
Net2d-LLM: Translating Structured Network Intents into CLI
using LLMs with Execution in a Network Digital Twin

Jerônimo Menezes1, Leonardo Bitzki1, Diego Kreutz1

1AI Horizon Labs
Programa de Pós-Graduação em Engenharia de Software (PPGES)

Universidade Federal do Pampa (UNIPAMPA)

jscmenezes@gmail.com, bitzki@ufrgs.br, diegokreutz@unipampa.edu.br

Abstract. This paper evaluates the use of Large Language Models (LLMs) to
translate structured network intents, expressed as Desired State Models (DSMs),
into vendor–specific CLI configurations. Net2d–LLM implements a determinis-
tic, single–pass pipeline in which DSMs are rendered into constrained prompts
and translated into CLI commands executed within a Network Digital Twin
(NDT). The evaluation compares multiple LLMs under identical conditions,
using latency, token usage, efficiency, and configuration consistency as asses-
sment dimensions. The results show that general–purpose LLMs, when guided
by structured prompts, can reliably generate syntactically valid and functionally
correct configurations, demonstrating reproducibility and confirming the feasi-
bility of LLM–driven automation in multivendor network environments.

1. Introduction
Configuring network devices remains a critical and error-prone activity, particularly in
heterogeneous environments with multiple vendors and software versions. Traditional
automation techniques based on templates and scripts reduce operational effort but are
brittle under contextual variations and require continual expert maintenance. In paral-
lel, recent work has explored the use of Large Language Models (LLMs) to translate
high-level intents into device configurations. However, most approaches rely on free-
form natural language input, which introduces ambiguity and limits objective, reprodu-
cible evaluation [Mondal et al. , Wang et al. ]. Recent surveys highlight the absence of
standardized inputs, structured benchmarks, and consistent evaluation protocols in this
area [Hong et al. , Liu et al. ].

This work adopts Desired State Models (DSMs), that are structured JSON repre-
sentations of the target configuration which may be originated from a Network Source
of Truth (NSoT) or management systems. DSMs are translated into CLI using a single
vendor-agnostic prompt template that constrains the LLM to emit concise, command-only
output. The resulting CLI is executed in a Network Digital Twin (NDT) composed of vir-
tualized devices, enabling measurement of latency, token usage, and token efficiency, as
well as functional validation through data-plane connectivity.

The contributions of this paper are fourfold: (i) a structured and standardized
set of DSMs, together with a reproducible evaluation protocol; (ii) a vendor-agnostic
prompt template that guides deterministic CLI generation across multiple models; (iii) a
quantitative comparison of several LLMs under identical conditions using metrics such
as latency, token counts, and efficiency; and (iv) a fully reproducible workflow composed

Anais da ERRC 2025: Artigos Completos da ERRC

1



of logs, scripts, and consolidated CSV outputs, enabling further analysis and community
reuse.

The scope of this study focuses on Layer 2 operations, such as VLAN definitions
and port modes, to minimize variability and maximize reproducibility. Extending the
approach to broader configuration domains and multivendor environments is left as future
work, supported by the same experimental methodology.

2. Related Work

The use of Large Language Models (LLMs) in network automation has progres-
sed rapidly, particularly in translating high level intents into device configurations
[Wei et al. 2025a, Mekrache et al. 2024, Angi et al. 2025, Mekrache and Ksentini 2024,
Fuad et al. 2024, Tageldien et al. 2025, Tu et al. 2025, Wei et al. 2025b]. Most existing
approaches rely on free form natural language, which introduces ambiguity, increases va-
riability in generated outputs, and complicates reproducible evaluation. Recent surveys
highlight the absence of standardized benchmarks, structured input formats, and consis-
tent experimental protocols in this domain [Hong et al. , Liu et al. ].

Existing work can be grouped into two categories. The first comprises natural
language driven approaches such as NETBUDDY [Wang et al. ], S Witch [Jeong et al. ],
LLM NetCFG [Lira et al. ], and CoSynth VPP [Mondal et al. ]. These systems trans-
late textual descriptions into configurations or policies using prompting strategies, syntax
checking, or simulated verification. Despite their expressiveness, they remain sensitive to
linguistic variation and typically do not execute CLI on real or virtualized devices.

The second category includes structured model based approaches such as Apple-
Seed [Lin et al. ] and the work by Hollósi et al. [Hollósi et al. ], which rely on formal in-
tents or YANG models to generate NETCONF configurations under schema constraints.
These efforts improve determinism but do not explore the use of general purpose LLMs
nor evaluate actual CLI execution.

Tabela 1. Summary of LLM-based network configuration approaches (2023–
2025).

Work Input Type Output Execution / Verifica-
tion

NETBUDDY (2023) Natural language (NL) Conceptual config No device execution

S-Witch (2024) Natural language (NL) CLI Simulated NDT

LLM-NetCFG (2024) Natural language (NL) CLI Dry-run only

AppleSeed (2023) Structured intents Multi-domain Schema-based checks

Hollósi et al. (2024) YANG models NETCONF Schema validation

CoSynth/VPP (2023) NL + base config CLI External verifier

(Net2d-LLM) DSM (JSON) CLI Real NDT execution

Table 1 summarizes representative efforts. None combine structured intents, de-
terministic prompt rendering, and real CLI execution in a Network Digital Twin (NDT). In

Anais da ERRC 2025: Artigos Completos da ERRC

2



contrast, our work adopts JSON based DSMs, a single vendor agnostic prompt template,
and real execution in a virtualized network environment, enabling quantitative compari-
son across multiple LLMs under a fully reproducible protocol.

3. Net2d-LLM Architecture

Net2d-LLM implements a single-pass pipeline that translates structured intents into
vendor-specific CLI and executes them on virtual devices in a Network Digital Twin
(NDT). The pipeline fixes the input structure, prompt rendering, and execution environ-
ment so that different LLMs can be compared under identical conditions. Figure 1 sum-
marizes the workflow: a Desired State Model (DSM) is rendered into a prompt, translated
into CLI, and executed in the NDT, with logs and metrics recorded for analysis.

Desired State
Model (DSM)

Prompt
Renderer

LLM
Translator

CLI
Commands

NDT
Logs & Metrics

Figura 1. High-level Net2d-LLM pipeline.

3.1. Pipeline Overview

The pipeline has three stages. First, DSMs encoded in JSON specify interface parameters,
VLANs, and operational mode. Using a single structured format ensures that all LLMs
receive the same technical context.

Second, a vendor-agnostic prompt renderer converts the DSM into a constrained
prompt that instructs the LLM to output only CLI commands, without prose or comments.
The same prompt structure is used across models, and each LLM is invoked with fixed
API parameters.

Third, the resulting CLI is executed in the NDT, and device output and token sta-
tistics are saved automatically. Correctness is assessed manually through inspection of
logs and data-plane connectivity; no automated diffing or remediation loop is implemen-
ted. This keeps the pipeline simple and reproducible while still exercising real device
behavior.

The NDT environment is intentionally minimal, serving solely as a functional
validator for the CLI produced by the LLMs. Because the aim is to evaluate the transla-
tion pipeline rather than vendor-specific behavior or network design, focusing on Layer 2
primitives and a single virtualized platform keeps the environment simple, reproduci-
ble, and free of protocol-level variability. This choice isolates the contribution of the
DSM→prompt→LLM→CLI pipeline, which is the central focus of this work.

3.2. Desired State Models (DSMs)

A DSM is a structured representation of the desired configuration and may originate from
a Network Source of Truth (NSoT) or other management systems. It captures intent in a
machine readable format and removes the ambiguity typically associated with free form
descriptions. Listing 1 shows a simplified example used in the evaluation, illustrating how
operational parameters can be expressed in a consistent and vendor agnostic manner.

Anais da ERRC 2025: Artigos Completos da ERRC

3



Using a single DSM structure for all models ensures that any differences in the
generated CLI result from model behavior rather than variations in the input. This unifor-
mity is essential for reproducible evaluation and allows direct comparison across LLMs
under identical conditions. It also reinforces the separation between intent specification
and configuration translation, a key requirement for deterministic and scalable network
automation workflows.

Listing 1. Example Desired State Model (DSM).

{
"device": "nexus01",
"interface": {
"name": "Ethernet1/2",
"mode": "trunk",
"tagged_vlans": [
{ "vid": 10, "name": "VLAN010" },
{ "vid": 20, "name": "VLAN020" }

],
"untagged_vlan": { "vid": 20, "name": "VLAN020" }

}
}

3.3. Prompt Renderer and LLM Translator

The prompt renderer applies a single deterministic template that injects device and inter-
face information into a fixed instruction block. Constraints include producing only confi-
guration commands, avoiding invented parameters, and ensuring that referenced VLANs
are created before being applied. The complete template is provided in the experimental
artifacts.

The LLM translator submits the rendered prompt to the selected model and records
the raw output, latency, and token usage. No vendor-specific logic is embedded in the
translator itself; vendor details appear only in the rendered prompt.

3.4. Execution in the NDT and Resulting Artifacts

CLI commands are applied to virtual devices (NX-OSv) using standard configuration-
mode handling. All outputs, including the prompt, LLM response, extracted commands,
device return, and usage metadata, are stored in per-run directories. These artifacts enable
manual validation and support the quantitative analysis presented in Section 4.

3.5. Notes on Determinism

The pipeline encourages syntactic determinism (stable CLI shape) by fixing inputs and
prompt structure, and functional determinism (equivalent operational state) through repe-
ated execution under identical conditions. In this work, determinism is assessed qualitati-
vely via log inspection and connectivity checks.

4. Experimental Evaluation
This section evaluates how different LLMs behave when translating structured intents
(DSMs) into vendor-specific CLI using the single-pass pipeline described in Section 3.

Anais da ERRC 2025: Artigos Completos da ERRC

4



Experiments were performed in a Network Digital Twin (NDT) composed of virtualized
Cisco NX-OSv devices and Linux hosts. All executions were automated, and each stage
of the pipeline produced log artifacts for inspection.

4.1. Objectives and Setup

The study investigates two questions: (i) whether LLMs generate syntactically valid and
functionally correct CLI under a fixed input structure and prompt; and (ii) how latency,
token usage, and efficiency vary across models.

The evaluation is strictly single-pass, with no automated remediation. Each
run executes the sequence DSM → prompt → LLM → CLI → device, producing ar-
tifacts such as prompt.txt, llm_response.txt, device_return.txt, and
usage.json. Functional correctness was checked by inspecting device outputs and ve-
rifying end-to-end connectivity (e.g., successful ping between lab-ger and hostA).

4.2. DSM Set and Execution Rounds

The evaluation used a small but representative set of structured DSMs covering common
Layer 2 scenarios, including access ports, trunk ports with multiple tagged VLANs, and
different choices of native VLAN. Each DSM was executed exactly once per model under
identical conditions, reflecting the single-pass philosophy of this work. The goal is not
to optimize or correct model responses through retries or feedback loops, but rather to
observe each LLM’s raw behavior when exposed to the same deterministic input. The
complete DSM set used in the evaluation is included in the public repository.

4.3. Metrics

Four quantitative metrics are considered:

• Average latency (ms): mean LLM response time;
• Maximum latency (ms): worst-case response time;
• Average and maximum tokens: number of tokens generated per prompt;
• Efficiency (tokens/s): total tokens divided by total time.

These metrics are objective and reproducible, as they are extracted directly from
the recorded artifacts.

4.4. Results

Table 2 summarizes the results for the four evaluated models. Each model processed the
same DSM set under identical conditions.

Tabela 2. Performance comparison across evaluated LLMs. Efficiency = tokens/s.

LLM Avg. Lat. (ms) Max Lat. (ms) Avg. Tokens Max Tokens Efficiency

ChatGPT (gpt-4o) 2870 4999 585 602 203.83

DeepSeek (deepseek-chat) 3798 4884 653 691 171.92

Groq (gpt-oss-20b) 2156 2873 1184 1465 549.55

Gemini (gemini-2.5-flash) 6792 9685 1746 2201 257.23

Anais da ERRC 2025: Artigos Completos da ERRC

5



Across DSMs, latency and token usage exhibited low variability within each mo-
del, with no failed executions or outlier behaviors. These observations suggest that the
differences reported in Table 2 are primarily due to intrinsic model performance and API
behavior, rather than instability in the pipeline itself.

All models produced syntactically valid and functionally correct CLI, achieving
connectivity between lab-ger and hostA. Groq-20B exhibited the highest efficiency
(549 tokens/s) and lowest average latency. GPT-4o offered the best balance between
speed and consistency. Gemini 2.5 Flash and DeepSeek-Chat showed higher latency but
maintained functional completeness.

4.5. Qualitative Observations

Inspection of logs showed that all models adhered to the prompt constraints. Differences
were limited to command ordering and spacing, with no functional impact. No destructive
or unexpected operations were generated, and all VLAN and interface configurations were
applied successfully. Performance differences mainly reflect model architecture and API
latency rather than inconsistencies in the pipeline.

4.6. Artifact Availability

To ensure full reproducibility, all DSMs, prompts, model outputs, device logs, and con-
solidated evaluation metrics will be made publicly available at:

https://gitlab.com/net2d-community/net2d-labs

The repository will also include the helper scripts used for data aggregation and
analysis, enabling complete replication of the experimental workflow.

5. Conclusion and Future Work
This paper presented Net2d LLM, a single pass pipeline that translates structured network
intents (DSMs) into vendor specific CLI using general purpose language models. By fi-
xing the DSM format, prompt template, and execution environment, the approach enables
reproducible comparison across models and reduces the ambiguity found in natural lan-
guage inputs. Real device execution in an NDT allows direct assessment of syntactic and
functional correctness.

All evaluated models produced valid and consistent configurations under a strict
single pass workflow. Structured prompts stabilized model behavior, and each LLM exhi-
bited a distinct performance profile: Groq 20B was the most efficient, GPT 4o offered
the best balance between speed and stability, and Gemini 2.5 Flash and DeepSeek Chat
maintained functional completeness despite higher latency. The evaluation, however, was
limited to Layer 2 operations, a single network operating system, and manual inspection
of logs.

Compared to prior work, Net2d LLM combines structured DSM inputs, determi-
nistic prompt rendering, and execution in a network digital twin, creating a reproducible
evaluation pipeline. Future work includes expanding to a multivendor NDT, integrating
open source and locally hosted models, automating configuration verification, and pu-
blishing a larger DSM benchmark. All artifacts from this study will be released to support
reproducibility and ongoing research.

Anais da ERRC 2025: Artigos Completos da ERRC

6



Acknowledgements
This research received partial support from the RNP1, through the IoTEdu2 Working
Group, and from the CAPES3, under Financing Code 001.

Referências
Angi, A., Sacco, A., and Marchetto, G. (2025). LLNeT: An intent-driven approach to

instructing softwarized network devices using a small language model. IEEE TNSM.

Fuad, A., Ahmed, A. H., Riegler, M. A., and Čičić, T. (2024). An intent-based networks
framework based on large language models. In IEEE NetSoft, pages 7–12.

Hollósi, G., Ficzere, D., and Varga, P. Generative AI for low-level NETCONF configura-
tion in network management based on YANG models. In IEEE CNSM, pages 1–7.

Hong, J., Tu, N., and Hong, J. A comprehensive survey on LLM-based network manage-
ment and operations. 35(6):e70029.

Jeong, E.-D., Kim, H.-G., Nam, S., Yoo, J.-H., and Hong, J. W.-K. S-witch: Switch
configuration assistant with LLM and prompt engineering. In IEEE NOMS, pages 1–7.

Lin, J., Dzeparoska, K., Tizghadam, A., and Leon-Garcia, A. AppleSeed: Intent-based
multi-domain infrastructure management via few-shot learning. In IEEE NetSoft.

Lira, O. G., Caicedo, O. M., and da Fonseca, N. L. S. Large language models for zero
touch network configuration management.

Liu, F., Farkiani, B., and Crowley, P. A survey on large language models for network
operations & management: Applications, techniques, and opportunities.

Mekrache, A. and Ksentini, A. (2024). Llm-enabled intent-driven service configuration
for next generation networks. In IEEE NetSoft, pages 253–257.

Mekrache, A., Ksentini, A., and Verikoukis, C. (2024). Intent-based management of next-
generation networks: An llm-centric approach. Ieee Network, 38(5):29–36.

Mondal, R., Tang, A., Beckett, R., Millstein, T., and Varghese, G. What do LLMs need
to synthesize correct router configurations? In 22nd ACM HotNets, pages 189–195.

Tageldien, M., Selim, B., and Sboui, L. (2025). Large language models in intent-based
networking: a comprehensive survey across the intent lifecycle. In ITC-Egypt. IEEE.

Tu, N., Nam, S., and Hong, J. W.-K. (2025). Intent-based network configuration using
large language models. International Journal of Network Management, 35(1):e2313.

Wang, C., Scazzariello, M., Farshin, A., Kostic, D., and Chiesa, M. Making network
configuration human friendly.

Wei, Y., Xie, X., Hu, T., Zuo, Y., Chen, X., Chi, K., and Cui, Y. (2025a). Inta: Intent-
based translation for network configuration with llm agents. In IEEE 33rd ICNP, pages
1–16.

Wei, Y., Xie, X., Zuo, Y., Hu, T., Chen, X., Chi, K., and Cui, Y. (2025b). Leveraging llm
agents for translating network configurations. arXiv preprint arXiv:2501.08760.
1https://www.rnp.br
2https://gt-iotedu.github.io
3https://www.gov.br/capes/pt-br

Anais da ERRC 2025: Artigos Completos da ERRC

7


