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Resumo. O Tune3 é um método adaptativo multiestágio para otimizar hiper-
parâmetros em modelos neurais para cibersegurança. Ele integra inicialização
informada, amostragem de extremos e refinamento iterativo, reduzindo o custo e
o número de execuções necessárias. Em testes com conjuntos Android, o Tune3
iguala ou supera o Random Search com até 44% menos tempo de busca, man-
tendo estabilidade e qualidade na geração e classificação de dados.

1. Introdução

A escolha adequada dos hiperparâmetros em modelos de classificação e geração afeta
diretamente o custo computacional, a estabilidade do treinamento e a qualidade dos da-
dos produzidos [Liao et al. 2022]. Configurações inadequadas podem resultar em redes
instáveis, convergência lenta ou dados sintéticos de baixa fidelidade, especialmente à
medida que o espaço de busca cresce. A literatura recente sobre otimização de hiper-
parâmetros em redes neurais abrange desde ajustes manuais e estratégias clássicas, como
Grid Search e Random Search [Bergstra and Bengio 2012], até abordagens automatizadas
e adaptativas baseadas em exploração estocástica, metaheurı́sticas e métodos bayesianos
[Bischl et al. 2023].

Apesar desses avanços, observa-se que técnicas automatizadas permanecem pouco
exploradas no contexto de modelos geradores, em particular aqueles voltados à sı́ntese de
dados tabulares, como CTGAN e TVAE, amplamente utilizados em ferramentas como
MalDataGen1 e SDV2. Em classificadores neurais recorrentes, como LSTM e GRU, as
abordagens existentes variam significativamente quanto a intervalos de épocas, tamanhos
de lote, taxas de aprendizado e funções de ativação, frequentemente sem justificativas
metodológicas claras ou análise sistemática de estabilidade.

Além disso, a maior parte dos trabalhos similares (ver Seção 2) adota espaços
de busca amplos e homogêneos, sem mecanismos de priorização por risco, como a
penalização explı́cita de falsos negativos, e sem estratégias progressivas de refinamento
capazes de reduzir o custo total da busca e evitar reavaliações redundantes. Em domı́nios

1https://github.com/SBSeg25/MalDataGen
2https://github.com/sdv-dev/SDV
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sensı́veis como a cibersegurança, onde decisões incorretas podem resultar em falhas de
detecção e aumento de superfı́cie de ataque, tais limitações tornam-se particularmente
crı́ticas.

Na detecção de malware Android, o ajuste eficiente de hiperparâmetros é essen-
cial para garantir robustez, capacidade de generalização e sensibilidade a ameaças reais
[Ozkan-Okay et al. 2024]. Abordagens tradicionais, como Grid Search e Random Search,
tornam-se rapidamente inviáveis em espaços extensos devido ao alto custo computacio-
nal, à variabilidade dos resultados e à incapacidade de direcionar a busca para regiões
promissoras [Bergstra and Bengio 2012].

Motivado por essas limitações, este trabalho apresenta o método Tune3, uma es-
tratégia multiestágio adaptativa projetada para reduzir o número de execuções necessárias
para encontrar configurações de alto desempenho. O método foi avaliado em dois con-
juntos de dados Android amplamente utilizados na literatura, DREBIN-215 e Defense-
Droid API Degree, demonstrando ganhos expressivos de eficiência e estabilidade.

2. Trabalhos Relacionados

A Tabela 1 apresenta um panorama comparativo de estudos recentes que aplicam dife-
rentes estratégias de otimização de hiperparâmetros em redes neurais artificiais (RNAs).
Em geral, a otimização de hiperparâmetros em modelos geradores e classificadores segue
três abordagens principais: ajuste manual, Grid Search e Random Search. No caso de
modelos geradores tabulares, estudos como [Xu et al. 2024] e [Li et al. 2022] recorrem
ao ajuste manual para definir parâmetros como número de épocas, taxa de aprendizado e
tamanho de batch, o que limita a escalabilidade e depende fortemente de tentativa e erro.

Tabela 1. Abordagens de otimização de hiperparâmetros em RNAs.
Referência Abordagem de Otimização Intervalos ou Parâmetros Avaliados Modelos

[Xu et al. 2024] Ajuste manual Épocas: 100–5000; Batch size: 20–300 CTGAN, TVAE
[Li et al. 2022] Ajuste manual LR: 1×10−4 (G) / 3×10−4 (D); λ = 1; Batch: 32 TTS-CGAN
[Zhou et al. 2020] Grid Search Dilatação: 8–64; Filtros: 16–256; Kernel/Pool: 2–5; Dropout: 10–60% LSTM-AE, TCN, GAN
[Basri et al. 2023] Grid Search Batch: 50–200; LR (G/D): 10−3–10−5 CTGAN
[Nurhayati et al. 2021] Grid / Random Search Camadas: 3; Unidades: 16–128; Ativação: Sigmoid, ReLU GRU, LSTM, RNN
Este trabalho Método proposto Densidade de camadas: 128–1024; Épocas: 50, 100, 200, 500, 1000 CGAN

Trabalhos como [Zhou et al. 2020] e [Basri et al. 2023] aplicam Grid Search em
arquiteturas recorrentes e GANs, explorando grandes combinações de hiperparâmetros.
Embora sistemática, essa abordagem é custosa e cresce rapidamente com o tamanho do
espaço de busca. Por outro lado, [Nurhayati et al. 2021] combinam Grid Search e Ran-
dom Search em modelos RNN, GRU e LSTM, o que reduz o custo do processo, mas
permanece uma abordagem não direcionada, avaliando inúmeras configurações pouco
promissoras.

Apesar dos avanços, os trabalhos existentes apresentam limitações importantes.
Em geral, não adotam mecanismos capazes de reduzir progressivamente o espaço de
busca, nem estratégias que priorizem métricas fundamentais como o Recall, essencial
em detecção de malware devido ao impacto dos falsos negativos. Além disso, poucos
estudos analisam a estabilidade temporal da busca, a convergência ao longo das iterações
ou o custo computacional decorrente de reavaliações redundantes.
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3. Método Proposto

O método empregado neste trabalho é o Tune3, uma abordagem multiestágio para
otimização de hiperparâmetros, formalizada originalmente pelos autores sob o nome
HPO33. Neste artigo, adotamos o nome Tune3 para representar a versão atual do método.
A principal melhoria do HPO3 para o Tune3 é que a versão inicial do método dependia
fortemente do conhecimento prévio de quem iria executá-lo, e sua primeira etapa exigia
um levantamento detalhado da literatura antes da otimização. Com o Tune3, o Estágio 1
pode partir de valores já conhecidos e consolidados, ou até de parâmetros que o próprio
executor deseja testar diretamente, sem a necessidade de uma fase preliminar de estudo
teórico. A implementação do método, na sua forma mais recente, está disponı́vel no
repositório GitHub4. No presente artigo, utilizamos essa mesma abordagem, apresen-
tando apenas um resumo das etapas principais e sua adaptação ao cenário de detecção de
malware Android.

O Tune3 organiza o processo de otimização em três fases: (i) inicialização in-
formada por evidências, que estabelece um espaço de busca amplo porém plausı́vel; (ii)
amostragem de borda com variação controlada, responsável por explorar regiões contras-
tantes e filtrar execuções instáveis; e (iii) refinamento adaptativo orientado a risco, que
concentra a busca nas combinações mais promissoras segundo métricas como Recall e
F1-score.

Nesta aplicação, o método foi ajustado para modelos CGAN voltados à sı́ntese
de dados Android e ao treinamento subsequente de classificadores. O uso de redes
adversariais condicionais foi introduzido para permitir aprendizado guiado por rótulos
de classe [Mirza and Osindero 2014]e [Goodfellow et al. 2014], sendo uma estratégia já
adotada na sı́ntese de dados tabulares e em detecção de malware [Huang and et al. 2020]
e [Nogueira et al. 2024]. As adaptações principais incluem a redução do espaço de
busca, a priorização explı́cita de métricas sensı́veis a risco e a incorporação de uma
análise detalhada do custo computacional e da convergência temporal, aspectos ex-
pandidos na literatura como fatores crı́ticos na otimização e avaliação de modelos
generativos [Bischl et al. 2023, Li et al. 2021]. Essas adaptações também se alinham
a recomendações de uso de GANs condicionais em fluxos de sı́ntese seguida de
classificação por classe, facilitando medir impacto e desempenho do classificador final
[Esteban et al. 2017, Li et al. 2021].

4. Tune3: Arquitetura e Implementação

A arquitetura do Tune3 foi projetada para conduzir ciclos iterativos de otimização de ma-
neira controlada, reprodutı́vel e eficiente. Ela é composta por cinco módulos principais
que operam de forma encadeada, permitindo monitoramento contı́nuo, redução progres-
siva do espaço de busca e eliminação de execuções redundantes. A seguir, descrevemos
seus componentes e o fluxo operacional.

Orquestrador. O orquestrador atua como núcleo do sistema. Suas responsabilidades in-
cluem gerar as combinações iniciais de hiperparâmetros provenientes da Fase 1, coorde-
nar a amostragem de borda (Fase 2) e acionar o refinamento adaptativo (Fase 3). Também

3https://archive.org/details/hpo3-english
4https://github.com/AILabs4All/Tune3
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aplica filtros de viabilidade (como detecção de Out of Memory, instabilidade das redes,
estouro de tempo ou baixo desempenho), registra o estado global da busca (execuções
válidas, inválidas e descartadas) e define critérios de parada com base em convergência,
limite de execuções ou janela temporal.

Executor. Diferentemente de abordagens nas quais o treinamento é executado inter-
namente, o Tune3 utiliza um executor responsável por invocar ferramentas externas de
geração e avaliação por meio de chamadas de linha de comando parametrizadas. Esse
módulo constrói comandos incorporando os hiperparâmetros definidos pelo orquestrador,
executa o processo em ambiente isolado com controle de tempo, captura logs e saı́das
padrão, identifica falhas externas (como timeouts, erros da ferramenta ou colapso do ge-
rador) e extrai métricas relevantes para posterior consolidação.

Mecanismo de Cache e Persistência. Implementado em SQLite, o cache armazena
hiperparâmetros, métricas e tempos de execução, funcionando como catálogo histórico
que evita reavaliações redundantes. Além disso, fornece ao orquestrador informações
fundamentais para priorização de combinações promissoras.

Extrator e Consolidador de Métricas. Após cada execução, as métricas extraı́das pelo
executor são consolidadas e registradas no banco SQLite. Esses valores estruturados
alimentam o processo de seleção do top-k e orientam a progressão entre as fases da
otimização.

5. Avaliação Experimental
Os experimentos compararam o método proposto Tune3 com o Random Search, ado-
tado como baseline. Abordagens mais sofisticadas, como Otimização Bayesiana
ou Algoritmos Evolutivos, embora consolidadas na literatura, foram excluı́das desta
etapa inicial por exigirem recursos computacionais muito superiores ao escopo preten-
dido. Para a avaliação, foram utilizados dois conjuntos amplamente empregados na
detecção de malware Android: o DREBIN-215, baseado em permissões, e o Defense-
Droid API Degree, baseado em chamadas de API.

Em ambos os casos, as caracterı́sticas foram reduzidas para até 200 atributos por
meio do teste χ2, visando padronizar o custo computacional e reduzir ruı́do estatı́stico. As
execuções foram realizadas em máquinas com configurações semelhantes, assegurando
repetibilidade. O espaço de busca adotado por ambos os métodos incluiu a variação do
tamanho das camadas densas do gerador e do discriminador entre 128 e 1024 unidades
com incremento de 64, além do número de épocas de treinamento nos valores 50, 100,
200, 500 e 1000. Esse espaço totaliza 15× 15× 5 = 1.125 configurações possı́veis, que
constituem o grid completo utilizado como referência na análise comparativa.

Os demais hiperparâmetros permaneceram fixos durante todos os experimentos.
O fator de dropout aplicado ao gerador foi definido como 0.5, valor também utilizado
para o discriminador. O tamanho do lote de treinamento foi mantido em 128 amostras,
a validação cruzada empregou cinco partições, o algoritmo de otimização utilizado foi o
Adam e a função de ativação adotada nas camadas ocultas foi a LeakyReLU.

Foram realizadas até 150 execuções por método e por dataset, cada uma gerando
10 mil amostras (5 mil benignas e 5 mil maliciosas). As avaliações utilizaram Recall
como métrica principal, priorizando a detecção de amostras maliciosas, e F1-score como
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métrica secundária para avaliar o equilı́brio entre precisão e sensibilidade. Essas métricas
refletem a natureza orientada a risco do domı́nio, no qual falsos negativos são particular-
mente crı́ticos por representarem ameaças não detectadas.

5.1. Resultados Comparativos

Os resultados desta seção comparam o desempenho do Tune3 e do Random Search nos
conjuntos DREBIN-215 e DefenseDroid API Degree. O objetivo é avaliar se o Tune3
reduz o custo computacional e acelera a convergência sem perda de desempenho.

(a) Tempo acumulado — DREBIN-215 (b) Tempo acumulado — DefenseDroid API Degree

(c) Tendência do Recall e F1 — DREBIN-215 (d) Tendência do Recall e F1 — Defense-
Droid API Degree

(e) Recall por janelas de 200 s — DREBIN-215 (f) Recall por janelas de 200 s — Defense-
Droid API Degree

Figura 1. Comparação entre Tune3 e Random Search em termos de custo acu-
mulado, tendência das métricas e estabilidade temporal do Recall.

Anais da ERRC 2025: Artigos Completos do WRSeg

5



A Figura 1 reúne os resultados comparativos. As subfiguras (a) e (b) apresentam
o tempo acumulado, enquanto (c) e (d) mostram a tendência do Recall e do F1-score por
média móvel (janela = 10). Por fim, (e) e (f) ilustram o Recall médio por janelas de 200
s, destacando a estabilidade temporal de cada método.

No DREBIN-215, o Tune3 alcançou Recall máximo de aproximadamente 0,96,
desempenho semelhante ao do Random Search (0,95), porém com custo total cerca de
34% menor, como visto na subfigura (a). O Tune3 atingiu nı́veis elevados de desempenho
em torno da 40ª execução, enquanto o Random Search, por não direcionar a busca, ob-
teve bons resultados apenas de forma pontual e manteve comportamento mais irregular.
A tendência observada na subfigura (c) mostra que o Tune3 estabiliza após aproximada-
mente 30 execuções, ao passo que o Random Search oscila entre 0,55 e 0,86 ao longo de
toda a busca. A análise temporal na subfigura (e) confirma maior consistência do Tune3,
que manteve Recall médio superior na maior parte das janelas de 200 s.

No DefenseDroid API Degree, os ganhos foram mais evidentes: o Tune3 atingiu
Recall final de aproximadamente 0,92, contra 0,87 do Random Search. O tempo acu-
mulado foi reduzido em cerca de 44% de acordo com a subfigura (b). A média móvel
apresentada na subfigura (d) indica convergência entre a 25ª e a 35ª execuções, enquanto
o Random Search permaneceu irregular durante toda a busca. As janelas temporais da
subfigura (f) mostram que o Tune3 manteve Recall médio entre 0,70 e 0,80, ao passo que
o Random Search permaneceu concentrado entre 0,50 e 0,60.

De forma geral, os resultados indicam que o Tune3 preserva o desempenho global
(Recall e F1-score) ao mesmo tempo em que reduz significativamente o custo computa-
cional. No DREBIN-215, o ganho se manifesta principalmente em menor tempo e maior
estabilidade; no DefenseDroid API Degree, observa-se melhora simultânea de qualidade
e eficiência. Em ambos os casos, o Tune3 atinge rapidamente regiões promissoras do
espaço de busca e mantém resultados estáveis entre execuções, contrastando com o com-
portamento mais errático do Random Search.

6. Conclusão
Este trabalho apresentou o Tune3, um método multiestágio adaptativo para otimização
de hiperparâmetros aplicado à detecção de malware Android. Nos experimentos com
os conjuntos DREBIN-215 e DefenseDroid API Degree, o método obteve desempenho
equivalente ou superior ao Random Search, com reduções de 34% a 44% no tempo acu-
mulado e menor variabilidade entre execuções. Embora o Random Search possa produzir
bons resultados pontuais em espaços de busca pequenos, sua eficácia diminui à medida
que o espaço cresce, enquanto o Tune3 se beneficia de uma busca estruturada que concen-
tra esforços em regiões mais promissoras. Os resultados indicam que o Tune3 é adequado
a cenários de detecção de ameaças, nos quais tempo, estabilidade e sensibilidade a falsos
negativos são fatores crı́ticos. Como trabalhos futuros, propõe-se a inclusão de métricas
de custo energético e a avaliação do método em contextos de aprendizado federado, am-
pliando sua aplicabilidade a ambientes distribuı́dos e restritos em recursos.
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