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Abstract. Anomaly intrusion detection in Host-based Intrusion Detection Sys-
tem (HIDS) is a process intended to monitor operations on a host to identify
behaviors that differ from a “normal ” system behavior. System call based HIDS
uses traces of calls to represent the behavior of a system. Due to the volume of
data generated by applications and the operating system, sliding windows are
applied in order to asses an online environment, allowing intrusions to be de-
tected in real time while being still executed. The respective study explores the
impact that the size of the observation window has on Machine Learning (ML)
one-class algorithms.

1. Introduction

An Intrusion Detection System (IDS) is responsible to perform the identification of at-
tacks in a computerized environment. There are different techniques used to detect in-
trusion, some of them are based on: (i) signatures, where a dataset with known threats
are used to compare new signatures and, despite of being widely used, it is still not ca-
pable of identifying threats that are not yet classified (unknown attacks); and (ii) normal
behaviors, where the anomaly detection algorithm defines a normal behavior for the en-
vironment, and new unknown behaviors are classified into two classes: normal or ano-
maly [Yassin et al. 2013].

Host-based Intrusion Detection System (HIDS) has the focus on the host, with
the ability to identify internal attacks using data from one or more host systems
[Liu et al. 2018]. This approach is not limited to one environment, could be used in a
distributed infrastructure, and could harness data from the network to better understand
the environment. System calls based HIDS explore data collected from traces of the
operating system or individual application, which could vary according to the approach
[Liu et al. 2018]. The system call is responsible to make an interface between the opera-
ting system and the kernel, each call represents a basic operation [Mitchell et al. 2001].

A variety of strategies can be used to adapt the data to the models, one of the most
used is the sliding window technique, where a window of n-size is used to scan the data.
This way, one trace will be split in smaller traces that may be suitable to detect intrusions.
Many researchers already tried to define the right size of a detection window, which may
vary from five to eleven in many cases. However, as many ML parameters, the size of the
detection windows may not be the always the same, given that an optimal choice of size
will depend on the environment and data type [Liu et al. 2018].



Another point to consider is that many work in the literature consider the whole
trace to detect an intrusion (offline detection). This approach, however, is not real given
that an attack will only be analyzed after it finished executing. Thus, the IDS would not
work as expected in the real world, which is the reason that sliding window technique is
important (online detection). In theory, the smaller the window size, the faster an anomaly
could be detected, with the trade-off that these windows may cut malicious actions in half,
affecting their detection. Finally, selecting an ideal window size is important to detect
attacks as soon as they start to be executed, without the need to watch the whole trace.

Aiming to explore the impact of window size in one-class ML methods, we se-
lected a set of traces that were evaluated with different sizes, in a docker environment
where, at the best of our knowledge, was not made yet in the literature. The main idea is
to identify how the size of a window will impact the process of identifying an anomaly in
one environment, helping to understand how the classifier will perform with this data.

This work is structured in five Sections. The Section 2 presents related work. The
Section 3 presents the proposal and background for the study. The Section 4 presents the
results and the Section 5 presents the conclusions.

2. Related Work

The literature presents approaches to detect the most adequate window size for the
UNM [Systems 1998] and ADFA-LD datasets [Xie and Hu 2013], concluding that a size
between six and seven were the best for them. Considering virtual machines the window
size could diversify between six and ten [Liu et al. 2018]. The window size will impact
the n-gram size created (a n-gram will represent a sequence of system calls extracted from
the trace) and is responsible for splitting the trace into groups that will be used for training
and testing.

Host-based anomaly intrusion detection with system calls is an active area in
computer research. [Wang et al. 2006], for example, presents Anagram, a content ano-
maly detector that models a combination of high-order n-grams (n >1) designed to detect
anomalous and “suspicious” network packet payloads. The work provides a comparison
between approaches using different sizes of n-grams (or window sizes). The authors de-
monstrated that a semi-supervised strategy, using Bloom Filter, obtained 100% detection
with 0.006% false positive rates in some cases.

[Forrest et al. 1996] introduced the use of system calls for anomaly detection years
ago, where they proposed an approach using a look-ahead pair based technique, where
each entry in the database represented a system call, and an immediate subsequence of
system calls in a window of size n. The sliding window then moves by one position
at a time to form the database. In their extended work, they proposed the Sequence
Time Delay Embedding (STIDE) approach, based on the analysis of short sequence of
the system calls, of which it was observed that fixed-length contiguous sequences have
better-discriminating power than look ahead pairs. A sliding window of fixed size is used
to produce the short sequences of system calls.

In a cloud environment focusing on virtual machines, the sequence of sys-
tem calls can be used to anomaly detection across approaches like “Bag of system
calls” [Alarifi and Wolthusen 2012]. The data is collected from a KVM virtualization



environment by trace tools. A window size of six is used, with 11.1% of false positives.
Some problems with the dataset could be raised as the data collection period assume that
the normal behavior will not be impacted by attackers.

3. Proposal
The literature presents limitations for anomaly detection in a container environment
[Liu et al. 2018]. We try to explore the impact that a partial view of information could
have in the results. Looking at how this data can be retrieved and applied in ML methods,
we focus on how the window size will impact the detection of anomalies. The container
is a technique of virtualization for applications, and are very popular nowadays because
of tools like Docker. The virtualization happens in Operational System (OS) level, al-
lowing the load and run of applications that have hardware managed made by the contai-
ner [Merkel 2014]. This is possible because the container is responsible to gather all the
necessary components in a single image.

Our dataset1 was developed capturing data from a container environment, noting
that the collection happens from the operating system point of view. This way, there is
not partial view and limitations for the data capture [Castanhel et al. 2020]. The contai-
ner was running WordPress 4.9.14, with Docker 19.03.11-ce, under the Linux 5.4.44-1-
MANJARO. The data wrote on disk consists of system calls and signals issued by the
container, containing the normal behaviors of the environment and anomaly behaviors
that exploits Remote Code Execution (RCE) vulnerabilities [NVD 2020].

This defines a dataset with normal and anomaly behaviors that represent a con-
tainer environment. This data is used to train and test two One-Class ML methods. The
One-Class Classification (OCC) learn from only one class, different from other traditio-
nal methods that aim to learn two or more classes and may be difficult for the classifier
considering the dataset used (in our case, a dataset with a lot of class imbalance: 367, 342
system calls representing normal behaviors and only 1, 628 system calls representing ma-
licious ones)[Zhang et al. 2015].

The evaluation process reflects how window size growth will contribute to ano-
maly detection. The experiment consists of two study cases. In the first case, we explore
how using a small portion of the trace will impact the anomaly detection. This case con-
sists of using just 5% of the trace size to train and test the models. In the second case, the
window growth will be not limited for just 5% of the trace size, instead, the growth will
happen each time with 5% of the trace size until all the trace will be used.

Considering that the dataset has a set of traces with a great variety of sizes and we
need a fixed window size for the ML methods to be trained and tested, the smallest trace
size was considered for the size evaluation, i.e., 100% of the traces represents a trace size
of 1, 628.

4. Experiments
The experiments used two types of dataset: one with raw data where no filter technique
is applied and all the system calls sequence is used without any changes, and another
where system calls classified as low level of threat were discarded. The system calls

1The dataset can be found at: https://github.com/gabrielruschel/hids-docker.

https://github.com/gabrielruschel/hids-docker


classification was based on [Bernaschi et al. 2002] work, and allow us to improve the
results as harmless system calls are removed from the dataset.

Considering the two data approaches, the window evaluation aims to explain how
windows with a small portion of the trace will impact the anomaly identification and how
its grow will impact the classifier. Thus, two cases were defined for training and testing,
which could represent these two types of window perspective.

For the smallest window size, a portion between zero and five percent of the total
trace size was used, with a growth of 0.5% of the trace size. This investigation will
represent most of the cases found in the literature [Liu et al. 2018], considering that 5%
of the trace size will represent 81 system calls. Our goal here is not to stay limited by this
size, but to check how a bigger trace size will behave in the second approach considering
the window growth until the maximum size of the trace. The trace size will grow 5% of
the total size until it reaches 100% of the trace size.

The evaluation considered two OCC algorithms: Isolation Forest and One-Class
SVM. Both of them are adaptations of the multi-class classifiers Random Forest and SVM,
respectively, trained only over the majority class (normal behavior). Thus, these classifiers
generates decision boundaries that define what is normal, i.e., every sample that is out of
these boundaries are considered as anomaly. Isolation forest is slightly faster to train than
one-class SVM, given that it builds an ensemble with a set of random trees, which makes
it more suitable to real applications, once it could react faster to changes [Liu et al. 2008].
One-class SVM, in the other hand, estimates the support vectors (instances that are near
the decision boundary) of the training data, generating a hyper-plane that contains the
normal behavior (which in practice takes much more time than generation random fo-
rests) [Zhang et al. 2015].

The Figure 1 presents the results for the Isolation Forest algorithm. Both raw and
filter data reach reasonable results with small window size and variate over the growth
size until reaching F1Score next to 100% after half of the trace percentage is used. The
window size variation will be responsible for the 1% fall in the results, considering that
this is not a huge impact in the results, we assume that would be possible to avoid this
behavior with a more complex dataset. For the first 5% window size, the instant growth is
more clearer on the partial graph view, where we can see that, with a window size of 1%
of the trace size, we already achieve an F1Score of 95%.

Although the filter data suffer more with the growth window size, it is the first one
to obtain an F1Score over 97%, with a window size of 1.5% of the trace (this represents a
number of 24 system calls). The raw data will not suffer the same impact with the growth,
being more stable with the size change.

The Figure 2 presents the results for the One-Class SVM algorithm. The graph
shows a small variation among raw and filter data for a window size with 10% of the trace
size, that will impact an F1Score between 98% and 99%, never reaching an F1score of
100%. Considering the first 5%, we can see a faster reach for the F1score where a window
smaller than 0.5% of the trace size already reaches an F1score of 98%.

Comparing both results, it is interesting to appoint that a small window size tends
to reach an F1score quickly, but better results will be impacted by the algorithm used
and approaches still could have better results using a bigger portion of the trace instead



of small window size. Also, one-class SVM perform slightly better than isolation forest
with smaller traces, but as the window size increases, isolation forest becomes much
better, outperforming SVM.

In our study case, the raw and filter data present variations over the window
growth, not showing a bigger difference between the use of one specific data type. It
is possible to appoint that the filter approach was the first one to obtain an F1Score above
98% in both evaluations and this data type could help small window size techniques for
anomaly detection.
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Figure 1. Window growth for Isola-
tion Forest algorithm.
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Figure 2. Window growth for One-
Class SVM algorithm.

5. Conclusion

The respective study focus on the impact of size window in a docker environment. Our
approach aims to clarify, through a growth window size experiment, how the size will
impact on One-Class Classification (OCC). Our contribution is for the anomaly detection
system turned to Docker environments, and helps with new security insights, due to the
popularization of containers in the last decade.

The One-Class evaluation present allow us to better understand the anomaly de-
tection scenario in containers. With two distinct groups of data, we can claim that the
smallest window is able to achieve reasonable F1Score results, even with filtered data,
where this result can be reached with smaller windows in comparison to raw data.

According to the experiments, it is possible to assume that a small window size
already presents an acceptable F1Score for anomaly detection and it’s more appropriate to
an online detection system. But the size could be affected by the classifier used to identify
anomalies.

Two open topics that will be approached in future works: (i) data generation, given
that our dataset is limited to one application behavior and we hope to develop a more
complete dataset, with more applications that will create more real investigations, and (ii)
explore new classifiers and techniques of anomaly detection considering the window size
shown in this research.
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