
Análise de Desempenho e Eficácia da Sonda Zeek: Um Estudo
Comparativo de Perfis de Execução sob Restrições de Recursos

Rafael B Torres1 , Rodrigo Brandão Mansilha1 , Diego Kreutz1

1AI Horizon Labs – Programa de Pós-Graduação em Engenharia de Software (PPGES)
Universidade Federal do Pampa (UNIPAMPA)

{rafaelbarboza.aluno, rodrigomansilha, diegokreutz}@unipampa.edu.br

Abstract. This work evaluates the performance and efficacy of Zeek as a secu-
rity probe within the GT-IoTEdu project, considering its superior potential for
behavioral analysis compared to signature-based NIDS. The experiment invol-
ves five network attacks, two Zeek execution modes (Standard Mode and Intel
Framework Mode), and four hardware environments simulated via Docker, ran-
ging from limited IoT devices to robust servers. The results demonstrate total
detection efficacy and viability on devices with 1 GB of RAM (Raspberry Pi
4), being unfeasible only on low-memory routers (<256 MB), where the Intel
Framework impacted latency. It is noteworthy that the analysis was based on
resource emulation, not verifying the native performance of the ARM architec-
ture, a step reserved for future work.

Resumo. Este trabalho avalia o desempenho e a eficácia do Zeek como sonda
de segurança no projeto GT-IoTEdu, considerando seu potencial superior de
análise comportamental em comparação com NIDS baseados em assinatura. O
experimento envolve cinco ataques de rede, dois modos de execução do Zeek
(Modo Padrão e Modo Intel Framework) e quatro ambientes de hardware simu-
lados via Docker, variando de dispositivos IoT limitados a servidores robustos.
Os resultados demonstram eficácia total de detecção e viabilidade em disposi-
tivos com 1 GB de RAM (Raspberry Pi 4), sendo inviável apenas em roteadores
de baixa memória (<256 MB), onde o Intel Framework impactou a latência.
Ressalta-se que a análise se baseou em emulação de recursos, não verificando
o desempenho nativo da arquitetura ARM, etapa reservada para trabalhos fu-
turos.

1. Introdução
A proliferação de dispositivos IoT tem ampliado de forma significativa a superfície de
ataque e introduzido novos vetores de ameaça. Um exemplo marcante ocorreu em 2016,
quando a botnet Mirai explorou dispositivos vulneráveis para lançar um dos maiores ata-
ques de DDoS já registrados [Antonakakis et al. 2017]. Situações como essa evidenciam
a necessidade de ferramentas capazes de monitorar e analisar tráfego em tempo real, como
Suricata, Snort e Zeek, que permitem identificar comportamentos anômalos e detectar ati-
vidades maliciosas antes que comprometam a rede.

Nas universidades brasileiras, o aumento de dispositivos IoT conectados transfor-
mou laboratórios, pesquisas e infraestrutura em ambientes ciberfísicos complexos, am-
pliando a demanda por mecanismos robustos de monitoramento e controle. O cenário

Anais da ERRC 2025: Artigos Completos da ERRC

1



institucional é marcado por grande heterogeneidade: enquanto UFRGS e Unicamp ado-
tam processos formais, embora lentos, de homologação de dispositivos, instituições como
UNIPAMPA e UFAM não possuem políticas estruturadas para gestão de IoT. A falta de
padronização gera práticas improvisadas, inconsistências operacionais e maior exposi-
ção a vulnerabilidades, sobretudo em campi que reúnem centenas de dispositivos sem
coordenação centralizada. Nesse contexto, o IoTEdu1 propõe um modelo unificado de
registro, controle de acesso e monitoramento contínuo, adaptado às necessidades das ins-
tituições acadêmicas brasileiras. Entre seus objetivos está a implementação de sondas de
segurança capazes de operar em diferentes pontos da rede, utilizando ferramentas como
Suricata, Snort e Zeek, desde roteadores até dispositivos IoT com recursos restritos.

Neste trabalho, realiza-se uma avaliação de desempenho da ferramenta Zeek para
investigar sua viabilidade como um dos componentes centrais de monitoramento no Io-
TEdu, examinando a relação entre custo computacional e capacidade de detecção. O
estudo considera três dimensões: (i) a eficácia do Zeek frente a cinco vetores de ataque
distintos; (ii) o impacto sobre CPU, memória e latência quando executado em quatro per-
fis de hardware simulados via Docker, variando de dispositivos de borda a servidores mais
robustos; e (iii) a sobrecarga introduzida pelo Modo Intel Framework em comparação ao
modo desabilitado, permitindo quantificar o custo associado à correlação de inteligência
de ameaças em tempo real.

2. Trabalhos Relacionados
A literatura sobre monitoramento de redes e detecção de intrusão frequentemente compara
três classes principais de ferramentas: sistemas baseados em assinatura, como o Snort;
motores multithread com processamento otimizado, como a Suricata; e plataformas orien-
tadas à análise comportamental e telemetria, como o Zeek [Waleed et al. 2022, san 2024].
Estudos específicos sobre o Zeek destacam que sua arquitetura orientada a eventos e sua
produção de logs transacionais (por exemplo, conn.log, http.log, dns.log) o tor-
nam especialmente adequado para investigação pós-incidente e monitoramento contínuo,
embora seu custo computacional varie de acordo com o volume de tráfego e a configura-
ção de workers e threads [zee 2025, project (GitHub) 2024].

No contexto de redes IoT, pesquisas recentes investigam a viabilidade de empre-
gar sondas como o Zeek em ambientes de recursos limitados. Trabalhos como os de
[Huda et al. 2025, Farag et al. 2025, report) 2025] demonstram que o Zeek é capaz de
detectar exfiltração por DNS e outros comportamentos anômalos nesses cenários, mas
ressaltam que sua execução em dispositivos com memória muito reduzida (como rotea-
dores OpenWRT com 128–256 MB) apresenta limitações relevantes. Em contrapartida,
plataformas como Raspberry Pi 4 e máquinas virtuais leves mostram-se adequadas para
atuação como sondas de borda, desde que se considere o equilíbrio entre latência, taxa de
eventos e funcionalidades adicionais, incluindo o uso do Intel Framework.

A literatura também discute o impacto da integração com fontes de inteligência de
ameaças (IoCs). A documentação oficial e relatos de implantação apontam que o Intel-
ligence Framework do Zeek facilita a correlação entre indicadores e eventos observados,
mediante um mecanismo projetado para otimizar memória e desempenho. Ainda assim,
notas técnicas e estudos de caso relatam aumentos mensuráveis de uso de CPU e memória

1https://gt-iotedu.github.io

Anais da ERRC 2025: Artigos Completos da ERRC

2



quando grandes conjuntos de IoCs são carregados e processados em tempo de execução
[zee 2025, Grashöfer 2016].

Outros trabalhos avaliam o desempenho de sistemas de detecção de intrusão, como
Suricata, Snort e Zeek, porém o fazem predominantemente sob a perspectiva de eficá-
cia de detecção, analisando métricas como taxa de acerto, cobertura e falso-positivos
[Ghazi et al. 2024, Boukebous et al. 2023, Park and Ahn 2017, Murphy 2019]. No en-
tanto, poucos estudos investigam esses IDS sob a ótica do consumo de recursos compu-
tacionais, como utilização de CPU, memória e impacto no fluxo de rede, especialmente
em cenários com restrições de hardware. Essa lacuna é particularmente relevante para
ambientes IoT e gateways de borda, nos quais a disponibilidade de recursos é limitada e
o custo operacional do IDS torna-se um fator crítico para sua adoção prática.

Em síntese, embora a literatura recente explore o uso do Zeek em IoT e o overhead
geral de IoCs, observa-se uma lacuna na quantificação isolada do custo computacional do
Intelligence Framework sob restrições granulares de recursos em ambientes conteineriza-
dos. A maioria das abordagens existentes foca na comparação generalista entre diferentes
NIDS ou em implementações em hardware físico específico, sem detalhar os limiares de
saturação ao correlacionar ameaças em tempo real. Este trabalho motiva-se, portanto,
pela necessidade de preencher essa lacuna, avaliando sistematicamente o trade-off entre
capacidade de detecção e consumo de recursos para validar a aplicabilidade da sonda no
cenário heterogêneo do projeto GT-IoTEdu.

3. Metodologia
Esta seção descreve a metodologia utilizada para conduzir um benchmark de três fato-
res (Recursos, Ataques e Perfil de Execução) aplicado à sonda Zeek. O planejamento
priorizou a reprodutibilidade dos experimentos, permitindo que diferentes pesquisadores
repliquem os resultados com mínima variação ambiental.

3.1. Ambiente

A topologia de testes foi construída com virtualização via Docker, garantindo isolamento,
controle preciso de recursos e repetibilidade. A arquitetura utiliza uma rede virtual do
tipo bridge denominada rede-alvo, que interliga todos os contêineres envolvidos no ex-
perimento, incluindo o atacante, o servidor alvo e a sonda Zeek. Nessa configuração, o
Zeek opera em modo passivo e promíscuo, recebendo uma cópia integral do tráfego entre
atacante e alvo, sem a necessidade de atuar como gateway ou participar do roteamento.

3.2. Parâmetros

O desempenho da sonda foi avaliado por meio de um desenho experimental composto
por três fatores. O experimento combina quatro níveis de capacidade de hardware virtua-
lizado, dois perfis de execução do Zeek e cinco ataques distintos, totalizando 40 cenários
de teste.

Capacidade de hardware (emulado). Para medir a sobrecarga introduzida pelo Zeek,
foram emuladas quatro configurações de implantação por meio de limites de CPU e me-
mória aplicados no arquivo docker-compose.yml com os parâmetros cpu_limit
e mem_limit. Todas as execuções ocorreram no mesmo host físico (40 GB RAM, Intel
Core i7), garantindo que apenas as restrições do contêiner variassem entre os cenários.

Anais da ERRC 2025: Artigos Completos da ERRC

3



As configurações foram: (C1) 1 núcleo de CPU e 1 GB RAM, aproximando dispositivos
como Raspberry Pi 4; (C2) 2 núcleos e 2 GB RAM, simulando máquinas virtuais leves;
(C3) 4 núcleos e 4 GB RAM, representando servidores de borda; (C4) 8 núcleos e 40 GB
RAM, atuando como referência de base.

Modos de operação. O Zeek foi configurado para gerar todos os logs transacionais e
executar todos os analisadores de protocolo, variando apenas o estado do Intelligence
Framework. Dois perfis foram avaliados: (O1) desabilitado, com operação padrão; e (O2)
habilitado, carregando um conjunto de indicadores de comprometimento para correlação
ativa.

Ataques. A A Tabela 1 apresenta os cinco ataques utilizados no experimento, executados
em contêineres isolados para garantir reprodutibilidade. Os ataques cobrem diferentes
classes de ameaças típicas de redes IoT e ambientes campus, e incluem o contêiner, as
ferramentas e uma breve descrição da ação realizada.

Tabela 1. Descrição detalhada dos Contêineres de Ataque
Contêiner Ataque Ferramentas Descrição da Ação Sucinta

dos-http (A1) DoS Attack ab, curl,
slowloris

Ataque DoS multi-vetor (+12k reqs) combinando GET Flood, POST
Flood, Slowloris (conexões lentas) e Header Flood (headers de 2KB).

brute-force-ssh (A2) Brute Force
SSH

hydra Usa hydra para 100 tentativas de login SSH (’root’) com senhas aleató-
rias.

icmp-flood (A3) ICMP
Flood

hping3 Executa ICMP flood por 10s com hping3. Usa pacotes de 1200 bytes
na velocidade máxima (-flood).

dns-tunneling (A4) DNS
Tunneling

dig (dnsutils) Envia 200 consultas DNS (dig) com subdomínios longos (12-62 chars)
e alta entropia (hex) para simular exfiltração de dados.

sql-injection (A5) SQL
Injection

sqlmap Executa sqlmap contra a URL alvo em modo batch e level 3 para ex-
plorar falhas de SQLi.

3.3. Métricas e Instrumentos de Medição

As métricas de avaliação foram organizadas em duas categorias: eficácia, relativa à de-
tecção de ataques, e eficiência, referente ao uso de recursos. Para a eficácia, avaliou-se:
(1) a capacidade de detecção (resultado binário Sim/Não); e (2) a riqueza de contexto for-
necida pelos logs, comparando a profundidade forense do Modo Inteligence Framework
desabilitado (logs transacionais) com a do modo habilitado (logs de correlação de amea-
ças). Para a eficiência, mensurou-se: (3) o pico de consumo de recursos (CPU em % por
núcleo e RAM em MB); e (4) a latência de alerta, definida como o tempo decorrido entre
o início do ataque e o primeiro registro relevante nos logs de notificação.

O monitoramento de recursos (CPU e RAM) foi realizado utilizando o comando
nativo docker stats. Scripts de aferição de tempo (baseados em timestamps de início
de ataque e de geração de log) foram usados para medir a latência dos alertas.

4. Resultados
O Zeek manteve desempenho consistente em todos os cenários avaliados. Independente-
mente da capacidade de hardware emulada, variando de dispositivos de baixo custo (C1)
a servidores robustos (C4), e independentemente do uso do Intelligence Framework (ha-
bilitado ou desabilitado), a sonda detectou corretamente todos os cinco ataques testados:
DoS, Brute Force SSH, ICMP Flood, DNS Tunneling e SQL Injection. Esses resultados

Anais da ERRC 2025: Artigos Completos da ERRC

4



indicam que a detecção do Zeek não é sensível às restrições de CPU e memória impos-
tas nos experimentos e que a ativação do Intelligence Framework não compromete sua
eficácia. Isso reforça sua adequação como sonda de segurança em ambientes com ampla
diversidade de recursos, como campi acadêmicos e redes IoT heterogêneas.

A Tabela 2 mostra que ataques de maior volume, como DoS e ICMP Flood, ele-
vam significativamente o consumo de CPU, especialmente em cenários com poucos re-
cursos, enquanto vetores menos intensivos apresentam impacto modesto. A ativação do
Intelligence Framework aumenta o uso de memória e pode elevar a latência, embora o
comportamento da CPU permaneça proporcional ao tipo de ataque e à capacidade dispo-
nível. No geral, o Zeek mantém operação estável mesmo em dispositivos de baixo custo,
mas com maior custo de desempenho diante de tráfego volumétrico e correlação ativa de
inteligência.

Tabela 2. Impactos dos parâmetros no uso de recursos (CPU, RAM, Latência).

Vetor de Ataque Cenário Inteligence Framework Desabilitado Inteligence Framework Habilitado

CPU
[Pico]

RAM
[Pico]

Latência
(s)

CPU
[Pico]

RAM
[Pico]

Latência
(s)

DoS Attack C1 Baixo 102.48% 139.9 MB 7s 101.14% 160.1 MB 13s

C2 Médio 109.96% 137.3 MB 7s 108.44% 159.9 MB 8s

C3 Alto 110.15% 137.2 MB 6s 109.49% 157.7 MB 8s

C4 Base 109.55% 138.2 MB 8s 112.02% 157.1 MB 8s

SQL Injection C1 Baixo 13.90% 130.8 MB 2s 12.41% 159.5 MB 4s

C2 Médio 12.96% 127.9 MB 2s 13.72% 148.0 MB 2s

C3 Alto 12.57% 128.0 MB 2s 13.35% 147.9 MB 2s

C4 Base 12.91% 128.0 MB 1s 12.65% 147.7 MB 1s

DNS Tunneling C1 Baixo 3.31% 143.8 MB 2s 2.79% 159.3 MB 4s

C2 Médio 2.90% 127.9 MB 0s 1.94% 148.1 MB 1s

C3 Alto 1.86% 128.0 MB 0s 2.12% 147.9 MB 0s

C4 Base 2.28% 127.9 MB 0s 2.10% 148.0 MB 0s

ICMP Flood C1 Baixo 13.86% 130.8 MB 3s 14.28% 159.3 MB 7s

C2 Médio 14.76% 127.9 MB 0s 12.73% 148.2 MB 1s

C3 Alto 15.02% 128.1 MB 0s 12.97% 149.9 MB 0s

C4 Base 16.61% 127.9 MB 0s 13.72% 147.7 MB 0s

Brute Force C1 Baixo 3.31% 130.8 MB 1s 1.11% 159.4 MB 3s

C2 Médio 2.22% 128.0 MB 1s 2.28% 148.2 MB 1s

C3 Alto 1.73% 128.0 MB 0s 2.14% 148.1 MB 0s

C4 Base 1.88% 128.2 MB 0s 2.30% 147.8 MB 0s

Impacto do Intel Framework no uso de memória e unidade de processamento: Em
todas as quatro capacidades e nos cinco tipos de ataque, o Modo Intel Framework con-
sumiu consistentemente cerca de 20-30 MB a mais de RAM do que quando desabilitado.
Nos ataques de baixa intensidade, onde o C4 (Base de comparação) estabilizou em 128
MB para o Modo Intel Framework desabilitado, estabilizou em 148 MB. Isso representa
um overhead de memória estático de aproximadamente 15-20% apenas para manter o fra-
mework de inteligência carregado e pronto para correlação. Em contrapartida, o impacto
na CPU para esses mesmos ataques de baixa intensidade foi desprezível, com ambos os
modos apresentando picos de consumo muito similares e baixos (entre 1% e 16%).

Anais da ERRC 2025: Artigos Completos da ERRC

5



Impacto da Restrição de Recursos na Latência: O verdadeiro impacto do Intel Fra-
mework tornou-se evidente sob estresse e restrição de recursos. No Cenário 1 (Baixo),
que simula um dispositivo de borda (1 núcleo, 1GB RAM), a latência para geração de
alertas foi drasticamente afetada. Durante o ataque de DoS (Tabela 2), a latência do
“Modo desabilitado” foi de 7 segundos, enquanto o “Modo habilitado Framework” quase
dobrou, saltando para 13 segundos. O mesmo padrão se repetiu no ICMP Flood, com 3s
(desabilitado) vs. 7s (habilitado), e nos ataques de SQLi e DNS, onde a latência também
dobrou de 2s para 4s. Isso demonstra que, sob contenção de CPU, a carga adicional do
Intel Framework, mesmo que pequena, compete por ciclos de processamento e impacta
diretamente a velocidade de resposta da sonda.

Viabilidade e Pontos de Saturação: Em todos as quatro capacidades, o pico de CPU
ultrapassou 100%, indicando que a sonda Zeek saturou o núcleo de CPU disponível (ou
mais de um, nos cenários maiores) para processar o flood de tráfego. Curiosamente, o
consumo de CPU não aumentou significativamente nos cenários com mais núcleos, e a
latência se estabilizou a partir do Cenário 2 (Médio), com 7-8s. Isso sugere que, para
esta carga de trabalho específica, 1 núcleo (Cenário 1) é um gargalo claro que degrada a
latência, mas 2 núcleos (Cenário 2) já são suficientes para lidar com o processamento sem
degradação adicional.

Viabilidade em Dispositivos de Borda (OpenWRT e Raspberry Pi): Os resultados
permitem avaliar a aplicabilidade da sonda em testbeds reais do GT-IoTEdu. A instalação
direta em roteadores com OpenWRT mostra-se inviável, já que o consumo mínimo de
RAM da sonda, com pico de aproximadamente 130MB no Cenário 1, excede a memória
total disponível na maioria desses dispositivos, normalmente entre 128MB e 256MB. Em
contraste, o Cenário 1 (Baixo) confirma o Raspberry Pi 4, com 1GB de RAM, como
uma alternativa viável, pois o pico de uso próximo de 160MB é plenamente suportado.
Entretanto, a saturação de CPU em torno de 102 por cento e a latência elevada entre 7
e 13 segundos durante ataques DoS indicam que, embora operacional, a sonda trabalha
próxima ao limite. A ativação do Modo Intel Framework nesse hardware restrito aumenta
significativamente o tempo de resposta do alerta, evidenciando um claro trade-off entre
capacidade de inteligência e desempenho em tempo real.

5. Conclusão

Este trabalho avaliou o desempenho e a eficácia do Zeek como sonda de segurança em
diferentes capacidades de hardware no contexto do GT-IoTEdu. O benchmark combinou
dois perfis de execução e quatro níveis de recursos contra cinco ataques, obtendo detec-
ção completa em todos os cenários. Os resultados mostram que o Zeek é inviável para
roteadores OpenWRT com menos de 256 MB de RAM, mas plenamente utilizável em
dispositivos com 1 GB de RAM, como o Raspberry Pi 4, nos quais o impacto do Intelli-
gence Framework permanece moderado e operacionalmente seguro quando há ao menos
dois núcleos de CPU disponíveis.

Apesar da robustez dos resultados, a avaliação apresenta limitações relevantes. A
emulação de recursos ocorreu sobre arquitetura x86, não refletindo fielmente o compor-
tamento de processadores ARM amplamente utilizados em IoT, e o tráfego sintético em
ambiente controlado não captura toda a variabilidade e ruído de redes reais. Como con-
tinuidade, pretende-se validar os achados em hardware físico ARM, desenvolver scripts

Anais da ERRC 2025: Artigos Completos da ERRC

6



de detecção específicos para IoT, otimizar o Intelligence Framework via filtragem seletiva
de IoCs e integrar os logs ao IoTEdu e a sistemas SIEM para possibilitar visualização,
correlação e análise em tempo real.

Agradecimentos

Esta pesquisa recebeu apoio parcial da RNP2, por meio do GT IoTEdu3, e da CAPES4,
sob o Código de Financiamento 001.

Referências
(2024). Evaluating the efficacy of network forensic tools: Comparative analysis of snort,

suricata, and zeek.

(2025). Intelligence framework — book of zeek. https://docs.zeek.org/en/
master/frameworks/intel.html. Documentação oficial do Zeek — seção
Intelligence Framework.

Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cestio, L., Dickerson,
R. D., Paxson, V., Rioja, J. R., Saha, S., Svoboda, D., Ullrich, J. D., Weiss, M., and
Durumeric, Z. (2017). Understanding the Mirai botnet. In 26th USENIX Security
Symposium (USENIX Security 17), pages 1093–1110. USENIX Association.

Boukebous, A. A. E., Fettache, M. I., Bendiab, G., and Shiaeles, S. (2023). A comparative
analysis of snort 3 and suricata. In 2023 IEEE IAS Global Conference on Emerging
Technologies (GlobConET), pages 1–6. IEEE.

Farag, W. et al. (2025). Development and evaluation of a novel iot testbed for ...

Ghazi, D. S., Hamid, H. S., Zaiter, M. J., and Behadili, A. S. G. (2024). Performance and
efficacy of snort versus suricata in intrusion detection: A benchmark analysis. In AIP
Conference Proceedings, volume 3232, page 020024. AIP Publishing LLC.

Grashöfer, J. (2016). The intelligence framework update. https://zeek.org/
2016/12/the-intelligence-framework-update/.

Huda, S., Musthafa, M. B., and Nogami, Y. (2025). A performance evaluation of zeek-
based intrusion detection in agricultural iot security.

Murphy, B. R. (2019). Comparing the performance of intrusion detection systems: Snort
and Suricata. PhD thesis, Colorado Technical University.

Park, W. and Ahn, S. (2017). Performance comparison and detection analysis in snort and
suricata environment. Wireless Personal Communications, 94(2):241–252.

project (GitHub), Z. (2024). Zeek benchmarkers.

report), M. D. H. D. (2025). Evaluating zeek and suricata for intrusion detection —
thesis/report.

Waleed, A., Jamali, A. F., and Masood, A. (2022). Which open-source ids? snort, suricata
or zeek. Computer Networks, 213:109116.

2https://www.rnp.br
3https://gt-iotedu.github.io
4https://www.gov.br/capes/pt-br

Anais da ERRC 2025: Artigos Completos da ERRC

7


