Anais da ERRC 2025: Artigos Completos do WRSeg

Assessing the Security Coverage of the
Google Play Integrity API on Android

Francis Vargas', Angelo Gaspar!, Diego Kreutz', Rodrigo Mansilha!

! Al Horizon Labs — PPGES — Universidade Federal do Pampa (UNIPAMPA)

{francisvargas,angelonogueira}.aluno@unipampa.edu.br

{diegokreutz, rodrigomansilha}@unipampa.edu.br

Abstract. This work evaluates the Google Play Integrity API using experiments
across four attack scenarios: compromised environments, APK tampering,
dynamic instrumentation, and request replay. The results show that the API
correctly flags device and binary modifications but remains ineffective against
runtime manipulation and replay attacks. We conclude that Play Integrity
is useful as an integrity signal source but must be combined with server-
side verification, nonces, and application hardening to provide meaningful
protection in real Android applications.

1. Introduction

With Android established as the dominant mobile platform (= 72% in 2025ﬂ attack
surfaces such as root, unofficial ROMs, repackaging, and traffic interception continue
to expand, as documented in prior work [Kim et al. 2021]. Despite layered security
architectures and Google Play Protect, recent security bulletins||continue to report critical
vulnerabilities across the ecosystem, highlighting persistent security challenges.

In this security context, the Play Integrity API has been introduced as the
official successor to SafetyNet, providing a unified attestation mechanism that evaluates
device integrity, application authenticity, and account Validit [Niemi et al. 2023]] .
Despite these advancements, important questions remain regarding its practical resilience
against advanced threat vectors, including dynamic instrumentation, APK tampering,
and adversarial network manipulation. Several of these limitations were extensively
documented in its predecessor, which reinforces the need for a systematic empirical
assessment of the current implementation.

This paper presents a controlled empirical evaluation to systematically map
the Play Integrity API’s (Application Programming Interface) security coverage. We
investigate four critical scenarios: device integrity compromise, APK modification,
runtime instrumentation, and request handling under adverse conditions, while comparing
Classic and Standard operational modes. Our contribution provides a granular assessment
of native protections versus those requiring external controls, offering evidence-based
guidance for integrating the API into comprehensive Android security strategies.

'https://gs.statcounter.com/os-market-share/mobile/worldwide
“https://source.android.com/docs/security/bulletin
3Shttps://developer.android.com/google/play/integrity

1

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://source.android.com/docs/security/bulletin
https://developer.android.com/google/play/integrity

Anais da ERRC 2025: Artigos Completos do WRSeg

2. Google Play Integrity API

The Play Integrity API verifies whether an app interaction originates from a legitimate
binary running on an authentic Android device, providing signals that help the backend
determine whether to permit or block sensitive actions. Verdicts are delivered as JSON
objects and consolidate indicators related to the application, device, account, and runtime
environment. Figure|[T]illustrates the attack vectors addressed by these verdicts in the Play
Integrity APIL.

. unpatched
" Google Play) code tjzmpermg devices Know Malware
Services applntegrity MEETS STRONG/| | playProtectVerdict
...................... INTEGRITY

Consolidadated

. signals) Play Integrity API ‘ o
3 Hyperactivity
Google Cloud recentDeviceActivity
Verditcts

- Unsafe
Backend /Api i devices/
i emulated
devicelntegrity

Our Device layer (Android)
Figure 1. Attack vectors covered by Play Integrity API verdicts.

repeated violations/
reused devices
deviceRecall (Beta)

implementation

The API provides two operational modes, Standard and Classic, summarized in
Table([I]as well as their capabiliteis and limitation in Table[2] In this work, we adopted both
modes, in which the application obtains an integrity token and sends it to the backend,
which forwards it to Google Play Integrity for decryption and validation before enforcing
the corresponding decision based on the returned signals. In Classic mode, the backend
must additionally generate and verify a per-request nonce.

Table 1. Play Integrity: Operational Modes

Aspect Standard (StandardIntegrity) Classic (IntegrityManager)

Typical purpose Recurring checks with low latency (rate- One-oft/high-value actions with tighter control over
limited). the flow.

Mitigations Automatic (Google Play): device-side Backend-driven: unique/unpredictable nonce,
cache, requestHash (action binding), in- non-repudiation, channel/request binding, time
path replay mitigation. window/expiration.

Latency (approx.) Hundreds of ms (with warm-up/cache). Seconds (fresh evaluation on each invocation).

Developer responsibility Low: integrate the token and validate server- ~ High: generate/validate nonce, enforce non-
side. repudiation, revocation and binding policies.

3. Related Work

Table |3| summarizes the principal studies on attestation and integrity verification for
Android devices, listing for each work the API used, its scope, and methodology.
Two groups of contributions are evident: threat analyses and authentication or security
mechanisms, and experimental studies that employ Play Integrity or SafetyNet to
construct security controls. Analyses include [Ibrahim et al. 2021], which examines
SafetyNet and its vulnerabilities; [Niemi etal. 2023], which surveys attestation
platforms but offers only limited discussion of concrete security mechanisms; and
[Ruggia et al. 2024], which analyzes Android malware and how Google Play’s current
authentication tools address it. Proposals include [Steinbock et al. 2025]], which develops
an anti-tampering tool and evaluates mobile applications, [Samper and Ferreira 2024],

2

Anais da ERRC 2025: Artigos Completos do WRSeg

Table 2. Play Integrity: Capabilities and Common Limitations Across Modes

Aspect Common capabilities and limitations

Robustness (HW/TEE) Exposes MEETS_BASIC/DEVICE/STRONG.INTEGRITY; STRONG requires device HW/TEE
support (varies by OEM/model/ROM).

Anti-tampering (APK) appRecognitionVerdict (PR/UV) validates version/signature; requestHash binds the
verdict to the protected action (in Standard), while in Classic the nonce fulfills this role via server-side
validation.

Compromised Covers root/bootloader/emulation via multi-layer signals (static/dynamic/behavioral). Does not

environment provide anti-instrumentation (Frida/Xposed) on its own—requires client-side RASP/obfuscation and
server-side policies.

Consolidated signals Unified payload: Application (PR/UV), Device (basic/device/strong), Licensing (L/U),
requestDetails (timestamp, hash/nonce).

Scenario coverage C1 (device) and C2 (APK) are covered; C3 (instrumentation) is out of scope; C4 (replay/non-

repudiation) depends on the backend.

Notes: (i) MEETS_STRONG_INTEGRITY depends on HW/TEE and OEM policies; (ii) replay
defense/non-repudiation is a backend responsibility (especially in Classic mode); (iii) anti-instrumentation
requires client hardening (RASP/obfuscation) and server-side signal correlation.

Table 3. Synthesis of related work.

Identification API(s) Objective / Scope Methodology
SafetyNOT (Ibrahim et al., SafetyNet Large-scale misuse of SafetyNet Empirical measurement (large-scale)
2021)
XFVSes (Zhang et al., 2023) SafetyNet; Play Integrity; Camera Security of cross-side facial Measurement + semi-automated
APIs verification detection; tool
Platform Attestation Survey DHA; Knox; Play Integrity; etc. Comparative survey of platform SLR/Survey; comparative analysis
(Niemi et al., 2023) attestation
Leveraging Remote Play Integrity; DeviceCheck/App Secure middleware for messaging Prototype; lab-controlled experiment
Attestation (Samper & Attest with RA
Ferreira, 2024)
SoK: Hardening Techniques SafetyNet; Play Integrity; App Attest Adoption/effectiveness of RASP Hybrid analysis + tool (HALY)
(Steinbock et al., 2025)
Unmasking the Veiled (Ruggia SafetyNet; Play Integrity Evasion (DETS/IETs) in Dynamic analysis; sandbox; probes
etal., 2024) malware/goodware
This work Play Integrity Coverage/limitations by scenario Lab-controlled; app + backend
(C1-C4)

which analyzes device-to-device communication scenarios, and [Zhang et al. 2023,
which investigates security weaknesses in real applications.

Our work differs from prior studies by empirically comparing Play Integrity’s
Standard and Classic modes in a real application and backend deployment across four
scenarios (C1-C4), by disentangling what the API verifies natively (app, device, and
licensing verdicts) from what requires server-side logic (non-repudiation, replay and relay
protection, action binding) and quantifying accuracy per layer, and by demonstrating
that dynamic instrumentation tools such as Frida can circumvent client-side checks,
highlighting the need for minimum client hardening (RASP or obfuscation) and server-
side signal correlation. The literature indicates that platform attestations provide strong
device and package guarantees but are insufficient to prevent in-app manipulation or
replay and relay attacks without backend validation, with persistent gaps in runtime state
assessment, cryptographic binding, and robust client-side enforcement.

4. Methodology

We conducted an empirical validation in a controlled environment, treating the Play
Integrity API as an external signal provider for backend decision-making, and all artifacts
required to reproduce our experimentsﬂ are publicly accessible. Instead of analyzing

Yhttps://github.com/francis-vargas/assessing-play-integrity-security

3

https://github.com/francis-vargas/assessing-play-integrity-security

Anais da ERRC 2025: Artigos Completos do WRSeg

internal mechanisms, we focused on production-relevant evidence such as app binary
and signature verification, device integrity state, licensing and account checks, and
environment or abuse indicators. These verdicts were processed by the backend to enforce
blocking or mitigation policies across the evaluated scenarios.

To examine the effectiveness and limitations of the Play Integrity API under
realistic adversarial conditions, we built a testbed composed of a Python 3.x backend for
token validation, multiple Android devices in distinct states (clean, rooted, and emulated),
and an application implementing both Standard and Classic API modes. Using tools such
as Frida, apktool, and apksigner, we simulated APK tampering, dynamic instrumentation,
replay and concurrency attacks, and communication interference. Consolidated backend
logs and Integrity verdicts supported a direct comparison between the two API modes and
enabled a systematic analysis of their limitations and corresponding countermeasures.

App
5. Overwrites app calls Google Play Backend
i i 2. Returns Token
Frida) L 1 .request verdict) Backend
—>Android application Play Integrity API
Server pp ! y grity e
4 |
Instrumetalization 3.Decision
device
"4. Couminication—— Frida
between Client
client and server e

Figure 2. Test flowchart of Play Integrity API.

Figure [2] shows the nominal execution flow (solid line) and the Frida bypass
path. To evaluate client-side bypass, we executed Frida 15.1.17 on a rooted device
(with frida-server) to overwrite the app’s validation methods (requestClassicToken(),
requestStandardToken(), requestCombinedToken()) at runtime. The injected JavaScript
hook intercepted these calls and suppressed token issuance while logging activity as
“blocked,” effectively neutralizing the client-side integration without influencing the
API itself. This provides direct evidence that local enforcement is bypassable. The
implications are clear: backend-only enforcement should be mandatory through the
rejection of actions not accompanied by a fresh, action-bound token, supported by nonce
strategies with anti-replay and channel binding, in addition to minimum client hardening
measures such as obfuscation, anti-hooking, RASP, and telemetry collection.

4.1. Evaluation parameters and values

The parameters used in the evaluation and their assigned values are summarized in
Table Ef} We varied device type, Android version, enabled tools, nonce configuration,
and API invocation mode. The application sequentially requested tokens from multiple
devices to ensure comparable inputs. The resulting measurements were analyzed
descriptively, examining proportions and variability across equivalent runs, with emphasis
on consistency, predictability, and detection boundaries. Latency was excluded, as it is
not a controlled or meaningful variable for security assessment.

4.2. Evaluation scenarios

The evaluation was structured into four scenarios that encompass the main attack vectors,
including device state, APK tampering, dynamic instrumentation, replay attempts, and

4

Anais da ERRC 2025: Artigos Completos do WRSeg

Table 4. Parameters and values.

Parameters Values

Device type Emulator*; Real (non-rooted)*; Real (rooted)*

Android version (environment) 10 (real); 10 (rooted)*; 11 (real)*; 13 (real)*; 14 (emulated)*; 15 (real)*; 16 (emulated)*
App version 5(1.0.4); 5 (1.0.4) tampered; 11 (1.1.1)

Enabled tool None*; Frida; Magisk*

Nonce strategy Reused; Unique*

API mode Classic*; Standard*

Note: Ttems marked with * repeat across all test scenarios.

communication interference. Table [5| summarizes the API coverage and the rationale
for each scenario, outlining how each test case targets specific integrity guaranties and
exposes the limits of Play Integrity in isolation.

Table 5. Experimental scenarios evaluated with the Play Integrity API.

Scenario Covered by API Motivation Method Specif. Param.
spec
S1: Device Yes Differentiate clean devices from compromised Real vs. rooted App=5 (1.0.4)
integrity ones (root/bootloader), validating protection comparison
against tampered environments.
S2: APK Yes Detect tampering (recompilation/ re- APK App=5 (1.0.4)
modification signing), simulating reverse engineering modification/ tampered
and redistribution of modified apps. rebuild
S3: Adversarial No Check whether runtime manipulation Simple Frida 5 App=(1.0.4)
runtime (Frida/Xposed) typical of dynamic hook tampered, Enabled
instrumentation is detected. tool=Frida
S4: Repeated Partial (depends Assess resilience to replay/stress and the need Controlled nonce Nonce strategy=
and concurrent on backend for complementary server-side controls. reuse Reused nonce, App
requests validation) version=11 (1.1.1)

Note: Unless otherwise specified, iterate over all default parameter values listed in Table 4]

5. Results and Discussion

Table [6] summarizes the outcomes for scenarios S1-S4, covering app status (PR/UV/@),
device signals (basic, device, strong), licensing (L/U), and Android or app
versions; both Classic and Standard modes exhibited identical behavior. In S1
(device integrity), non-rooted devices produce PR with basic+device and strong
when TEE or hardware-backed attestation is available, whereas rooted devices
suppress integrity signals but may still report PR and L if the app was legitimately
installed. In S2 (APK modification), repackaging consistently results in UV, altered
certificateSha256Digest, and licensing U. In S3 (adversarial runtime), Frida-
based instrumentation does not alter verdicts (PR and basic/device), demonstrating
that Play Integrity does not function as an anti-hooking mechanism. In S4 (repeated and
concurrent requests), the first request is valid, but replaying the same nonce produces
no anti-replay response and must be rejected exclusively by server-side logic. Overall,
Play Integrity reliably reports the environment and package state (S1-S2) but offers no
guaranties against manipulation after attestation or out-of-channel replay (S3—S4), which
reinforces that its effectiveness depends on disciplined backend enforcement rather than
the intrinsic precision of the signals.

Notation: PR=PLAY RECOGNIZED, UV=UNRECOGNIZED_VERSION, &=no payload;
device basic/device/strong=MEETS _BASIC/DEVICE/STRONG_INTEGRITY;
L/U=LICENSED/UNEVALUATED.

Anais da ERRC 2025: Artigos Completos do WRSeg

Table 6. Accuracy split by coverage

Scenario Android App version Device Request App basic device strong Lic. n Prec. (API) Prec. (Back.)

T1: Is the device intact (no root / unlocked bootloader / emulation)?

SI.1 13 5(1.0.4) Real (non-rooted) Classic/Standard PR basic device L 3 100% -
S1.2 15 5(1.0.4) Real (non-rooted) Classic/Standard PR basic device L 3 100% -
S1.3 10 5(1.0.4) Real (rooted) Classic/Standard PR U 3 100% -
S1.4 16 5(1.0.4) Emulated Classic/Standard @ U 3 100% -
S1.5 11 5(1.0.4) Real (non-rooted) Classic/Standard PR basic device strong L 3 100% -
S1.6 14 5(1.0.4) Emulated Classic/Standard @ U 3 100% -
T2: Is the app intact and recognized (not repackaged / re-signed)?

S2.1 13 5(1.0.4) (mod) Real (non-rooted) Classic/Standard UV U 3 100% -
S2.2 10 5(1.0.4) (mod) Emulated Classic/Standard & U 3 100% -
S2.3 15 5(1.0.4) (mod) Real (non-rooted) Classic/Standard UV U 3 100% -
S2.4 16 5(1.0.4) (mod) Emulated Classic/Standard & U 3 100% -
S2.5 11 5(1.0.4) (mod) Real (non-rooted) Classic/Standard UV U 3 100% -
S2.6 14 5(1.0.4) (mod) Emulated Classic/Standard & U 3 100% -

T3: Is client-side dynamic instrumentation (Frida) detected?

S3.1 13 5(1.0.4) (mod) Real (non-rooted) Classic/Standard UV basic device u 3- -
S3.2 10 5(1.0.4) (mod) Real (rooted) Classic/Standard @ U 3- -
S3.3 15 5(1.0.4) (mod) Real (non-rooted) Classic/Standard UV basic device Uu 3- -
S3.4 16 5(1.0.4) (mod) Emulated Classic/Standard @ u 3 - -
S3.5 11 5(1.0.4) (mod) Real (non-rooted) Classic/Standard UV basic device strong U 3 — -
S3.6 14 5(1.0.4) (mod) Emulated Classic/Standard @ U 3 - -
T4: Are repeated requests with the same nonce blocked by the integration?

S4.1 13 11(1.1.1) Real (non-rooted) Classic/Standard PR basic device L 6- 100%
S4.2 10 11 (1.1.1) Real (rooted) Classic/Standard UV U 6 - 100%
S4.3 15 11(1.1.1) Real (non-rooted) Classic/Standard PR basic device L 6- 100%
S4.4 16 11(1.1.1) Emulated Classic/Standard @ U 6 - 100%
S4.5 11 11 (1.1.1) Real (non-rooted) Classic/Standard PR basic device strong L 6 — 100%
S4.6 14 11 (1.1.1) Emulated Classic/Standard & Uu 6 - 100%

Note: Prec. (API) measures accuracy for natively covered verdicts (app/device/strong/license). Prec. (Backend) measures
accuracy for additional controls (e.g., non-repudiation and nonce replay in T4). “-” indicates not applicable / not measured.
n indicates number of requisitions.

Table 7. Summary of results of the scenarios

Scenario Objective Layer/target Findings
C1 Device integrity Dev Intact: MDI; rooted: E{} (signal suppression); detects root
(root)
C2 APK tampering APK UV + divergent certDigest; MDI maintained; prevents modified APKs
(repackaging)
C3 Dynamic Dev MDI/PR maintained; bypassable locally; additional hardening needed
instrumentation
(Frida)
C4 Replay/nonce reuse Srv, Net API accepts token; backend blocks (HTTP 400); server-side non-repudiation

Abbreviations: PR = PLAY_RECOGNIZED; UV = UNRECOGNIZED_VERSION; MDI = MEETS_DEVICE_INTEGRITY ; E{} =
empty object (API omits signals in compromised environment).

Our results indicate that Play Integrity should function as a security signal oracle
rather than a final control mechanism. Effective implementation requires server-side
validation with unique per-action nonces, short-lived tokens, and request-action binding,
complemented by client-side hardening through obfuscation, anti-hooking defenses,
and root detection. Furthermore, integrating integrity signals with complementary
telemetry sources, such as usage patterns, reputation data, and rate limiting information,
significantly improves detection accuracy while reducing false negative rates. A
summarization of the findings is presented at table

This study is limited by its controlled lab scope, narrow device/Android coverage,
use of basic instrumentation on unhardened apps, and an anti-replay analysis that omitted

6

Anais da ERRC 2025: Artigos Completos do WRSeg

stronger cryptographic bindings. External validity may be affected by Play Services
updates and OEM/TEE differences, and we did not measure latency, operational cost, or
scalability for high-demand settings. Developers should treat Play Integrity as one signal
in a broader hardening stack: use Standard for recurring checks and Classic for high-value
actions, while enforcing backend controls such as per-action nonces, rate limiting, and
anomaly detection. When policies depend on DEVICE/STRONG verdicts, account for
device/ROM fragmentation with fallback or step-up flows to avoid locking out legitimate
users. Researchers can extend this work by testing a wider mix of devices, Android
versions, and tooling, and by refining FP/FN metrics under realistic attack workloads to
strengthen external validity.

6. Conclusion

Our evaluation demonstrates that the Play Integrity API effectively addresses conventional
attack vectors such as device compromise and application tampering; however, its
security guaranties require integration within a comprehensive defense-in-depth strategy.
Essential implementation practices include server-side exclusive validation, per-action
unique nonces, secure channel binding, code obfuscation, and anti-hooking protections
augmented by security telemetry.

Future work will expand testing to more devices, Android versions, and hardware-
backed protections, including the strong Integrity tier and TEE. Despite its advances, the
Play Integrity API remains only as effective as the rigor of its implementation and the
additional controls used to compensate for its inherent limitations.

Agradecimentos. Esta pesquisa recebeu apoio parcial da CAPESﬂ sob o Cdédigo de
Financiamento 001.

References

Ibrahim, M., Imran, A., and Bianchi, A. (2021). Safetynot: on the usage of the safetynet
attestation api in android. In Proceedings of the 19th ACM MobiSys.

Kim, S., Jee, K., Park, J., and Shin, J. (2021). SafetyNOT: On the usage pitfalls of android
SafetyNet APL. IEEE TDSC, 20(1).

Niemi, A., Nayani, V., Moustafa, M., and Ekberg, J.-E. (2023). Platform attestation in
consumer devices. ResearchGate.

Ruggia, A., Nisi, D., Dambra, S., Merlo, A., Balzarotti, D., and Aonzo, S. (2024).
Unmasking the veiled: A comprehensive analysis of android evasive malware. In
Proceedings of the 19th ACM.

Samper, J. and Ferreira, B. (2024). Leveraging remote attestation apis for secure image
sharing in messaging apps. IACR Cryptology ePrint Archive.

Steinbock, M., Troost, J., van Beijnum, W., Seredynski, J., Bos, H., Lindorfer, M., and
Continella, A. (2025). Sok: Hardening techniques in the mobile ecosystem — are we
there yet? In Proceedings of the IEEE EuroS&P.

Zhang, Z.., Zhang, Y., and Lin, Z. (2023). On the (in)security of manufacturer-provided
remote attestation frameworks in android. In LNCS, volume 14274. Springer.

Shttps://www.gov.br/capes/pt-br

https://www.gov.br/capes/pt-br

