo, permitindo que atores mal-intencionados injetem dados
corrompidos ou tendenciosos sem detec¢ao.

Uma abordagem em menor escala pode ser uma solucdo eficaz para reduzir
a quantidade de dados a serem comparados e para a exclusdo de clientes maliciosos
[de Souza et al. 2023]. Nesse cendrio, algumas abordagens utilizam a clusterizacdo como
método principal para classificar clientes como benignos ou maliciosos. No entanto, es-
ses métodos geralmente enfrentam limitagcdes de escalabilidade. Em contraste, o uso de
normas vetoriais, como as normas L1 e L2, que descrevem caracteristicas especificas dos
clientes, oferece uma alternativa eficiente, contribuindo para a atualiza¢do do modelo de
forma mais escaldvel e robusta.

Este trabalho apresenta o algoritmo de defesa GAIA, projetado para detectar e
mitigar ataques de envenenamento com parametros aleatorios em FL. Nesses ataques,
agentes maliciosos enviam tensores aleatérios para comprometer a acuricia e a integri-
dade do modelo global. GAIA utiliza as normas vetoriais L1 e L2 para gerar uma "as-
sinatura”’que resume a magnitude das atualizacdes. Atualizacdes benignas seguem um
padriao estatistico estdvel, enquanto ataques exibem desvios detectaveis. Com base nes-
sas assinaturas, o servidor identifica e descarta contribui¢des maliciosas, preservando a
convergéncia e a qualidade do modelo.

O restante deste trabalho esta organizado da seguinte forma: a Se¢do 2 apresenta
uma visao geral dos trabalhos relacionados a detec¢dao de clientes maliciosos e ao FL.
A Secdo 3 descreve nossa metodologia para a deteccdo de clientes maliciosos. A Secao
4 explora os resultados alcangados neste trabalho. Finalmente, a Se¢do 5 apresenta as
conclusdes deste artigo.

2. Trabalhos Relacionados

Morais et al. no campo da seguranca em FL, a andlise de normas de parametros tem se
mostrado uma estratégia promissora. Utilizando um conjunto tridimensional de carac-
teristicas, calculando a norma L3 para cada atualizacdo de cliente. Subsequentemente,
aplica algoritmos de clusterizagdo sobre esses vetores de caracteristicas com o objetivo
de segregar os agentes em grupos distintos de “benignos”’e “maliciosos”. Em contraste,
nossa pesquisa adota uma perspectiva diferente e mais fundamental [Morais et al. 2024].

Assumcdo e Villas apresentam uma abordagem de FL que otimiza o treinamento



em cendrios com dados nao-IID (ndo independentes e identicamente distribuidos) por
meio da selecdo estratégica de clientes. Além disso, o trabalho propde um método de
avaliagcdo de treinamento compativel com criptografia homomorfica, garantindo um mo-
nitoramento seguro e privado. Essa funcionalidade € crucial para preservar o progresso
do treinamento em caso de um ataque de envenenamento, garantindo que o conhecimento
adquirido ndo seja perdido [Assumpg¢ao and Villas 2024].

Em vez de combinar multiplas normas para clusterizacao, nosso trabalho foca em
uma avaliacdo empirica e comparativa da eficicia individual das normas L1 e L2 como
detectores diretos de envenenamento. O objetivo central € usar estas duas propostas de
regularizacdo como termos unicos para classificar distor¢des no processo de treino,, desta
forma detectando clientes indesejaveis ou maliciosos da agregacao.

3. GAIA

Esta secdo apresenta o algoritmo GAIA, que identifica ataques realizados por clientes
maliciosos em ambientes de FL, nos quais esses clientes enviam atualiza¢des com valores
que ndo contribuem para o aprendizado da rede. O algoritmo utiliza as normas vetoriais
como base para classificar de forma eficiente os clientes que ndo agregam conhecimento
util a rede, permitindo uma anélise ordenada. Esta se¢do descreve o modelo do sistema e
os detalhes operacionais do GAIA.

3.1. Visao geral do cenario

Consideramos um cendrio com n dispositivos & = {us,...,u,}, onde, a cada rodada
de FL, € selecionado um subconjunto C C I/ para treinar o modelo global A, com seus
dados locais D;. O mecanismo de selecao escolhe os clientes cujos dados tém maior im-
pacto no treinamento do modelo, ajustando seus respectivos modelos locais M; com base
nesses dados. A agregacdo dos modelos locais em um modelo global € feita utilizando
a abordagem FedAvg, que calcula a média ponderada dos pardmetros 6y, conforme a
Eq. 1, com os pesos w; determinados pelo tamanho dos conjuntos de dados |D;| de cada
cliente.

1 n
Hglobal = 5 ; wzez (1)

Aqui, w; representa o peso atribuido a cada cliente com base no tamanho de seu
conjunto de dados D;, enquanto 6; sdo os parametros locais treinados por cada cliente,
calculados conforme a Eq. 2. Dessa forma, o FedAvg ajusta o modelo global levando em
conta a contribui¢do proporcional de cada cliente, com base no tamanho de seus dados.
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3.2. Funcionamento da prevencao de ataques
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Este trabalho foca em identificar diferencas entre clientes com base em seus modelos.
Para detectar clientes maliciosos, é essencial reconhecer mudancas abruptas ou padrdes
fora do comum. Em termos matematicos, isso se assemelha a um sistema comparativo,
onde intersecoes e distancias entre conjuntos destacam comportamentos atipicos.



Nesta proposta, a abordagem inspirada no trabalho de [Morais et al. 2024], uti-
lizando as normas L1 e L2, mostrou-se muito 1util para comparar a distor¢ao dos dados
de um modelo quando comparados com um cluster maior, definindo, assim, critérios para
a exclusdo de dados discrepantes. A norma L1 mede a “distancia” total ao longo dos
eixos coordenados, sendo bastante eficaz para problemas de otimizagdo e aprendizado de
maquinas. A regularizacdo L1 é dada pela soma dos valores absolutos de seus componen-
tes, conforme mostrado na equacao 3.

n

Izl = |l 3)

=1

Agora, a funcdo L2 é dada pela raiz quadrada da soma dos quadrados dos seus
componentes, como mostrado na equacdo 4. A norma L2 calcula a distancia euclidiana
de um vetor ao ponto de origem no espago, ou seja, ela representa a raiz quadrada da soma
dos quadrados de cada componente do vetor.

“)

O calculo das raizes da matriz e das distancias entre seus parametros ajuda a identificar
distor¢oes e vieses na rede. Esses indicadores facilitam a escolha dos clientes e revelam
comportamentos andomalos, como no caso dos ataques com valores randdomicos simula-
dos.

O GAIA utiliza o algoritmo K-means para agrupar atualizacdes de modelo em
clusters com comportamentos semelhantes. A expectativa € que clientes maliciosos,
por apresentarem atualizacOes divergentes, formem um cluster separado. O K-means
agrupa os dados X = {z1, 2, ..., x,} em k clusters, minimizando a soma das distancias
quadraticas aos centros, conforme a equacdo 5. Usando os vetores calculados com L1 e
L2, sdo formados os clusters que indicam o aprendizado de cada modelo. O cluster com
menos clientes deve conter os destoantes, que serdao removidos da agregacao.
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4. Avaliacao

Nesta se¢do, apresentamos os resultados das simulacdes realizadas com 100 rodadas, 50
clientes e uma taxa fixa de 10% de clientes maliciosos, ajustavel conforme necessario
usando o dataset de imagens CIFAR-10 contendo 10 classes diferentes de 32x32 pixels,
em cores RGB. Foram utilizados métodos de classificacdo baseados nas normas L1 e
L2, além de um cendrio sem defesa para validar a eficicia dos ataques e servir como re-
feréncia ideal de FL sem comprometimento. As quatro simulagdes representam os prin-
cipais métodos utilizados na validagao da proposta, permitindo comparar a acuricia e a
perda em cendrios de FL sob ataque.



A Figura 1 mostra os resultados de acurdcia. No cendrio ideal, sem ataques, a
agregacao dos modelos foi consistente, alcangando valores acima de 60% de acuricia em
40 rodadas, enquanto o mesmo modelo, sofrendo os ataques, ndo consegue evoluir mais
de 10%. Os modelos de defesa L1 e L2 apresentaram cerca de 40% de acurécia, superando
o modelo sem defesa, que teve um aumento de mais de 30% em relagdo ao modelo com
ataques. Enquanto o modelo sem defesa ndo evoluiu, os modelos com defesa mostraram
evolugdo constante, evidenciando a eficicia da defesa.
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Figura 1. Medicao de Acuracia

A Figura 2 mostra que no cendrio sem defesa, os resultados indicam o desapren-
dizado que pode ocorrer quando o servidor de agregacdo recebe um ataque, o que gera
varios saltos, com valores de perda superiores a 10 em diversos casos. Em outros cendrios,
como o de defesa, observamos uma estagnacao devido a quantidade de clientes agrega-
dos. Ou seja, a quantidade de clientes ndo aprende tanto, mas ndo ha um método de
desaprendizado, ja que os clientes aprendem e mantém valores de perda abaixo de 2.
Além disso, o cendrio ideal, onde ndo ha ataque, apresenta perda inferiores a 1, indicando
um aprendizado quase completo em relacdo ao dataset utilizado.
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Figura 2. Medicao de Perda



5. Conclusao

Este trabalho propds uma abordagem para mitigar ataques de envenenamento de modelos
em ambientes de FL , utilizando normas vetoriais .1 e L2 como critérios de defesa. O
algoritmo GAIA demonstrou elevada eficdcia na identificacio e mitigacao de atualizacdes
maliciosas, assegurando a integridade e a precisdo do modelo global. As simulagdes
evidenciaram que, mesmo sob ataques, os mecanismos de defesa baseados nas normas L1
e L2 superaram significativamente o desempenho do modelo sem protecdo, alcangando
até 30% de melhoria na acurdcia em comparacdo ao cenario atacado sem defesa. No
cendrio ideal, sem ataques, os resultados também validaram a efetividade da abordagem,
embora tenham revelado gargalos que ainda precisam ser superados como a necessidade
de estratégias complementares, por exemplo, uma selecdo mais criteriosa de clientes para
o treinamento.

Como trabalho futuro, buscamos aprimorar o algoritmo GAIA com a
implementagdo de métodos adaptativos de agregacdo local e explorar sua aplicacdo
em cendarios FLL mais dindmicos, com fluxos de dados variaveis para cada cliente. A
integracdo desses métodos visa aumentar ainda mais a robustez e a eficiéncia do aprendi-
zado federado em ambientes sujeitos a ataques.
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