
An Approach for Behavioral Fingerprinting of P4
Programmable Switches

Matheus Saueressig, Muriel F. Franco, Eder J. Scheid, Lisandro Z. Granville

Institute of Informatics (INF) – Federal University of Rio Grande do Sul (UFRGS)
Av. Bento Gonçalves, 9500, Porto Alegre – RS – Brazil

{matheus.saueressig, mffranco, ejscheid, granville}@inf.ufrgs.br

Abstract. Behavioral Fingerprinting is a technique used to understand the be-
havior of devices, enabling a better understanding of their functionality and
improved anomaly detection. This paper proposes a methodology for gener-
ating the behavioral fingerprint of programmable switches. The methodology
outlines the process of selecting metrics for analysis, extracting data from them,
and organizing the information to construct a behavioral fingerprint for a pro-
grammable device within a network.

1. Introduction
Computer networks are evolving at an unprecedented pace, driven by the relentless de-
mands of our increasingly interconnected world. Programmable networks are emerging as
a crucial response to these evolving requirements, offering the flexibility and adaptability
needed to support the diverse services and applications that rely on network infrastructure
[Nunes et al. 2014]. Prominent examples of programmable networks and enablers are the
Software-defined Networking (SDN) and Network Functions Virtualization (NFV) con-
cepts [Bondan et al. 2019].

A relevant aspect of programmable networks is the wide range of techniques that
extract data from the network, especially from networking devices [Sánchez et al. 2021].
Back then, forwarding devices were treated as black boxes, and information availability
was a subject of suppliers’ discretion. Thanks to the SDN technology, network manage-
ment systems can interact directly with the control plane, while Programming Protocol-
independent Packet Processors (P4) switches [Bosshart et al. 2014] allow having a pro-
grammable data plane. Open-source communities, such as the P4 Language, provide
frameworks to collect and collate data from such a data plane [Tan et al. 2021], thus al-
lowing us to understand network patterns and behaviors fine-grained. Even though we can
collect and process a large amount of data, we still need to develop solutions to filter and
qualify helpful information to understand networks and device behaviors (i.e., behavioral
fingerprinting).

Behavioral fingerprints in the context of programmable networks can refer to the
unique patterns and characteristics exhibited by network devices and network applications
in their regular operation, such as P4 programmable switches running a P4 program. Each
device has its specific behavior and response to different network conditions and traffic.
By analyzing and understanding these behavioral patterns, network operators can identify
deviations and anomalies that might indicate potential security threats or malfunctions
[Sánchez et al. 2021]. However, this is a challenging task since a massive amount of data
and metrics must be collected, processed, and correlated for an accurate analysis.



Therefore, there is still room for approaches that explore behavioral fingerprint-
ing to identify and mitigate anomalies. Behavioral fingerprinting promises to enhance
network monitoring and security by providing a deeper understanding of device behav-
ior beyond traditional monitoring metrics. By capturing and analyzing unique behavioral
patterns, such as traffic flow characteristics, protocol usage, and performance metrics, be-
havioral fingerprinting can offer a more comprehensive and context-aware perspective of
network activities.

Thus, in this work, we propose an approach for behavioral fingerprinting of pro-
grammable switches and P4 applications to identify anomalies in programmable net-
works by looking at the behaviors of network devices and applications. For that, the
approach (i) defines a set of metrics (e.g., network-centric and resources consumption)
to be used for the behavioral fingerprinting of programmable networks, (b) describes a
clear path to generate the fingerprints, and (c) implements monitors to collect the rel-
evant metrics. A set of traffic behaviors is also defined and generated for the collec-
tion process. The experimental testbed was built using Mininet [Lantz et al. 2010], bmv2
[Open Networking Foundation 2023], and P4 applications running on a Commercial Off-
The-Shelf (COTS) server. A case study is conducted as a preliminary evaluation to show
the feasibility and potential applications of the proposed approach.

The rest of this work is organized as follows: Section 2 presents related work.
Our approach is described in Section 3, and finally, the conclusion and future work are
presented in Section 4.

2. Related Work
In this section, we discuss examples of two different ways of building a device fingerprint
and examples of data collectors that have been proposed to assist network managers to
increase efficiency and network protection.

2.1. Fingerprinting
In [Bai et al. 2022], the authors introduce P40f, a passive OS fingerprinting tool that runs
directly on programmable switch hardware to identify the Operating Systems (OS) run-
ning on hosts in a network. OS fingerprinting is helpful for managing enterprise networks,
detecting vulnerabilities, and applying security policies based on the OS type. Passive
fingerprinting is preferred over active methods, as it monitors network traffic in real-time
without introducing additional network load. P40f is implemented using the P4 language
on Intel Tofino switch hardware. It uses TCP header and option fields in TCP SYN pack-
ets to perform OS fingerprinting, similar to the software-based tool p0f.

Unlike traditional software-based passive fingerprinting tools, P40f can process
traffic at high line rates and take direct actions, such as dropping, rate-limiting, or redi-
recting traffic, based on the identified OS, without needing control-plane messages. How-
ever, P40f is very specialized and specified to detect OS-specific vulnerabilities and does
not gather information about non-host devices.

Other approaches also consider bmv2 switches as tested to implement approaches
for fingerprinting. In [Kuzniar et al. 2022b], the authors proposed FingerP4, a solution
to identify events from 7 different IoT devices entirely in the data plane. Next, PoirIoT
[Kuzniar et al. 2022a] was proposed as a more robust solution for IoT device detection



based only on packet metadata (e.g., length and direction) and could detect several devices
as soon as it exchanges its first packets in the network. The work was also implemented
in a Tofino-based programmable switch.

2.2. Collection of Metrics
An effective way to collect information about devices and architectures in programmable
networks is to use In-band Network Telemetry (INT). Due to its fine-grained monitoring,
INT can generate a high report rate, leading to many report packets sent to the collector.

The INTCollector is introduced in [Tu et al. 2018] to address this issue and ef-
ficiently process INT telemetry reports. It stores INT metric values in a time-series
database, mainly using InfluxDB. This database is selected for its high write throughput,
support for custom timestamps, and push mechanism, allowing efficient data storage. The
key components of the implementation are the event detection mechanism, which detects
significant changes in network metrics, and the exporter, which sends metric values to the
database periodically or when new events occur. INTCollector can help with this to some
extent. Collecting and analyzing the INT metadata over time can build a profile of the
switch’s behavior. For example, it can track the switch’s handling of flows, latency expe-
rienced at different hops and queue occupancy patterns. However, INTCollector focuses
mainly on the INT Framework and does not propose hardware monitoring.

While there is existing work that focuses on fingerprinting, only some of it con-
centrates on analyzing devices from an atomized perspective. Identifying anomalies at an
earlier stage requires monitoring each device individually to prevent anomalies from prop-
agating throughout the network. Therefore, we must develop techniques that enable the
network management system to identify if a forwarding device is behaving abnormally.

3. Approach
This work proposes and implements an approach to explore programmable device be-
havior fingerprinting for anomaly detection. Behavior fingerprinting can be defined as a
collection of metrics of an object with expected values over time. The behavioral finger-
print of a network device might include information about how it handles traffic, processes
packets, uses computational resources, and responds to various commands and requests.
This data is collected through monitoring techniques and can be used to establish a base-
line of normal behavior for the device and network applications running. When anomalies
occur (e.g., unusual traffic patterns, unexpected responses, or deviations from the estab-
lished baseline), it may indicate the presence of malicious activity, network attacks, or
hardware/software issues. Therefore, by continuously monitoring and comparing the de-
vice’s current behavior to its behavioral fingerprint, network administrators can detect and
respond to potential threats or network performance problems proactively.

Figure 1 shows the framework pipeline, with the different steps highlighted as
numbers. Programmable network devices have many metrics available. Therefore, in
Step 1, selected metrics must be chosen for analysis. This process involves understanding
the different metrics available and the scenarios in which the fingerprinting will be ap-
plied. Next, to conduct the collection in a controlled environment, a testbed is built using
Mininet and bmv2 [Open Networking Foundation 2023]. In Step 2, a traffic generator is
implemented to emulate different traffic patterns for behavior analysis. Therefore, differ-
ent P4 programs and monitors (Step 3) can interact with traffics from different sources



vSwitch
vSwitch

Host 2

Mininet and BMv2

Data Processor

P4 Program
Fingerprinting

Anomaly Detection

Testbed

Device
Fingerprinting

Host 1

Traffic
Generator

Metrics Definition

network measurements,
syscalls, resources usage

1

4

5 5

6

3
P4 Programs
and Monitors

2

Figure 1. Proposed Approach for Behavioral Fingerprinting

containing specific characteristics. Although the monitoring is focused on device activ-
ities, network activity is crucial to observe how the device behaves in certain situations
(e.g., a DDoS attack, regular behavior, or running specific P4 programs).

For metrics collection, we use P4 Programs, monitors, or both. P4 Programs can
collect device metrics thanks to packet manipulation, allowing us to add more headers
with information about how the device processed the packet. Monitors can collect metrics,
such as hardware activity and resource consumption. After the data collection, it must be
processed so that it is organized to be used as training data for a Machine Learning model.
The component called the Data Processor (Step 4) is in charge of such an organization and
analysis.

This organized data is then used to generate the behavioral fingerprinting, sepa-
rated into P4 Program Fingerprint and Device Fingerprint (Step 5). This distinction is
suggested to enable bug detection in P4 Programs and to avoid confusing it with other
types of anomalies. However, there is no restriction on attempting to identify patterns
in both the device and P4 program files together. Finally, this behavioral fingerprint is
used to train an ML model to identify an expected network flow and whether this net-
work is suffering from an anomaly. The anomaly detection (Step 6) using the generated
fingerprinting is also performed. However, this is out of the scope of this work.

4. Case Study

To validate our framework, we have developed a data pipeline focused on monitoring how
anomalies alter the CPU and Memory usage in individual switch devices and compare this
situation with a regular data flow. For this experiment, we have made a switch behavior
fingerprint, analyzing the CPU and memory usage of processes related to bmv2 while
running a Mininet network. We run a topology of three switches and five hosts. Both
switches run a P4 program called Multi-Hop Route Inspection (MRI).



MRI enables users to monitor the routes taken by packets and their associ-
ated queue lengths. We use the implementation of MRI from the p4lang community
[Open Networking Foundation 2023]. This adds an identifier and queue length to the
header stack of each packet. When the packet reaches its destination, the sequence of
switch identifiers corresponds to the route taken, with each identifier followed by the
queue length of the switch’s port.

In alignment with that, Process Identifiers (PIDs) corresponding to the bmv2 ac-
tivity of compiling and forwarding the packets received in the virtual network were iden-
tified along this work. While the hosts established a connection and a packet flow, we
monitored the CPU and memory usage using the bmv2 PIDs. For precise monitoring, we
have isolated the processes to avoid a long-running process consuming much CPU on the
system where the bmv2 software switches are running, slowing down the experiment and
affecting the performance measurements.

Table 1 summarizes the collected metrics and composes an example of behavior
fingerprinting built using our approach. The data collected corresponds to a switch mem-
ory consumption, CPU usage, and queue length over time. We have collected one hour
of traffic to standardize normal behavior. After that, anomalies (e.g., cyberattacks, mis-
configurations, and P4 bugs) will be introduced in the network to observe changes in the
switch processing behavior.

Table 1. Overview of Initial Metrics Considered for Behavioral Fingerprinting

Metric Purpose of Usage Monitoring
Method

CPU
The CPU usage is related to an abnormal increase or

decrease of instructions in case of an anomaly.
Bugs and malicious attacks can increase the usage of CPU.

Linux top
command

RAM
RAM monitoring helps us to detect anomalies if they

allocate memory to do malicious activity or due to misconfiguration.
Linux top
command

Queue
Depth

Anomalies might affect packet processing by slowing it,
thus increasing the congestion. The Package Queue may increase

if an anomaly changes the behavior of the switch.
INT

Switch
ID

The Switch ID allows us to separate information for
each individual switch (e.g., queue, CPU, and RAM). INT

For the collection of CPU and RAM memory, the Linux Top (Table of Processes)
command was used since it allows to select specific process for analysis. This allows for
the collection of metrics for the previously identified PIDs (i.e., bmv2 activities). Also,
INT is used to collect information though the MRI implementation. These monitoring
methods allows to collection all metrics needed for this case study. Additional and more
accurate mechanisms and tools can be used for further analysis.

5. Conclusions and Future Work
With the multitude of data types available in modern network architectures, there arises
a need for standardized data collection to optimize data interpretation and enhance the
efficiency of network monitoring. This paper proposes a methodology that employs be-
havioral fingerprinting to understand better the workflow of programmable switches in a
network context.



In future work, we will generate behavioral fingerprints based on different net-
work flows and P4 programs to validate the overall approach. Also, supervised machine
learning techniques will be considered to detect anomalies using the generated finger-
prints, thus helping to identify misbehavior in programmable devices, P4 programs, or
even imminent attacks in the network.

References
Bai, S., Kim, H., and Rexford, J. (2022). Passive os fingerprinting on commodity

switches. In 2022 IEEE 8th International Conference on Network Softwarization (Net-
Soft), pages 264–268.

Bondan, L., Franco, M. F., Marcuzzo, L., Venancio, G., Santos, R. L., Pfitscher, R. J.,
Scheid, E. J., Stiller, B., De Turck, F., Duarte, E. P., Schaeffer-Filho, A. E., d. San-
tos, C. R. P., and Granville, L. Z. (2019). FENDE: Marketplace-Based Distribution,
Execution, and Life Cycle Management of VNFs. IEEE Communications Magazine,
57(1):13–19.

Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger,
C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D. (2014). P4: Program-
ming protocol-independent packet processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95.

Kuzniar, C., Neves, M., Gurevich, V., and Haque, I. (2022a). IoT Device Fingerprinting
on Commodity Switches. In NOMS 2022-2022 IEEE/IFIP Network Operations and
Management Symposium, pages 1–9.

Kuzniar, C., Neves, M., and Haque, I. (2022b). IoT Device Fingerprinting on Commodity
Switches. In Dalhousie Computer Science In-House Conference, pages 1–9. Poster
Session.

Lantz, B., Heller, B., and McKeown, N. (2010). A network in a laptop: rapid prototyping
for software-defined networks. In 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, pages 1–6.

Nunes, B. A. A., Mendonca, M., Nguyen, X.-N., Obraczka, K., and Turletti, T. (2014).
A survey of software-defined networking: Past, present, and future of programmable
networks. IEEE Communications Surveys Tutorials, 16(3):1617–1634.

Open Networking Foundation (2023). P4Language Repository. https://github.
com/p4lang.

Sánchez, P. M. S., Valero, J. M. J., Celdrán, A. H., Bovet, G., Pérez, M. G., and
Pérez, G. M. (2021). A survey on device behavior fingerprinting: Data sources, tech-
niques, application scenarios, and datasets. IEEE Communications Surveys Tutorials,
23(2):1048–1077.

Tan, L., Su, W., Zhang, W., Lv, J., Zhang, Z., Miao, J., Liu, X., and Li, N. (2021). In-band
Network Telemetry: A Survey. Computer Networks, 186:107763.

Tu, N. V., Hyun, J., Kim, G. Y., Yoo, J.-H., and Hong, J. W.-K. (2018). Intcollector: A
high-performance collector for in-band network telemetry. In 2018 14th International
Conference on Network and Service Management (CNSM), pages 10–18.


