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Abstract. This work optimizes a network packet classification model based on
similarity vectors for the CIC-IDS-2018 dataset. To address memory challenges
exceeding 100 GB RAM, the FAISS library replaced the k-NN algorithm, ena-
bling analysis on a high-performance VM. Replicating original test scenarios
with additional precision metrics revealed low effectiveness in detecting under-
represented attacks, reflecting the accuracy paradox in imbalanced datasets.
While optimizations proved successful, data balancing is necessary for robust
intrusion detection systems.

Resumo. Este trabalho otimiza um modelo de classificação de pacotes de rede
baseado em vetores de similaridade para o dataset CIC-IDS-2018. Para en-
frentar desafios de memória superiores a 100 GB de RAM, a biblioteca FAISS
substituiu o algoritmo k-NN, possibilitando análise em uma VM de alta per-
formance. A replicação dos cenários de teste originais com métricas adi-
cionais de precisão revelou baixa efetividade na detecção de ataques sub-
representados, refletindo o paradoxo da acurácia em datasets desbalanceados.
Embora as otimizações tenham sido bem-sucedidas, o balanceamento de dados
é necessário para sistemas de detecção de intrusão robustos.

1. Introdução
Com a crescente dependência global em tecnologia, esses ativos se tornam cada vez
mais valiosos. Consequentemente, a necessidade de protegê-los torna-se uma priori-
dade [IBM X-Force 2022]. Diante deste cenário, os Network Intrusion Detection Sys-
tem (NIDS) trabalham recebendo tráfego de rede e comparando os padrões (assinaturas)
com seu banco de dados de ameaças conhecidas. Se houver correspondência, a intrusão é
identificada [Sharafaldin et al. 2018].

O projeto desenvolvido utiliza NIDS aprimorados com Aprendizado de Máquina
(ML). Esta abordagem visa superar as limitações das NIDS tradicionais, cuja rigidez
de dados impede de identificar ameaças novas e evoluı́das [Singhal 2001]. No entanto,
a migração de classificadores existentes para datasets modernos e massivos, como o
CIC-IDS-2018, apresenta desafios computacionais e de análise. Este trabalho aborda a
otimização de um classificador baseado em similaridade para lidar com esse volume de
dados e analisa criticamente seu desempenho em um cenário de classes desbalanceadas.

2. Objetivos
Este trabalho tem como objetivo investigar o desempenho de um classificador de ata-
ques de rede baseado em similaridade, modernizado através da substituição do algoritmo
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k-NN pela biblioteca FAISS para operar com eficiência no volume massivo do dataset
CIC-IDS-2018. A análise busca validar essa otimização comparando-a com resultados
obtidos em datasets anteriores (CIC-IDS-2017) e aplicando métricas estatı́sticas robustas,
como F1-Score e médias por classe. O foco central é evidenciar o impacto crı́tico do des-
balanceamento de dados, quantificando o paradoxo da acurácia e a limitações do modelo
na detecção de ameaças sub-representadas.

3. Análise Comparativa dos Datasets

A transição para o dataset CIC-IDS-2018 impõe desafios de volume e complexidade su-
periores aos do CIC-IDS-2017 [Sharafaldin et al. 2018]. A motivação para a arquitetura
proposta decorre de experimentos preliminares no dataset de 2017, onde a classificação
por similaridade demonstrou alto potencial, atingindo 93,25% de precisão em cenários
controlados e balanceados. Contudo, a técnica mostrou-se inviável em larga escala de-
vido ao custo da busca em força bruta. A necessidade de reduzir a base de treino para
apenas 25% das amostras resultou em perda de representatividade, derrubando a precisão
global para 63,58%. Para superar essa limitação e processar o CIC-IDS-2018 em sua
totalidade, este trabalho implementa a otimização via FAISS em infraestrutura de alto
desempenho, concretizando a necessidade de paralelização apontada nos experimentos
anteriores para recuperar a eficácia do modelo.

3.1. Volume de Dados

O dataset CIC-IDS2018 apresenta um volume significativamente maior de dados em
comparação ao CIC-IDS2017. Como consequência, houve um aumento substancial na
demanda de processamento, exigindo aproximadamente 80 GB de memória RAM, com
picos que chegaram a 100 GB durante a execução dos experimentos. Além disso, observa-
se uma diferença marcante na proporção entre amostras benignas e maliciosas, o que in-
troduz um desbalanceamento acentuado o que impacta diretamente as etapas de análise e
modelagem.

3.2. Diferenças de Rotulagem entre Datasets

As divergências entre os dois datasets (CIC-IDS2017 e CIC-IDS2018) não se limitam a
um simples aumento no volume de dados; a forma como as informações são organizadas
também difere. Algumas diferenças relevantes incluem:

• Remoção de ataques especı́ficos: Os ataques Heartbleed e PortScan, pre-
sentes no dataset de 2017, foram eliminados no conjunto de 2018.

• Reorganização de categorias de ataque: A categoria DDoS, que no CIC-
IDS2017 se fazia presente como uma única label (rótulo) genérica, foi sub-
dividida no CIC-IDS2018 em classificações mais especı́ficas, como DDoS
attack-HOIC e DDoS attack-LOIC-UDP.

• Alterações de nomenclatura: Ataques como DoS Hulk, GoldenEye,
SlowHTTPTest, Slowloris, FTP-BruteForce, SSH-Bruteforce,
Bot, Infiltration, Web Brute Force, Web XSS e SQL Injection
foram mantidos no novo dataset, porém sofreram pequenas modificações em seus
nomes ou padronizações.

Anais da ERRC 2025: Artigos Completos da ERRC

2



A distribuição de rótulos de cada dataset está representada na Tabela 1 e Tabela 2.

Tabela 1. Distribuição de
rótulos no CICIDS 2017

Nome Ocorrência
BENIGN 2.272.895
DoS Hulk 231.072
PortScan 158.930
DDoS 128.027
DoS GoldenEye 10.293
FTP-Patator 7.938
SSH-Patator 5.897
DoS slowloris 5.796
DoS Slowhttptest 5.499
Bot 1.966
Web Attack Brute Force 1.507
Web Attack XSS 652
Infiltration 36
Web Attack Sql Injection 21
Heartbleed 11

Tabela 2. Distribuição de
rótulos no CICIDS 2018

Nome Ocorrência
Benign 6.095.415
DDOS attack-HOIC 668.461
DoS attacks-Hulk 434.873
Bot 282.310
Infiltration 161.897
SSH-Bruteforce 117.322
DoS attacks-GoldenEye 41.455
FTP-BruteForce 39.352
DoS attacks-SlowHTTPTest 19.462
DoS attacks-slowloris 10.285
DDOS attack-LOIC-UDP 1.730
Brute Force -Web 611
Brute Force -XSS 230
SQL Injection 87

4. Metodologia
A metodologia adotada consiste em um pipeline de processamento de dados para extração
de caracterı́sticas, seguido pela construção de um classificador baseado em similaridade
vetorial otimizado.

4.1. Seleção e Pré-processamento de Dados

O conjunto de dados CIC-IDS-2018 foi submetido a um processo de limpeza e
transformação. Inicialmente, foram selecionadas 23 features estatı́sticas e de cabeçalho
consideradas mais relevantes para a caracterização de fluxos, descartando atributos redun-
dantes ou de baixo valor preditivo. As variáveis selecionadas foram:

• Identificação e Cabeçalho: Protocol, Fwd Header Len, Bwd Header Len.
• Tempo e Fluxo: Flow IAT Mean, Flow IAT Min, Flow IAT Max, Fwd IAT Mean,

Bwd IAT Mean, Idle Mean, Active Mean, Active Min, Active Max.
• Estatı́sticas de Pacotes: Fwd Pkt Len Mean, Bwd Pkt Len Mean, Fwd Pkt Len

Min, Fwd Pkt Len Max, Pkt Len Min, Pkt Len Max.
• Flags TCP: SYN Flag Cnt, PSH Flag Cnt, ACK Flag Cnt, URG Flag Cnt, FIN

Flag Cnt.

Para garantir a identificação única de cada fluxo e permitir o rastreamento durante
a classificação, foi criado um identificador composto denominado Flow Label. Este
identificador é gerado pela concatenação dos valores brutos das colunas selecionadas,
servindo como chave primária para os vetores.

O pré-processamento seguiu as seguintes etapas:

1. Limpeza: Remoção de duplicatas baseadas no Flow Label e tratamento de
valores nulos.
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2. Codificação: Os rótulos das classes (Labels) foram convertidos utilizando One-
Hot Encoding, permitindo a classificação multilabel.

3. Padronização: Foi aplicado o algoritmo StandardScaler (Z-Score), ajus-
tando as features para média 0 e desvio padrão 1. Esta etapa é crı́tica para algo-
ritmos baseados em distância, impedindo que variáveis com grandes magnitudes
dominem o cálculo vetorial.

4.2. Arquitetura do Classificador e Otimização com FAISS

A classificação baseia-se na premissa de que fluxos de ataques semelhantes possuem ve-
tores de caracterı́sticas próximos no espaço vetorial. A métrica utilizada para quantificar
essa proximidade foi a Similaridade de Cosseno.

Na implementação inicial utilizando a biblioteca scikit-learn (Nearest-
Neighbors), a complexidade computacional da busca em força bruta inviabilizou a
execução no dataset completo devido ao consumo excessivo de memória RAM e tempo
de CPU.

Para solucionar este gargalo, o módulo de busca de vizinhos foi substituı́do pela
biblioteca FAISS (Facebook AI Similarity Search). A implementação utilizou o ı́ndice
IndexFlatIP (Inner Product), que realiza o cálculo exato da similaridade. Para equi-
valer à similaridade de cosseno, os vetores de consulta e de base foram submetidos a uma
normalização L2 prévia (||v|| = 1).

O pipeline de classificação final opera da seguinte forma:

1. O conjunto de treino é indexado no FAISS.
2. Para cada fluxo do conjunto de teste, o sistema recupera os k vizinhos mais

próximos (k = 50).
3. A classificação é atribuı́da com base na frequência majoritária dos rótulos presen-

tes nesses vizinhos recuperados.

4.3. Ambiente Experimental

Os experimentos foram executados em um ambiente virtualizado de alto desempenho,
configurado para suportar a carga de dados massiva do CIC-IDS-2018.

A infraestrutura de hardware alocada para a máquina virtual (VM) consistiu em:

• Processamento: 32/64 cores de CPU Intel(R) Xeon(R) Silver 4310.
• Memória: 160 GB de RAM.
• Armazenamento: 500 GB de disco rı́gido (HDD)

A implementação do software foi realizada em linguagem Python 3, uti-
lizando o ecossistema de bibliotecas pandas e numpy para estruturação de da-
dos, scikit-learn para o pipeline de pré-processamento, e faiss-cpu para a
motorização da busca vetorial.

5. Discussão e Resultados

Para avaliar o desempenho do novo dataset e das estratégias de otimização realizadas,
foram definidos quatro cenários de teste:
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• Primeiro Cenário: Foca na detecção de ataques com baixo volume de amostras,
avaliando a capacidade do modelo em identificar classes raras.

• Segundo Cenário: Treina o modelo exclusivamente com os ataques mais fre-
quentes, submetendo-o posteriormente a um ambiente diversificado para verificar
sua capacidade de generalização.

• Terceiro Cenário: Avalia o desempenho utilizando uma divisão percentual de
todos os dados entre treino e teste.

• Quarto Cenário: Utiliza 70% do dataset para treino e 30% para teste, permitindo
uma análise mais padronizada e comparável com estudos similares.

5.1. Métricas de Avaliação

Inicialmente, a análise baseou-se nas métricas clássicas Precision e Recall [Powers 2011].
No entanto, em contextos de desbalanceamento de classes, essas métricas isoladas podem
não refletir o desempenho real nas classes minoritárias. Para superar essa limitação, este
trabalho incorporou indicadores mais robustos, calculados com o auxı́lio da biblioteca
Scikit-learn [Pedregosa et al. 2011]:

• Suporte: Representa o número absoluto de amostras de cada classe no conjunto
de teste. É fundamental para diferenciar o desempenho entre ataques massivos e
raros.

• Micro Average: Calcula a performance global, somando os verdadeiros positivos,
falsos negativos e falsos positivos de todas as classes. Tende a ser dominada pelas
classes com maior suporte e reflete a acurácia geral do sistema.

• Macro Average: Calcula a média aritmética simples das métricas de cada classe,
sem ponderar pelo suporte. Diferente da Micro, a Macro trata todas as classes com
igual importância, e penaliza severamente a pontuação final caso o modelo falhe
na detecção de ataques raros, servindo como o principal indicador de viabilidade
do sistema em cenários reais.

5.2. Testes

Os quatro testes demonstram que, apesar da acurácia global alta, o classificador falha
consistentemente em ataques raros. No teste 70/30 (Gráfico 1) e no Teste 3 (Gráfico 4),
o modelo tem ótimo desempenho nas classes comuns (Micro Avg de 0.99 e 0.94, respec-
tivamente), mas a queda abrupta na média por classe (Macro Avg de 0.57 e 0.56) revela
que o F1-Score é próximo de zero nas classes com pouco suporte. O Teste 1 (Gráfico 2)
confirma isso ao focar nos ataques menos frequentes, resultando em uma Macro Avg de
apenas 0.45, no qual somente as classes com mais exemplos têm resultados satisfatórios.
Já no Teste 2 (Gráfico 3), treinado somente com ataques comuns, a Macro Avg reduz
para 0.14, indicando que o desempenho nas demais classes praticamente desaparece. Em
conjunto, os testes demonstram que o desbalanceamento é o principal limitador do mo-
delo, independentemente do volume total de dados.
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Figura 1. Resultados do Teste
70/30 Figura 2. Resultados do Teste 1

Figura 3. Resultados do Teste 2 Figura 4. Resultados do Teste 3

6. Trabalhos Relacionados
A literatura lida com o desbalanceamento de classes variando desde reamostragem
clássica até Deep Learning. O modelo IDS-SMOTE-RF [Alshamy et al. 2021] estabelece
o benchmark padrão, utilizando a técnica SMOTE para gerar dados sintéticos simples an-
tes da classificação. Em contraste, abordagens modernas evoluı́ram para o uso de Redes
Generativas Adversárias (GANs) [Barkah et al. 2023] e arquiteturas hı́bridas com Auto-
encoders e Transformers [Kamal and Mashaly 2025], que buscam aprender a distribuição
real dos ataques para gerar amostras complexas.

A contribuição deste trabalho diferencia-se ao demonstrar empiricamente que,
mesmo resolvendo o gargalo de performance computacional com o uso do FAISS, a di-
ficuldade do modelo com ataques raros persiste no CIC-IDS-2018. Isso confirma que
o aumento de volume de dados não substitui a necessidade crı́tica da aplicação dessas
técnicas de balanceamento.

7. Conclusão
O classificador de rede foi implementado para o dataset CIC-IDS-2018 com sucesso, su-
perando as limitações computacionais observadas em trabalhos anteriores com o dataset
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de 2017. Enquanto estudos passados viram a precisão cair para 63% devido à incapaci-
dade de processar todo o volume de dados, a utilização da biblioteca FAISS aliada a uma
infraestrutura de 160GB de RAM permitiu, neste trabalho, a indexação completa do vetor
base sem perda de caracterı́sticas por restrição de hardware.

Neste trabalho, teve-se a oportunidade de demonstrar, na prática e em larga es-
cala, as limitações de um classificador treinado com dados desbalanceados. As métricas
de análise permitiram avaliar seu desempenho de forma mais precisa, revelando que, ape-
sar da alta acurácia geral, o modelo apresentava falhas crı́ticas na detecção de ataques
minoritários, um ponto que a acurácia, isoladamente, não evidencia [Powers 2011]. Com
base nessas conclusões, trabalhos futuros podem investigar outras técnicas de balance-
amento de dados para aprimorar a detecção de ataques raros, como a geração de dados
sintéticos por meio de Redes Generativas Adversárias (GANs) [Arjovsky et al. 2017]. A
melhoria da robustez do classificador contra classes minoritárias permanece como o prin-
cipal desafio para a evolução deste trabalho.
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