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Abstract. SOCs and CSIRTs face increasing pressure to automate incident cat-
egorization, yet the use of cloud-based LLMs introduces costs, latency, and con-
fidentiality risks. We investigate whether locally executed SLMs can meet this
challenge. We evaluated 21 models ranging from 1B to 20B parameters, vary-
ing the temperature hyperparameter and measuring execution time and preci-
sion across two distinct architectures. The results indicate that temperature has
little influence on performance, whereas the number of parameters and GPU
capacity are decisive factors.

1. Introduction

The increasing volume and complexity of cybersecurity incidents have generated a grow-
ing overload on response teams, which face the need for scalable solutions for triage,
categorization, and prioritization of events. Structured categorization of these incidents
is essential for identifying patterns, understanding the diversity of threats, and improving
defense strategies. However, this process still faces important limitations, such as ambi-
guity in reports, a lack of standardization, and a shortage of specialized professionals.

Automated artificial intelligence methods have emerged as promising so-
lutions to accelerate incident categorization and improve operational efficiency
[Ogundairo and Broklyn 2024]. Persistent challenges remain, including limited labeled
data, semantic ambiguity, and heterogeneous attack formats [Ibrishimova 2019]. Recent
studies indicate that hybrid strategies that combine human expertise with advanced com-
putational techniques, especially Large Language Models (LLMs) capable of processing
unstructured text and capturing complex semantic patterns, can significantly improve the
robustness and accuracy of incident classification.

Conversely, the costs associated with LLM usage, as well as the need to
anonymize sensitive incident-related information, may limit the adoption of these tools
in corporate environments. In this context, Small Language Models (SLMs) gain rele-
vance, as they can be executed locally (on-premises) and require less computational ca-
pacity. Moreover, these models allow fine-tuning through the selection of architectures
with different numbers of parameters and calibration of inference hyperparameters, such
as sampling (top-k, top-p, and temperature), penalization (frequency, presence, and repe-
tition), and generation control (max tokens, min tokens, and stop) [Zhao et al. 2023].
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In this work, we investigate the influence of the temperature hyperparameter in
SLMs from different vendors and of different magnitudes, evaluating both execution time
and precision in incident categorization. For the experiments, we used a dataset com-
posed of six balanced categories of real incidents from a CSIRT, enabling a consistent
assessment of the models’ classification capabilities. The main contribution of this study
is a systematic and comprehensive experimental evaluation involving 21 distinct models,
offering a comparative analysis of the impact of temperature on SLMs executed locally
for security incident categorization.

2. Parameters and Hyperparameters in Language Models

In language models based on deep neural networks, parameters correspond to the values
learned during training, such as weights and biases that transform input signals across lay-
ers1. The number of parameters determines the model’s representational capacity: larger
architectures capture more complex linguistic relationships but require more computa-
tional resources and present a higher risk of overfitting.

Hyperparameters are defined before training or during inference, and they influ-
ence both the learning process and the model’s behavior. In the context of inference, these
hyperparameters can be organized into three categories: sampling, penalization, and gen-
eration control. Sampling hyperparameters determine how the next token is selected, in-
cluding temperature, top-k, and top-p. Penalization hyperparameters adjust probabilities
to avoid excessive repetition, while control hyperparameters define structural limits of the
output, such as the maximum number of tokens and stop sequences [Zhao et al. 2023].

Temperature regulates the level of randomness in text generation. Low values
tend to produce more deterministic and precise outputs [Renze 2024], while higher values
increase diversity and the risk of incoherence [Wang et al. 2020]. Studies indicate that
temperatures close to 0.0 are suitable for reasoning and translation, temperatures above
1.0 favor creativity, and values higher than 1.6 may lead to the so-called temperature
paradox [Renze 2024, Li et al. 2025].

3. Methodology

The experiments were structured as illustrated in Figure 1, following a three-stage pipeline
similar to that adopted in recent studies (e.g., [Severo et al. 2025a, Severo et al. 2025b]):
Input Data, Processing, and Results Analysis. The objective was to evaluate the auto-
mated categorization of security incidents considering variations in temperature, process-
ing time, and precision. For the experiments, two distinct computational architectures
were used: (i) an AMD Ryzen 7 4800H with 32 GB of RAM and an NVIDIA GeForce
GTX 1650 GPU (4 GB), and (ii) an Intel Core i7-12700 with 64 GB of RAM and an
NVIDIA RTX A4000 GPU (16 GB).

Regarding the Input Data used to evaluate the performance of SLMs in classify-
ing security incidents, we employed the dataset of real CSIRT incidents created and de-
scribed by [Severo et al. 2025a]. The original dataset contains 194 anonymized records,
from which we selected a balanced subset consisting of 6 distinct categories, each with 4
incidents, totaling 24 occurrences. The number of incidents per class was determined by

1https://www.ibm.com/think/topics/model-parameters.
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the minority classes. The entire original dataset had previously been classified by two cy-
bersecurity specialists, who independently analyzed the incidents, establishing a ground
truth for comparison with the automated results.

Figure 1. Experiment Stages

In the Processing stage, we used FrameworkPE2, which implements several
prompt engineering techniques. The user can select the desired technique, and for our
experiments, we adopted PHP, which achieved the best results among the techniques re-
cently evaluated for security incident classification [Severo et al. 2025b]. PHP is comple-
mented by the use of a baseline taxonomy (NIST), textual rules for output standardization,
parametrization of inference temperature, and the selection of different SLMs.

We included models ranging from 1 to 20 billion parameters made available by
the Ollama provider (version 0.12.3), totaling 21 language models from seven different
vendors. Each execution produces a collection of categorized incidents, which is sub-
sequently used in the evaluation stage. The final stage, Results Analysis, consisted of
measuring precision (comparison between inference and the ground truth) and process-
ing time obtained by each model, considering the two hardware architectures used in the
evaluation: Ryzen7/GTX 1650 and i7/RTX A4000.

4. Results and Discussion

Figure 2 shows the total time each model took to process the incidents on both architec-
tures. (Ryzen7/GTX 1650 and i7/RTX A4000).

Figure 2. Processing Time per Architecture

2https://github.com/AILabs4All/FrameworkPE
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The results indicate that the Ryzen 7/GTX 1650 architecture exhibited signifi-
cantly higher execution times, while the i7/RTX A4000 architecture delivered substan-
tially faster performance. This difference reflects the greater efficiency of CPU and GPU
resource management in the second architecture, highlighting the direct impact of the
execution environment on model performance.

Table 1 presents the processing times for categorizing the 24 incidents in each of
the 21 language models evaluated under four temperature configurations (T0, T0.4, T0.7,
and T1). The values are displayed in the H:MM:SS format, including totals per model
and per temperature configuration.

Table 1. Execution times of the models under different temperatures
Ryzen 7 / GTX 1650 Architecture i7/RTX A4000 Architecture

Model T0 T0.4 T0.7 T1 Model Total T0 T0.4 T0.7 T1 Model Total
deepseek-r1:1.5b 0:19:28 0:17:36 0:19:06 0:18:09 1:14:19 0:11:29 0:10:04 0:14:28 0:07:47 0:43:48
deepseek-r1:7b 1:18:48 1:22:36 1:22:30 1:29:46 5:33:40 0:24:23 0:14:21 0:24:48 0:15:51 1:19:23
deepseek-r1:8b 2:30:37 2:25:35 2:26:27 2:25:33 9:48:12 0:35:46 0:37:30 0:30:38 0:23:06 2:07:00
deepseek-r1:14b 1:46:26 1:46:29 1:44:51 1:45:39 7:03:25 0:12:19 0:29:25 0:24:09 0:24:36 1:30:29
gemma3:12b 1:26:06 1:24:42 1:24:58 1:25:12 5:40:58 0:03:47 0:06:21 0:10:36 0:24:06 0:44:50
gemma3:1b 0:04:57 0:04:38 0:04:31 0:04:30 0:18:36 0:01:17 0:01:23 0:01:54 0:02:27 0:07:01
gemma3:4b 0:14:08 0:13:59 0:13:56 0:14:21 0:56:24 0:01:48 0:05:20 0:05:15 0:02:32 0:14:55
gpt-oss:20b 1:03:14 1:05:48 1:03:40 1:01:25 4:14:07 0:04:01 0:03:44 0:09:15 0:15:00 0:32:00
llama3:8b 0:25:43 0:25:23 0:25:48 0:25:42 1:42:36 0:23:00 0:04:51 0:11:40 0:06:48 0:46:19
llama3.1:8b 0:25:43 0:31:28 0:33:44 0:35:06 2:06:01 0:12:14 0:15:14 0:23:42 0:12:20 1:03:30
llama3.2:1b 0:15:13 0:13:48 0:11:29 0:14:19 0:54:49 0:06:25 0:15:24 0:10:34 0:13:20 0:45:43
llama3.2:3b 0:15:01 0:15:38 0:17:09 0:15:31 1:03:19 0:07:17 0:05:37 0:09:29 0:07:57 0:30:20
mistral-nemo:12b 0:43:55 0:43:14 0:43:51 0:42:55 2:53:55 0:05:58 0:13:31 0:04:03 0:05:33 0:29:05
mistral:7b 0:32:04 0:30:34 0:31:21 0:31:30 2:05:29 0:04:28 0:04:41 0:03:41 0:05:08 0:17:58
phi3:14b 1:07:18 1:03:48 1:04:16 1:06:37 4:21:59 0:04:18 0:04:26 0:10:32 0:24:36 0:43:52
phi3:3.8b 0:23:11 0:24:39 0:21:40 0:22:08 1:31:38 0:03:08 0:07:09 0:15:28 0:04:16 0:30:01
phi4:14b 1:03:02 1:05:13 0:59:10 1:01:52 4:09:17 0:10:01 0:09:38 0:18:19 0:15:12 0:53:10
qwen3:4b 1:26:25 1:30:29 1:25:05 1:23:59 5:45:58 0:33:41 0:33:21 0:29:10 0:43:03 2:19:15
qwen3:1.7b 0:16:37 0:15:09 0:15:29 0:15:39 1:02:54 0:10:12 0:12:01 0:11:16 0:12:37 0:46:06
qwen3:8b 1:35:15 1:32:21 1:33:43 1:33:43 6:15:02 0:23:59 0:12:12 0:22:03 0:18:47 1:17:01
qwen3:14b 3:01:25 2:57:36 3:02:34 3:01:16 12:02:51 0:18:15 0:31:35 0:28:35 0:24:58 1:43:23
Temperature Total 20:14:36 20:10:43 20:05:18 20:14:52 4:17:46 4:37:48 5:19:35 5:10:00
Architecture Total 80:45:29 19:25:09

As observed, the variation in the execution time between the different tempera-
tures (T0, T0.4, T0.7, and T1) is relatively small, suggesting that the temperature hyper-
parameter primarily influences the diversity and textual coherence of the responses rather
than inference time. However, smaller models such as gemma3:1b, deepseek-r1:1.5b, and
llama3:1.8b exhibit execution times far below those of larger models such as gpt-oss:20b
and deepseek-r1:14b. These results reinforce the notion that the number of parameters is
one of the decisive factors for computational cost.

In the i7/RTX A4000 architecture, the greater dispersion in execution times can
be explained by the way Ollama manages model loading and inference, performing
load/unload operations and establishing varying communication patterns between CPU
and GPU. This dynamic generates different latencies, depending on the model size and
the usage of GPU memory.

Smaller models tend to underutilize CUDA cores, whereas larger models require
memory reallocation, resulting in fewer linear execution times. The absence of specific
optimizations, such as mixed precision and tuning for Tensor Core utilization, also con-

Anais da ERRC 2025: Artigos Completos do WRSeg

4



tributes to this oscillation. In contrast, the Ryzen7/GTX 1650 architecture exhibited more
regular behavior, possibly due to more stable execution and simpler resource manage-
ment.

Table 2 and Figure 3 present the summary of the average precision of the models.
Table 2 shows the number of incidents correctly categorized and the accuracy percentage
for each model and temperature across both architectures. As shown, precision remained
relatively stable across the different inference temperatures (T0 to T1), indicating that the
temperature hyperparameter exerts limited influence on the precision of classification.

Table 2. Model Precision at Different Temperatures
Ryzen7/GTX 1650 Architecture i7/RTX A4000 Architecture

Model T0 % T0.4 % T0.7 % T1 % T0 % T0.4 % T0.7 % T1 %
deepseek-r1:1.5b 4 16,67 3 12,50 3 12,50 3 12,50 3 12,50 4 16,67 2 8,33 1 4,17
deepseek-r1:7b 11 45,83 10 41,67 12 50,00 12 50,00 9 37,50 11 45,83 11 45,83 10 41,67
deepseek-r1:8b 0 0,00 0 0,00 0 0,00 0 0,00 9 37,50 10 41,67 11 45,83 16 66,67
deepseek-r1:14b 16 66,67 15 62,50 15 62,50 15 62,50 16 66,67 17 70,83 15 62,50 16 66,67
gemma3:12b 15 62,50 15 62,50 15 62,50 15 62,50 14 58,33 15 62,50 14 58,33 15 62,50
gemma3:1b 0 0,00 0 0,00 1 4,17 1 4,17 1 4,17 1 4,17 2 8,33 0 0,00
gemma3:4b 15 62,50 15 62,50 15 62,50 15 62,50 15 62,50 15 62,50 15 62,50 15 62,50
gpt-oss:20b 15 62,50 16 66,67 17 70,83 17 70,83 14 58,33 16 66,67 16 66,67 16 66,67
llama3:8b 12 50,00 12 50,00 12 50,00 12 50,00 13 54,17 12 50,00 12 50,00 12 50,00
llama3.1:8b 16 66,67 16 66,67 15 62,50 14 58,33 14 58,33 15 62,50 15 62,50 14 58,33
llama3.2:1b 1 4,17 2 8,33 2 8,33 0 0,00 0 0,00 2 8,33 0 0,00 0 0,00
llama3.2:3b 14 58,33 15 62,50 14 58,33 16 66,67 10 41,67 10 41,67 12 50,00 8 33,33
mistral-nemo:12b 12 50,00 12 50,00 12 50,00 12 50,00 13 54,17 13 54,17 12 50,00 12 50,00
mistral:7b 15 62,50 16 66,67 15 62,50 15 62,50 15 62,50 15 62,50 16 66,67 15 62,50
phi3:14b 16 66,67 15 62,50 15 62,50 16 66,67 16 66,67 15 62,50 15 62,50 14 58,33
phi3:3.8b 12 50,00 13 54,17 14 58,33 13 54,17 14 58,33 10 41,67 6 25,00 11 45,83
phi4:14b 13 54,17 12 50,00 13 54,17 13 54,17 12 50,00 13 54,17 15 62,50 11 45,83
qwen3:4b 16 66,67 14 58,33 16 66,67 13 54,17 14 58,33 15 62,50 12 50,00 14 58,33
qwen3:1.7b 12 50,00 13 54,17 14 58,33 13 54,17 14 58,33 11 45,83 15 62,50 14 58,33
qwen3:8b 14 58,33 12 50,00 13 54,17 13 54,17 14 58,33 13 54,17 14 58,33 13 54,17
qwen3:14b 16 66,67 13 54,17 13 54,17 14 58,33 14 58,33 14 58,33 12 50,00 15 62,50

The comparison between the two architectures shows a slightly superior perfor-
mance for the i7 and RTX A4000 combination, a result that likely reflects its higher
processing capacity and more advanced GPU optimizations. Medium-sized models such
as deepseek-r1:14b, phi3:14b, and qwen3:4b reached the highest precision levels on both
platforms, suggesting a favorable balance between generalization ability and computa-
tional cost. In addition, the i7 and RTX A4000 system demonstrated more consistent
behavior across the evaluated models, particularly those with larger parameter counts,
reinforcing its suitability for workloads that demand stable inference performance.

As shown in Table 2, the experiments conducted on the Ryzen7/GTX 1650 ar-
chitecture revealed recurrent failures in the categorization task when using the deepseek-
r1:8b model. Subsequent analyses based on the execution logs obtained through Ollama’s
debug mode indicated architectural limitations of the GTX 1650 and the hybrid inference
regime triggered when the model cannot be fully loaded into VRAM. Although the GPU
provides 4 GB of video memory, only about 2.3 GB were effectively available for load-
ing the model weights; the logs confirm that 2.3 GB were allocated on the GPU, while
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Figure 3. Precision per Architecture

approximately 2.6 GB remained in system RAM and were processed by the CPU. This
partitioning forces the inference mechanism to rely on continuous data transfers over the
PCIe bus, whose measured throughput was only 2.5 GB/s, in contrast with the 32 GB/s
available on the RTX A4000, introducing substantial latencies during token generation.

In addition, only 20 of the 37 layers of the model were offloaded to the GPU,
while the remaining 17 layers were executed on the CPU, significantly reducing the over-
all inference throughput. The KV-cache was similarly fragmented, with approximately
320 MB allocated on the GPU and 256 MB on main memory, which intensified the
data exchange between CPU and GPU and contributed to performance fluctuations. As a
consequence of these restrictions, the model exhibited considerably high response times
(1m18s, 48.47s, 4m21s, 3m46s, and 4m54s), along with multiple timeouts. However,
when executed interactively through the command line—thus avoiding the overhead of
the HTTP API—the model was able to complete the task, suggesting that the failures
did not stem from model configuration or intrinsic limitations, but rather from hardware
bottlenecks.

Conversely, in the i7/RTX A4000 architecture, the model could be fully accommo-
dated within the available VRAM, allowing both inference and categorization to proceed
reliably and with low latency. The contrast between the two environments confirms that
the inadequate behavior observed in the Ryzen7/GTX 1650 setup is directly related to in-
sufficient video memory and the resulting partitioning of the model across CPU and GPU,
which critically affects inference completeness and stability.

5. Conclusion and Future Work
The experiments showed that temperature has little impact on accuracy or inference time
in automated incident categorization. The computational architecture and the number
of parameters were the determining factors. Smaller models delivered higher efficiency,
and medium-sized models offered a better balance between cost and accuracy, which
reinforces the suitability of SLMs for local environments with limited resources. Perfor-
mance varied across hardware. DeepSeek-R1 14B reached the highest precision on the
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Ryzen7 and GTX 1650 system, while GPT-OSS 20B performed best on the i7 and RTX
A4000 system. The i7 and RTX A4000 setting also showed greater variation in execution
times, possibly due to how Ollama alternates model operations between CPU and GPU.
The Ryzen7 and GTX 1650 system exhibited more linear and predictable behavior. To
mitigate the inference instabilities observed in DeepSeek-R1 8B, several configuration
adjustments were effective under hardware constraints. Reducing the number of layers
stored on the GPU, lowering the context window, placing the KV cache entirely on the
CPU when necessary, using lower-precision quantization, and increasing Ollama’s API
timeout collectively improved stability and ensured reliable local inference in resource-
constrained scenarios.

Propostas futuras: (i) medir uso de CPU/GPU para correlacionar recursos, latência
e estabilidade; (ii) investigar técnicas leves (quantização, poda, compressão) para reduzir
tempo e memória em hardware de baixo custo; (iii) analisar o impacto combinado de
hiperparâmetros (temperatura, top-k, top-p, penalidades) na qualidade semântica.
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