
Enabling security in software-defined wireless sensor networks
for internet of things

Cézar M. G. de Toledo, Doriedson A. G. de Oliveira,
Marcos A. Simplicio Jr and Cintia B. Margi

1Laboratório de Arquitetura e Redes de Computadores – Universidade de São Paulo (USP)
CEP – 05508-010 – São Paulo – SP – Brazil

{cmurilo,doliveira,msimplicio,cbmargi}@larc.usp.br

Abstract. In Software-Defined Wireless Sensor Networks (SDWSN), a logically
centralized controller manages data flows according to high level policies. As
a result, it provides Wireless Sensor Networks (WSN) with further flexibility and
control over its nodes’ behavior. One challenge in this scenario, though, is that
SDWSN are mainly composed of resource-constrained devices, which hinders
the application of traditional cryptographic protocols in such networks. In this
article, we propose a secure framework for SDWSN that takes into account such
constraints, enabling the establishment of end-to-end security among nodes and
between nodes and the SDN controller. Besides showing how our proposal can
enforce different security services in an SDWSN, we also simulate our frame-
work and present a preliminary security cost of framework.

1. Introduction

In traditional networks, the switches’ control guidelines are pre-installed, and play a criti-
cal role on the correct and efficient processing of packets. As a drawback of this approach,
managing the switches usually requires a lot of effort from network administrators. After
all, every single node needs to be (maybe manually) configured to ensure that interactions
between them lead to the expected results.

Software Defined Networking (SDN) promises to ease this management issue by
creating a network logic that is (1) decoupled from the underlying hardware and (2) man-
aged by a remote control plane. More precisely, the SDN paradigm considers three planes
that are logically connected: data, control, and application planes. The data plane com-
prises the switches, whose only function is forwarding packets. The control plane consists
in the controller, which manages all network logic by defining how packets should be han-
dled by each switch. And the application plane is where users and administrators interact
with the controller, developing applications and managing the state of the network.

The SDN paradigm has become more prevalent thanks to the Southbound-based
OpenFlow protocol, which is currently supported by many network deployments. One
potential limitation of OpenFlow (OF), though, is that its design is somewhat oriented
toward wired networks [10]. In particular, it assumes high-speed switches that (1) can
contact the network controller as often as necessary, and (2) can store (possibly large)
tables with flow rules. Hence, OpenFlow does not always cope with constraints com-
monly found in Wireless Sensor Networks (WSNs), namely: (1) prevalence of low speed
network protocols, like IEEE 802.15.4; and (2) limited processing power and memory



availability on the network nodes, which act simultaneously as end nodes and switches.
Indeed, these challenges have motivated many recent research efforts focused on creating
a Software-Defined WSN (SDWSN) environment [1, 5]. The goal of SDWSNs is, thus, to
enable dynamic and scalable routing for accommodating the different needs of Internet-
of-Things (IoT) applications on the same WSN. For example, the SDN paradigm can help
WSNs to balance and/or optimize multiple metrics, such as energy, latency or reliability,
depending on current network usage and policies.

Albeit promising, SDWSNs are prone to security vulnerabilities inherited from
SDNs, such as link spoofing [2, 13], access control abuse [7], denial of service (DoS)
[9], and man-in-the-middle (MitM) [4]. At the same time, they are also prone to WSN-
related attacks, including sink holes [8] and additional forms of DoS [14] and MitM [8].
Therefore, the widespread adoption of SDWSN technologies depends, at least in part, on
a robust security framework for addressing such threats.

In this work, we address this issue by proposing a security framework that ad-
dresses some of the main threats found in the literature. Namely, by using adequate
cryptographic mechanisms, our proposal can mitigate attacks involving the insertion of
false sensors, controllers or sinks in the network.

This work is organized as follows. Sec. 2 describes the method adopted in this
research. Sec. 3 describes the proposed security framework, while Sec. 4 evaluates its
computational costs. Sec. 5 concludes the discussion.

2. Method
Most of the security issues mentioned in Section 1 stem from the absence of robust cryp-
tographic protocols in existing SDWSN architectures. To address this issue, we make
use of iSMQV [15], a lightweight authenticated key agreement (AKA) protocol designed
specifically for WSNs. Basically, it comprises two mechanisms. The first is a security
bootstrap protocol that enables nodes to get implicitly certified public-private key pairs,
avoiding the transmission of large certificates commonly used in traditional networks [3].
These keys then enable any node to establish secret and authenticated key pairs with other
nodes. In addition, iSMQV is escrow-free, i.e., the Key Generation Center (KGC) that
authorizes nodes in the network does not learn their private keys. With the key pairs
generated, message authenticity, integrity and confidentiality are provided by combining
different symmetric cryptographic primitives.

Such mechanisms are then integrated into IT-SDN, an open-source SDWSN
framework [12]. Even though other SDWSN exist [5, 11], this choice is motivated by
IT-SDN’s scalability, making it useful for large-scale deployments. Such scalability prop-
erty comes mainly from the adoption of a source-routed approach for control packets,
which reduces overheads and flow table occupancy. Indeed, IT-SDN can achieve a deliv-
ery rate of almost 100% of the control packets for a network composed of 64 nodes [1],
and is also expected to scale for larger networks.

The resulting architecture assumes that all sensor nodes are SDN-enabled, so they
can behave like switches, and that there is at least one controller among the nodes. The
packet forwarding to a sink is done according to their address, which is advertised to the
network controller when the sink enters the network. Controller and sink may run on
different devices, and the network can accommodate multiple sinks.



3. Specification

The following requirements were taken into account in the design of the proposed security
framework.

• On-Demand Security: Some nodes in the network may handle more sensitive data
than others, so their need for authenticity, integrity and confidentiality may differ.
Hence, the framework does not require that all nodes have valid keys from the
start, which means that any sensor node that supports IT-SDN may be introduced
in the network. Security services are then only employed if requested by a node,
as long as the communication end-points have valid public-private key pairs.
• Security Levels: Some deployments may require a modern, 128-bit security level,

while others may prefer a legacy, 80-bit security for compatibility purposes or
to avoid some computational overhead. For this reason, the proposed framework
supports both 128- and 80-bit security.
• Support for different security services: The network administrator can specify

what security services are required for a flow. Three options are available: (0): No
security service is required, so the communication avoids unnecessary overhead
related to security algorithms; (1): Authentication-only, meaning that the pack-
ets’ authenticity and integrity is ensured during the communication using a mes-
sage authentication code (MAC); (2): Authenticated-encryption, in which case
an authenticated-encryption with associated data (AEAD) scheme is employed to
provide data confidentiality besides authenticity and integrity.
• End-to-End Security: Nodes support end-to-end secure communications between

the controller and sensor nodes, as well as between sink and sensor nodes.

Such mechanisms, when combined, can be used to mitigate falsified sensor, con-
troller and sink node [16]. Due to limited space we do not described such attacks here,
since proposing and evaluating the framework are the main contribution here.

The control plane is responsible for defining the security services needed in the
communication between controller and sensor nodes. The application plane is responsible
for defining these services in the communication between sensor and sink nodes.

In the next subsections, we describe how such security services are integrated into
the IT-SDN 0.4.1. We focus on how the proposed security services are built on top of
IT-SDN, considering its capabilities.

3.1. Public/Private Key Bootstrap

The first step for any node that needs to engage in secure communications is to obtain
a valid public-private key pair with an authorized Key Generation Center (KGC). In the
proposed framework, we assume that this procedure is performed by the network admin-
istrator, in an out-of-band manner, using the iSMQV protocol [15]. As a result, the node
obtains a private key r and a corresponding public key Y that is implicitly certified by
the KGC. The adoption of implicit certification reduces the amount of information that
needs to be exchanged by nodes when verifying the authenticity of each other’s public
keys. Namely, implicitly certified public keys consist of two elliptic curve points, which
translate roughly to 4k bits of information for a system whose security level is k bits.



3

2

1

Sensor/Sink Node Controller Node
Run neighbour 

discovery
 Run neighbour 

discovery

Send public key

Send public key and MAC
Calculate 

symmetric key
Send MAC for confirmation

Confirm key

Run 
application

Req forwarding rules for app data Run routing protocol 
& check for sink 

authenticity
Install flow rules

Calculate 
symmetric key

Figure 1. Key establishment with the controller

4

5

Sensor Node Sink Node

Send public key

Send public key and MAC

Calculate 
symmetric key 

Send MAC for confirmation
Confirm key

Calculate 
symmetric key

Send secured data

Controller Node

Figure 2. Key establishment between sensor and sink nodes

Security 
Flags

Type of 
packet Reserved Time to 

Live
Sequence 
Number

Source 
Address

Application 
Data Nonce MAC

2 bits 6 bits 8 bits 8 bits 8 bits 16 bits Varies Varies 64 bits

11 Encrypted 
text

Figure 3. The header used in our security approach.

3.2. Symmetric Key Establishment

After entering the network, nodes that desire to use security services must establish a
secure channel with the controller and with relevant sinks. This procedure is depicted in
Figures 1 and 2, and can be summarized as follows:

1. First, sensors and sink nodes run the neighbour discovery protocol, learning about
other nodes in the network and get a valid route to the controller.

2. All interested nodes then run the iSMQV protocol with the controller, aiming to
establish a secure channel with it. This procedure requires nodes to inform their
own public keys to the controller, which is combined with the controller’s private
key to generate a secret, symmetric key. The controller then responds with its own
public key to the requesting node. Also, to confirm that a valid symmetric key was



calculated, the controller authenticates this response packet with the symmetric
key, using a MAC scheme. Finally, the sensor/sink receives and generates the
same key and sends an authenticated confirmation to the controller, proving that
the protocol was correctly executed.

3. Subsequently, the sensor nodes can run applications and send data flow requests to
the controller. If the application packet requires some security service, this need
is also informed in the flow request. Unsecured requests are handled as in IT-
SDN, by finding an appropriate sink and installing the required forwarding rules
in the network. If some security service is required, the list of candidate sinks is
restricted to authenticated nodes, i.e., sinks that have already established a secure
channel with the controller; if no suitable candidate is found, an error message is
sent to the requesting node.

4. When an authenticated sink is identified, the controller installs flow rules in the
nodes, the sensor nodes can now establish a symmetric key with the sink node. The
result is that an end-to-end secure channel is established between those nodes.

5. The application plane can enforce security services and send data to the sink.

3.3. Message format
To enforce the supported security services, we use 2 bits on the header of the IT-SDN
packets, as depicted in Fig. 3. When a node receives messages in the system, it analyzes
the security flags and take one of the following actions: (0) process the packet normally
without any security services; (1) calculate the packet MAC to check its authenticity; (2)
employ AEAD to check for its authenticity and decrypt the ciphertext.

Besides using such flag bits, the main modification made to the IT-SDN packets
is the addition of a 64-bits MAC field for authentication, and the insertion of a nonce
alongside the application data whenever an AEAD scheme is employed.

4. Benchmark
We simulate different scenarios comprising of 9, 25 and 36 nodes in a grid scheme. There
was no further motivation to this choice, then the fact that we wanted to start with a small
network and gradually increase it. First, we simulate a scenario of only one controller
node, while the other scenario has one controller and one sink node. We focused our
analyses on the key establishment protocol, which is the most costly procedure in the
security framework. We use the Cooja simulator to evaluate our framework, the sensor
nodes are considered to be the MSP430X microprocessor [6]. While the SDN controller
was running on Linux, which for our work means the capabilities of the controller is far
greater than the sensor nodes. We use the relic toolkit library to provide the cryptographic
protocols, namely, we use the curves SECP160r1 and SECP256k1, which provide the 80-
and 128-bit security levels supported in our framework. One thing to note is that if the
security level is of 128 bits, it is necessary to send two messages with the public key. That
is because of the IEEE 802.15.4 which limits the physical layer packets to 127 bytes. We
use SHA-1 as the hash function used in the framework if the security level is set for 80
bits. While SHA-256 is the hash function used if the security level is set for 128 bits. We
ran each scenario five times and collected the results for the first 20 minutes of simulation.

Fig. 4 shows how many nodes completed the authenticated key agreement with
the controller and sink nodes. Our framework configured for 128 bits takes more time to



Figure 4. Percentage of nodes that completed the AKA process during the simu-
lation time for each scenario.

establish the key with the nodes, mostly due to two factors; (1): there are two additional
packets to establish the symmetric key and (2): the time to execute the iSMQV protocol
is roughly 7 times slower in 128 bits. In addition we identified that the 80 bits/36 nodes
scenario showed almost the same completion rate of the 128 bits scenario. This was due
to packet loss. Packet collisions were common, and when the sink node is running the
iSMQV protocol it becomes unreachable (since the controller node does not run on the
MSP430X device, it does not suffer from this characteristic, hence, the results from the
controller are far better). So, if a packet loss occurs, it is the IT-SDN re-transmission
protocol responsible to send the packet again which might delay the entire process. We
also inferred that larger networks poses memory problems with the sink node, it is not
able to store keys from all nodes in the network. It is recommended the deployment of
multiple sink nodes in this case. Finally, after completing the initial key agreement, there
was no bottleneck identified by the other security standards introduced.

5. Conclusion

The goal of a Software-Defined Wireless Sensor Network (SDWSN) is to bring the flex-
ibility provided by the SDN paradigm to the context of WSNs. Aiming to facilitate the
deployment of security services in SDWSNs, in this article we describe a security frame-
work designed specifically for such environments. The proposed solution builds upon
lightweight cryptographic mechanisms to provide a variety of end-to-end security services
for sensor nodes, sinks and controllers. It is particularly effective against falsification and
eavesdropping attacks, as it enables authorized nodes to encrypt and authenticate packets
whenever required. However, these mechanisms impose significant drawbacks during the
start-up of the network. By enabling on-demand security we want to reduce this draw-
back, so that a more traditional network security model can be enforced on SDWSN.



References
[1] R. Alves, D. Oliveira, G. Segura, and C. Margi. The cost of software-defining things:

A scalability study of software-defined sensor networks. IEEE Access, 7:115093–
115108, 2019.

[2] A. Azzouni, R. Boutaba, N. T. M. Trang, and G. Pujolle. sOFTDP: Secure and efficient
topology discovery protocol for SDN. arXiv preprint 1705.04527, 2017.

[3] Certicom. SEC 4 v1.0: Elliptic curve Qu-Vanstone implicit certificate scheme (ECQV).
Technical report, Certicom Research, Canada, 2013.

[4] H. Cui, G. Karame, F. Klaedtke, and R. Bifulco. On the fingerprinting of software-defined
networks. IEEE Transactions on Information Forensics and Security, 11(10):2160–
2173, 2016.

[5] O. Flauzac, C. Gonzalez, A. Hachani, and F. Nolot. SDN based architecture for iot and
improvement of the security. In 29th Int. Conf. on Advanced Information Networking
and Applications Workshops (WAINA), pages 688–693. IEEE, 2015.

[6] C. Gouvêa, L. Oliveira, and J. López. Efficient software implementation of public-key
cryptography on sensor networks using the MSP430X microcontroller. Journal of
Cryptographic Engineering, 2, 05 2012.

[7] S. Hayward, C. Kane, and S. Sezer. Operationcheckpoint: SDN application control. In
Int. Conf. on Network Protocols (ICNP), pages 618–623. IEEE, 2014.

[8] T. Kavitha and D. Sridharan. Security vulnerabilities in wireless sensor networks: A
survey. Journal of information Assurance and Security, 5(1):31–44, 2010.

[9] S. Lim, S. Yang, Y. Kim, S. Yang, and H. Kim. Controller scheduling for continued SDN
operation under DDoS attacks. Electronics Letters, 51(16):1259–1261, 2015.

[10] T. Luo, H. Tan, and T. Quek. Sensor OpenFlow: Enabling software-defined wireless
sensor networks. IEEE Comm. letters, 16(11):1896–1899, 2012.

[11] A. Mahmud and R. Rahmani. Exploitation of OpenFlow in wireless sensor networks. In
Int Conf. on Computer Science and Network Technology (ICCSNT), volume 1, pages
594–600. IEEE, 2011.

[12] C. Margi, R. Alves, G. Nunez, and D. Oliveira. Software-defined wireless sensor networks
approach: Southbound protocol and its performance evaluation. Open Journal of
Internet Of Things, 4(1):99–108, 2018.

[13] H. Nguyen and M. Yoo. Analysis of link discovery service attacks in SDN controller. In
Int. Conf. on Information Networking, pages 259–261. IEEE, 2017.

[14] K. Pelechrinis, M. Iliofotou, and S. Krishnamurthy. Denial of service attacks in wire-
less networks: The case of jammers. IEEE Communications surveys & tutorials,
13(2):245–257, 2011.

[15] M. Simplicio, M. Silva, R. Alves, and T. Shibata. Lightweight and escrow-less authenti-
cated key agreement for the Internet of Things. Computer Communications, 98:43–
51, 2017.

[16] C. Toledo, M. Simplicio, and C. Margi. A framework for building secure software-defined
wireless sensor networks. ENCOM, 2019.


