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Abstract. This work evaluates the Google Play Integrity API using experiments
across four attack scenarios: compromised environments, APK tampering,
dynamic instrumentation, and request replay. The results show that the API
correctly flags device and binary modifications but remains ineffective against
runtime manipulation and replay attacks. We conclude that Play Integrity
is useful as an integrity signal source but must be combined with server-
side verification, nonces, and application hardening to provide meaningful
protection in real Android applications.

1. Introduction

With Android established as the dominant mobile platform (≈ 72% in 2025)1, attack
surfaces such as root, unofficial ROMs, repackaging, and traffic interception continue
to expand, as documented in prior work [Kim et al. 2021]. Despite layered security
architectures and Google Play Protect, recent security bulletins 2 continue to report critical
vulnerabilities across the ecosystem, highlighting persistent security challenges.

In this security context, the Play Integrity API has been introduced as the
official successor to SafetyNet, providing a unified attestation mechanism that evaluates
device integrity, application authenticity, and account validity3 [Niemi et al. 2023] .
Despite these advancements, important questions remain regarding its practical resilience
against advanced threat vectors, including dynamic instrumentation, APK tampering,
and adversarial network manipulation. Several of these limitations were extensively
documented in its predecessor, which reinforces the need for a systematic empirical
assessment of the current implementation.

This paper presents a controlled empirical evaluation to systematically map
the Play Integrity API’s (Application Programming Interface) security coverage. We
investigate four critical scenarios: device integrity compromise, APK modification,
runtime instrumentation, and request handling under adverse conditions, while comparing
Classic and Standard operational modes. Our contribution provides a granular assessment
of native protections versus those requiring external controls, offering evidence-based
guidance for integrating the API into comprehensive Android security strategies.

1https://gs.statcounter.com/os-market-share/mobile/worldwide
2https://source.android.com/docs/security/bulletin
3https://developer.android.com/google/play/integrity
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2. Google Play Integrity API
The Play Integrity API verifies whether an app interaction originates from a legitimate
binary running on an authentic Android device, providing signals that help the backend
determine whether to permit or block sensitive actions. Verdicts are delivered as JSON
objects and consolidate indicators related to the application, device, account, and runtime
environment. Figure 1 illustrates the attack vectors addressed by these verdicts in the Play
Integrity API.

Play Integrity API
----------------------

Verditcts
unauthorized
accountDetails

code tampering 
appIntegrity

Unsafe
devices/
emulated

deviceIntegrity

unpatched
devices

MEETS STRONG
INTEGRITY

Know Malware
playProtectVerdict

repeated violations/
reused devices

deviceRecall (Beta)

Hyperactivity
recentDeviceActivity

Our
implementation

Backend /Api

Google Play
Services

----------------------
Consolidadated

signals

Google Cloud

Device layer (Android)

Figure 1. Attack vectors covered by Play Integrity API verdicts.

The API provides two operational modes, Standard and Classic, summarized in
Table 1 as well as their capabiliteis and limitation in Table 2. In this work, we adopted both
modes, in which the application obtains an integrity token and sends it to the backend,
which forwards it to Google Play Integrity for decryption and validation before enforcing
the corresponding decision based on the returned signals. In Classic mode, the backend
must additionally generate and verify a per-request nonce.

Table 1. Play Integrity: Operational Modes

Aspect Standard (StandardIntegrity) Classic (IntegrityManager)

Typical purpose Recurring checks with low latency (rate-
limited).

One-off/high-value actions with tighter control over
the flow.

Mitigations Automatic (Google Play): device-side
cache, requestHash (action binding), in-
path replay mitigation.

Backend-driven: unique/unpredictable nonce,
non-repudiation, channel/request binding, time
window/expiration.

Latency (approx.) Hundreds of ms (with warm-up/cache). Seconds (fresh evaluation on each invocation).
Developer responsibility Low: integrate the token and validate server-

side.
High: generate/validate nonce, enforce non-
repudiation, revocation and binding policies.

3. Related Work
Table 3 summarizes the principal studies on attestation and integrity verification for
Android devices, listing for each work the API used, its scope, and methodology.
Two groups of contributions are evident: threat analyses and authentication or security
mechanisms, and experimental studies that employ Play Integrity or SafetyNet to
construct security controls. Analyses include [Ibrahim et al. 2021], which examines
SafetyNet and its vulnerabilities; [Niemi et al. 2023], which surveys attestation
platforms but offers only limited discussion of concrete security mechanisms; and
[Ruggia et al. 2024], which analyzes Android malware and how Google Play’s current
authentication tools address it. Proposals include [Steinböck et al. 2025], which develops
an anti-tampering tool and evaluates mobile applications, [Samper and Ferreira 2024],
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Table 2. Play Integrity: Capabilities and Common Limitations Across Modes

Aspect Common capabilities and limitations

Robustness (HW/TEE) Exposes MEETS BASIC/DEVICE/STRONG INTEGRITY; STRONG requires device HW/TEE
support (varies by OEM/model/ROM).

Anti-tampering (APK) appRecognitionVerdict (PR/UV) validates version/signature; requestHash binds the
verdict to the protected action (in Standard), while in Classic the nonce fulfills this role via server-side
validation.

Compromised
environment

Covers root/bootloader/emulation via multi-layer signals (static/dynamic/behavioral). Does not
provide anti-instrumentation (Frida/Xposed) on its own—requires client-side RASP/obfuscation and
server-side policies.

Consolidated signals Unified payload: Application (PR/UV), Device (basic/device/strong), Licensing (L/U),
requestDetails (timestamp, hash/nonce).

Scenario coverage C1 (device) and C2 (APK) are covered; C3 (instrumentation) is out of scope; C4 (replay/non-
repudiation) depends on the backend.

Notes: (i) MEETS STRONG INTEGRITY depends on HW/TEE and OEM policies; (ii) replay
defense/non-repudiation is a backend responsibility (especially in Classic mode); (iii) anti-instrumentation
requires client hardening (RASP/obfuscation) and server-side signal correlation.

Table 3. Synthesis of related work.

Identification API(s) Objective / Scope Methodology

SafetyNOT (Ibrahim et al.,
2021)

SafetyNet Large-scale misuse of SafetyNet Empirical measurement (large-scale)

XFVSes (Zhang et al., 2023) SafetyNet; Play Integrity; Camera
APIs

Security of cross-side facial
verification

Measurement + semi-automated
detection; tool

Platform Attestation Survey
(Niemi et al., 2023)

DHA; Knox; Play Integrity; etc. Comparative survey of platform
attestation

SLR/Survey; comparative analysis

Leveraging Remote
Attestation (Samper &

Ferreira, 2024)

Play Integrity; DeviceCheck/App
Attest

Secure middleware for messaging
with RA

Prototype; lab-controlled experiment

SoK: Hardening Techniques
(Steinböck et al., 2025)

SafetyNet; Play Integrity; App Attest Adoption/effectiveness of RASP Hybrid analysis + tool (HALY)

Unmasking the Veiled (Ruggia
et al., 2024)

SafetyNet; Play Integrity Evasion (DETs/IETs) in
malware/goodware

Dynamic analysis; sandbox; probes

This work Play Integrity Coverage/limitations by scenario
(C1–C4)

Lab-controlled; app + backend

which analyzes device-to-device communication scenarios, and [Zhang et al. 2023],
which investigates security weaknesses in real applications.

Our work differs from prior studies by empirically comparing Play Integrity’s
Standard and Classic modes in a real application and backend deployment across four
scenarios (C1–C4), by disentangling what the API verifies natively (app, device, and
licensing verdicts) from what requires server-side logic (non-repudiation, replay and relay
protection, action binding) and quantifying accuracy per layer, and by demonstrating
that dynamic instrumentation tools such as Frida can circumvent client-side checks,
highlighting the need for minimum client hardening (RASP or obfuscation) and server-
side signal correlation. The literature indicates that platform attestations provide strong
device and package guarantees but are insufficient to prevent in-app manipulation or
replay and relay attacks without backend validation, with persistent gaps in runtime state
assessment, cryptographic binding, and robust client-side enforcement.

4. Methodology
We conducted an empirical validation in a controlled environment, treating the Play
Integrity API as an external signal provider for backend decision-making, and all artifacts
required to reproduce our experiments4 are publicly accessible. Instead of analyzing

4https://github.com/francis-vargas/assessing-play-integrity-security
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internal mechanisms, we focused on production-relevant evidence such as app binary
and signature verification, device integrity state, licensing and account checks, and
environment or abuse indicators. These verdicts were processed by the backend to enforce
blocking or mitigation policies across the evaluated scenarios.

To examine the effectiveness and limitations of the Play Integrity API under
realistic adversarial conditions, we built a testbed composed of a Python 3.x backend for
token validation, multiple Android devices in distinct states (clean, rooted, and emulated),
and an application implementing both Standard and Classic API modes. Using tools such
as Frida, apktool, and apksigner, we simulated APK tampering, dynamic instrumentation,
replay and concurrency attacks, and communication interference. Consolidated backend
logs and Integrity verdicts supported a direct comparison between the two API modes and
enabled a systematic analysis of their limitations and corresponding countermeasures.

Instrumetalization
device

Backend
App

Android application Play Integrity API  Backend
Server

1 .request verdict 2. Returns Token

3.Decision

Frida
Server

5. Overwrites app calls Google Play 

Frida
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Figure 2. Test flowchart of Play Integrity API.

Figure 2 shows the nominal execution flow (solid line) and the Frida bypass
path. To evaluate client-side bypass, we executed Frida 15.1.17 on a rooted device
(with frida-server) to overwrite the app’s validation methods (requestClassicToken(),
requestStandardToken(), requestCombinedToken()) at runtime. The injected JavaScript
hook intercepted these calls and suppressed token issuance while logging activity as
“blocked,” effectively neutralizing the client-side integration without influencing the
API itself. This provides direct evidence that local enforcement is bypassable. The
implications are clear: backend-only enforcement should be mandatory through the
rejection of actions not accompanied by a fresh, action-bound token, supported by nonce
strategies with anti-replay and channel binding, in addition to minimum client hardening
measures such as obfuscation, anti-hooking, RASP, and telemetry collection.

4.1. Evaluation parameters and values
The parameters used in the evaluation and their assigned values are summarized in
Table 4. We varied device type, Android version, enabled tools, nonce configuration,
and API invocation mode. The application sequentially requested tokens from multiple
devices to ensure comparable inputs. The resulting measurements were analyzed
descriptively, examining proportions and variability across equivalent runs, with emphasis
on consistency, predictability, and detection boundaries. Latency was excluded, as it is
not a controlled or meaningful variable for security assessment.

4.2. Evaluation scenarios
The evaluation was structured into four scenarios that encompass the main attack vectors,
including device state, APK tampering, dynamic instrumentation, replay attempts, and
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Table 4. Parameters and values.

Parameters Values

Device type Emulator*; Real (non-rooted)*; Real (rooted)*
Android version (environment) 10 (real); 10 (rooted)*; 11 (real)*; 13 (real)*; 14 (emulated)*; 15 (real)*; 16 (emulated)*
App version 5 (1.0.4); 5 (1.0.4) tampered; 11 (1.1.1)
Enabled tool None*; Frida; Magisk*
Nonce strategy Reused; Unique*
API mode Classic*; Standard*
Note: Items marked with * repeat across all test scenarios.

communication interference. Table 5 summarizes the API coverage and the rationale
for each scenario, outlining how each test case targets specific integrity guaranties and
exposes the limits of Play Integrity in isolation.

Table 5. Experimental scenarios evaluated with the Play Integrity API.

Scenario Covered by API
spec

Motivation Method Specif. Param.

S1: Device
integrity

Yes Differentiate clean devices from compromised
ones (root/bootloader), validating protection
against tampered environments.

Real vs. rooted
comparison

App=5 (1.0.4)

S2: APK
modification

Yes Detect tampering (recompilation/ re-
signing), simulating reverse engineering
and redistribution of modified apps.

APK
modification/
rebuild

App=5 (1.0.4)
tampered

S3: Adversarial
runtime

No Check whether runtime manipulation
(Frida/Xposed) typical of dynamic
instrumentation is detected.

Simple Frida
hook

5 App=(1.0.4)
tampered, Enabled
tool=Frida

S4: Repeated
and concurrent
requests

Partial (depends
on backend
validation)

Assess resilience to replay/stress and the need
for complementary server-side controls.

Controlled nonce
reuse

Nonce strategy=
Reused nonce, App
version=11 (1.1.1)

Note: Unless otherwise specified, iterate over all default parameter values listed in Table 4.

5. Results and Discussion

Table 6 summarizes the outcomes for scenarios S1–S4, covering app status (PR/UV/∅),
device signals (basic, device, strong), licensing (L/U), and Android or app
versions; both Classic and Standard modes exhibited identical behavior. In S1
(device integrity), non-rooted devices produce PR with basic+device and strong
when TEE or hardware-backed attestation is available, whereas rooted devices
suppress integrity signals but may still report PR and L if the app was legitimately
installed. In S2 (APK modification), repackaging consistently results in UV, altered
certificateSha256Digest, and licensing U. In S3 (adversarial runtime), Frida-
based instrumentation does not alter verdicts (PR and basic/device), demonstrating
that Play Integrity does not function as an anti-hooking mechanism. In S4 (repeated and
concurrent requests), the first request is valid, but replaying the same nonce produces
no anti-replay response and must be rejected exclusively by server-side logic. Overall,
Play Integrity reliably reports the environment and package state (S1–S2) but offers no
guaranties against manipulation after attestation or out-of-channel replay (S3–S4), which
reinforces that its effectiveness depends on disciplined backend enforcement rather than
the intrinsic precision of the signals.

Notation: PR=PLAY RECOGNIZED, UV=UNRECOGNIZED VERSION, ∅=no payload;
device basic/device/strong=MEETS BASIC/DEVICE/STRONG INTEGRITY;
L/U=LICENSED/UNEVALUATED.

Anais da ERRC 2025: Artigos Completos do WRSeg

5



Table 6. Accuracy split by coverage

Scenario Android App version Device Request App basic device strong Lic. n Prec. (API) Prec. (Back.)

T1: Is the device intact (no root / unlocked bootloader / emulation)?

S1.1 13 5 (1.0.4) Real (non-rooted) Classic/Standard PR basic device L 3 100% –
S1.2 15 5 (1.0.4) Real (non-rooted) Classic/Standard PR basic device L 3 100% –
S1.3 10 5 (1.0.4) Real (rooted) Classic/Standard PR U 3 100% –
S1.4 16 5 (1.0.4) Emulated Classic/Standard ∅ U 3 100% –
S1.5 11 5 (1.0.4) Real (non-rooted) Classic/Standard PR basic device strong L 3 100% –
S1.6 14 5 (1.0.4) Emulated Classic/Standard ∅ U 3 100% –

T2: Is the app intact and recognized (not repackaged / re-signed)?

S2.1 13 5 (1.0.4) (mod) Real (non-rooted) Classic/Standard UV U 3 100% –
S2.2 10 5 (1.0.4) (mod) Emulated Classic/Standard ∅ U 3 100% –
S2.3 15 5 (1.0.4) (mod) Real (non-rooted) Classic/Standard UV U 3 100% –
S2.4 16 5 (1.0.4) (mod) Emulated Classic/Standard ∅ U 3 100% –
S2.5 11 5 (1.0.4) (mod) Real (non-rooted) Classic/Standard UV U 3 100% –
S2.6 14 5 (1.0.4) (mod) Emulated Classic/Standard ∅ U 3 100% –

T3: Is client-side dynamic instrumentation (Frida) detected?

S3.1 13 5 (1.0.4) (mod) Real (non-rooted) Classic/Standard UV basic device U 3 – –
S3.2 10 5 (1.0.4) (mod) Real (rooted) Classic/Standard ∅ U 3 – –
S3.3 15 5 (1.0.4) (mod) Real (non-rooted) Classic/Standard UV basic device U 3 – –
S3.4 16 5 (1.0.4) (mod) Emulated Classic/Standard ∅ U 3 – –
S3.5 11 5 (1.0.4) (mod) Real (non-rooted) Classic/Standard UV basic device strong U 3 – –
S3.6 14 5 (1.0.4) (mod) Emulated Classic/Standard ∅ U 3 – –

T4: Are repeated requests with the same nonce blocked by the integration?

S4.1 13 11 (1.1.1) Real (non-rooted) Classic/Standard PR basic device L 6 – 100%
S4.2 10 11 (1.1.1) Real (rooted) Classic/Standard UV U 6 – 100%
S4.3 15 11 (1.1.1) Real (non-rooted) Classic/Standard PR basic device L 6 – 100%
S4.4 16 11 (1.1.1) Emulated Classic/Standard ∅ U 6 – 100%
S4.5 11 11 (1.1.1) Real (non-rooted) Classic/Standard PR basic device strong L 6 – 100%
S4.6 14 11 (1.1.1) Emulated Classic/Standard ∅ U 6 – 100%

Note: Prec. (API) measures accuracy for natively covered verdicts (app/device/strong/license). Prec. (Backend) measures
accuracy for additional controls (e.g., non-repudiation and nonce replay in T4). “–” indicates not applicable / not measured.
n indicates number of requisitions.

Table 7. Summary of results of the scenarios

Scenario Objective Layer/target Findings

C1 Device integrity
(root)

Dev Intact: MDI; rooted: E{} (signal suppression); detects root

C2 APK tampering
(repackaging)

APK UV + divergent certDigest; MDI maintained; prevents modified APKs

C3 Dynamic
instrumentation

(Frida)

Dev MDI/PR maintained; bypassable locally; additional hardening needed

C4 Replay/nonce reuse Srv, Net API accepts token; backend blocks (HTTP 400); server-side non-repudiation

Abbreviations: PR = PLAY RECOGNIZED; UV = UNRECOGNIZED VERSION; MDI = MEETS DEVICE INTEGRITY; E{} =
empty object (API omits signals in compromised environment).

Our results indicate that Play Integrity should function as a security signal oracle
rather than a final control mechanism. Effective implementation requires server-side
validation with unique per-action nonces, short-lived tokens, and request-action binding,
complemented by client-side hardening through obfuscation, anti-hooking defenses,
and root detection. Furthermore, integrating integrity signals with complementary
telemetry sources, such as usage patterns, reputation data, and rate limiting information,
significantly improves detection accuracy while reducing false negative rates. A
summarization of the findings is presented at table 7.

This study is limited by its controlled lab scope, narrow device/Android coverage,
use of basic instrumentation on unhardened apps, and an anti-replay analysis that omitted
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stronger cryptographic bindings. External validity may be affected by Play Services
updates and OEM/TEE differences, and we did not measure latency, operational cost, or
scalability for high-demand settings. Developers should treat Play Integrity as one signal
in a broader hardening stack: use Standard for recurring checks and Classic for high-value
actions, while enforcing backend controls such as per-action nonces, rate limiting, and
anomaly detection. When policies depend on DEVICE/STRONG verdicts, account for
device/ROM fragmentation with fallback or step-up flows to avoid locking out legitimate
users. Researchers can extend this work by testing a wider mix of devices, Android
versions, and tooling, and by refining FP/FN metrics under realistic attack workloads to
strengthen external validity.

6. Conclusion
Our evaluation demonstrates that the Play Integrity API effectively addresses conventional
attack vectors such as device compromise and application tampering; however, its
security guaranties require integration within a comprehensive defense-in-depth strategy.
Essential implementation practices include server-side exclusive validation, per-action
unique nonces, secure channel binding, code obfuscation, and anti-hooking protections
augmented by security telemetry.

Future work will expand testing to more devices, Android versions, and hardware-
backed protections, including the strong Integrity tier and TEE. Despite its advances, the
Play Integrity API remains only as effective as the rigor of its implementation and the
additional controls used to compensate for its inherent limitations.

Agradecimentos. Esta pesquisa recebeu apoio parcial da CAPES5, sob o Código de
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