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Resumo. O Tune3 é um método adaptativo multiestdgio para otimizar hiper-
pardmetros em modelos neurais para cibersegurancga. Ele integra inicializagdo
informada, amostragem de extremos e refinamento iterativo, reduzindo o custo e
o niimero de execugoes necessdrias. Em testes com conjuntos Android, o Tune3
iguala ou supera o Random Search com até 44% menos tempo de busca, man-
tendo estabilidade e qualidade na geracdo e classificacdo de dados.

1. Introducao

A escolha adequada dos hiperparametros em modelos de classificacdo e geracdo afeta
diretamente o custo computacional, a estabilidade do treinamento e a qualidade dos da-
dos produzidos [Liao et al. 2022]. Configura¢des inadequadas podem resultar em redes
instdveis, convergéncia lenta ou dados sintéticos de baixa fidelidade, especialmente a
medida que o espaco de busca cresce. A literatura recente sobre otimizagdo de hiper-
parametros em redes neurais abrange desde ajustes manuais e estratégias cldssicas, como
Grid Search e Random Search [Bergstra and Bengio 2012], até abordagens automatizadas

e adaptativas baseadas em exploracdo estocdstica, metaheuristicas e métodos bayesianos
[Bischl et al. 2023].

Apesar desses avangos, observa-se que técnicas automatizadas permanecem pouco
exploradas no contexto de modelos geradores, em particular aqueles voltados a sintese de
dados tabulares, como CTGAN e TVAE, amplamente utilizados em ferramentas como
MalDataGen' e SDV?2. Em classificadores neurais recorrentes, como LSTM e GRU, as
abordagens existentes variam significativamente quanto a intervalos de épocas, tamanhos
de lote, taxas de aprendizado e fungOes de ativacdo, frequentemente sem justificativas
metodoldgicas claras ou andlise sistematica de estabilidade.

Além disso, a maior parte dos trabalhos similares (ver Secdo 2) adota espacgos
de busca amplos e homogéneos, sem mecanismos de priorizacdo por risco, como a
penalizacao explicita de falsos negativos, € sem estratégias progressivas de refinamento
capazes de reduzir o custo total da busca e evitar reavaliacdes redundantes. Em dominios

'https://github.com/SBSeg25/MalDataGen
https://github.com/sdv-dev/SDV
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sensiveis como a ciberseguranga, onde decisdes incorretas podem resultar em falhas de
detec¢do e aumento de superficie de ataque, tais limitacdes tornam-se particularmente
criticas.

Na detec¢do de malware Android, o ajuste eficiente de hiperparametros € essen-
cial para garantir robustez, capacidade de generalizacdo e sensibilidade a ameacas reais
[Ozkan-Okay et al. 2024]. Abordagens tradicionais, como Grid Search e Random Search,
tornam-se rapidamente invidveis em espacos extensos devido ao alto custo computacio-
nal, a variabilidade dos resultados e a incapacidade de direcionar a busca para regides
promissoras [Bergstra and Bengio 2012].

Motivado por essas limitacoes, este trabalho apresenta o método Tune3, uma es-
tratégia multiestagio adaptativa projetada para reduzir o nimero de execucdes necessarias
para encontrar configuracdes de alto desempenho. O método foi avaliado em dois con-
juntos de dados Android amplamente utilizados na literatura, DREBIN-215 e Defense-
Droid API Degree, demonstrando ganhos expressivos de eficiéncia e estabilidade.

2. Trabalhos Relacionados

A Tabela 1 apresenta um panorama comparativo de estudos recentes que aplicam dife-
rentes estratégias de otimizacao de hiperparametros em redes neurais artificiais (RNAs).
Em geral, a otimizagdo de hiperpardmetros em modelos geradores e classificadores segue
tr€s abordagens principais: ajuste manual, Grid Search € Random Search. No caso de
modelos geradores tabulares, estudos como [Xu et al. 2024] e [Li et al. 2022] recorrem
ao ajuste manual para definir parAmetros como nimero de épocas, taxa de aprendizado e
tamanho de batch, o que limita a escalabilidade e depende fortemente de tentativa e erro.

Tabela 1. Abordagens de otimizagao de hiperparametros em RNAs.

Referéncia Abordagem de Otimizacdo Intervalos ou Parametros Avaliados Modelos

[Xu et al. 2024] Ajuste manual Epocas: 100-5000; Batch size: 20-300 CTGAN, TVAE

[Li et al. 2022] Ajuste manual LR: 1x107*(G) / 3x10~* (D); A\ = 1; Batch: 32 TTS-CGAN

[Zhou et al. 2020] Grid Search Dilatagao: 8-64; Filtros: 16-256; Kernel/Pool: 2-5; Dropout: 10-60% LSTM-AE, TCN, GAN
[Basri et al. 2023] Grid Search Batch: 50-200; LR (G/D): 1073-10—° CTGAN

[Nurhayati et al. 2021]  Grid / Random Search Camadas: 3; Unidades: 16-128; Ativacdo: Sigmoid, ReLU GRU, LSTM, RNN
Este trabalho Método proposto Densidade de camadas: 128-1024; Epocas: 50, 100, 200, 500, 1000 CGAN

Trabalhos como [Zhou et al. 2020] e [Basri et al. 2023] aplicam Grid Search em
arquiteturas recorrentes € GANSs, explorando grandes combinacdes de hiperparametros.
Embora sistemaética, essa abordagem € custosa e cresce rapidamente com o tamanho do
espaco de busca. Por outro lado, [Nurhayati et al. 2021] combinam Grid Search e Ran-
dom Search em modelos RNN, GRU e LSTM, o que reduz o custo do processo, mas
permanece uma abordagem ndo direcionada, avaliando indmeras configuragdes pouco
promissoras.

Apesar dos avangos, os trabalhos existentes apresentam limitagdes importantes.
Em geral, ndo adotam mecanismos capazes de reduzir progressivamente o espaco de
busca, nem estratégias que priorizem métricas fundamentais como o Recall, essencial
em detec¢do de malware devido ao impacto dos falsos negativos. Além disso, poucos
estudos analisam a estabilidade temporal da busca, a convergéncia ao longo das iteracoes
ou o custo computacional decorrente de reavaliacdes redundantes.
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3. Método Proposto

7z

O método empregado neste trabalho é o Tune3, uma abordagem multiestagio para
otimizacdo de hiperparametros, formalizada originalmente pelos autores sob o nome
HPO3*. Neste artigo, adotamos o nome Tune3 para representar a versio atual do método.
A principal melhoria do HPO3 para o Tune3 € que a versao inicial do método dependia
fortemente do conhecimento prévio de quem iria executd-lo, e sua primeira etapa exigia
um levantamento detalhado da literatura antes da otimizagdo. Com o Tune3, o Estagio 1
pode partir de valores ja conhecidos e consolidados, ou até de parametros que o proprio
executor deseja testar diretamente, sem a necessidade de uma fase preliminar de estudo
tedrico. A implementacdo do método, na sua forma mais recente, estd disponivel no
repositério GitHub*. No presente artigo, utilizamos essa mesma abordagem, apresen-
tando apenas um resumo das etapas principais e sua adaptacao ao cendrio de detec¢do de
malware Android.

O Tune3 organiza o processo de otimiza¢do em trés fases: (i) inicializac¢do in-
formada por evidéncias, que estabelece um espaco de busca amplo porém plausivel; (ii)
amostragem de borda com variag@o controlada, responséavel por explorar regides contras-
tantes e filtrar execucdes instaveis; e (iil) refinamento adaptativo orientado a risco, que
concentra a busca nas combinag¢des mais promissoras segundo métricas como Recall e
Fl-score.

Nesta aplicacdo, o método foi ajustado para modelos CGAN voltados a sintese
de dados Android e ao treinamento subsequente de classificadores. O uso de redes
adversariais condicionais foi introduzido para permitir aprendizado guiado por rétulos
de classe [Mirza and Osindero 2014]e [Goodfellow et al. 2014], sendo uma estratégia ja
adotada na sintese de dados tabulares e em deteccao de malware [Huang and et al. 2020]
e [Nogueira et al. 2024]. As adaptacdes principais incluem a redug¢do do espaco de
busca, a priorizagdo explicita de métricas sensiveis a risco € a incorporacao de uma
andlise detalhada do custo computacional e da convergéncia temporal, aspectos ex-
pandidos na literatura como fatores criticos na otimiza¢do e avaliacdo de modelos
generativos [Bischl et al. 2023, Lietal. 2021]. Essas adaptacOes também se alinham
a recomendacdes de uso de GANs condicionais em fluxos de sintese seguida de
classificagao por classe, facilitando medir impacto e desempenho do classificador final
[Esteban et al. 2017, Li et al. 2021].

4. Tune3: Arquitetura e Implementacao

A arquitetura do Tune3 foi projetada para conduzir ciclos iterativos de otimizacao de ma-
neira controlada, reprodutivel e eficiente. Ela é composta por cinco médulos principais
que operam de forma encadeada, permitindo monitoramento continuo, redu¢ao progres-
siva do espacgo de busca e eliminagdo de execucdes redundantes. A seguir, descrevemos
seus componentes e o fluxo operacional.

Orquestrador. O orquestrador atua como nucleo do sistema. Suas responsabilidades in-
cluem gerar as combinagdes iniciais de hiperpardmetros provenientes da Fase 1, coorde-
nar a amostragem de borda (Fase 2) e acionar o refinamento adaptativo (Fase 3). Também

3https://archive.org/details/hpo3-english
‘https://github.com/AILabs4All/Tune3
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aplica filtros de viabilidade (como detec¢ao de Out of Memory, instabilidade das redes,
estouro de tempo ou baixo desempenho), registra o estado global da busca (execucdes
vdlidas, invalidas e descartadas) e define critérios de parada com base em convergéncia,
limite de execucdes ou janela temporal.

Executor. Diferentemente de abordagens nas quais o treinamento é executado inter-
namente, o Tune3 utiliza um executor responsdvel por invocar ferramentas externas de
geracdo e avaliagdo por meio de chamadas de linha de comando parametrizadas. Esse
modulo constréi comandos incorporando os hiperparametros definidos pelo orquestrador,
executa o processo em ambiente isolado com controle de tempo, captura logs e saidas
padrao, identifica falhas externas (como timeouts, erros da ferramenta ou colapso do ge-
rador) e extrai métricas relevantes para posterior consolidagao.

Mecanismo de Cache e Persisténcia. Implementado em SQLite, o cache armazena
hiperparametros, métricas e tempos de execucdo, funcionando como catdlogo histdrico
que evita reavaliacdes redundantes. Além disso, fornece ao orquestrador informacoes
fundamentais para priorizacdo de combinac¢des promissoras.

Extrator e Consolidador de Métricas. Apés cada execugdo, as métricas extraidas pelo
executor sdo consolidadas e registradas no banco SQLite. Esses valores estruturados
alimentam o processo de selecdo do fop-k e orientam a progressao entre as fases da
otimizacao.

5. Avaliacao Experimental

Os experimentos compararam o método proposto Tune3 com o Random Search, ado-
tado como baseline. =~ Abordagens mais sofisticadas, como Otimizacdo Bayesiana
ou Algoritmos Evolutivos, embora consolidadas na literatura, foram excluidas desta
etapa inicial por exigirem recursos computacionais muito superiores ao escopo preten-
dido. Para a avaliacdo, foram utilizados dois conjuntos amplamente empregados na
deteccao de malware Android: o DREBIN-215, baseado em permissoes, € 0o Defense-
Droid _API Degree, baseado em chamadas de API.

Em ambos os casos, as caracteristicas foram reduzidas para até 200 atributos por
meio do teste x2, visando padronizar o custo computacional e reduzir ruido estatistico. As
execucdes foram realizadas em mdaquinas com configuracdes semelhantes, assegurando
repetibilidade. O espacgo de busca adotado por ambos os métodos incluiu a variacdo do
tamanho das camadas densas do gerador e do discriminador entre 128 e 1024 unidades
com incremento de 64, além do ndmero de épocas de treinamento nos valores 50, 100,
200, 500 e 1000. Esse espaco totaliza 15 x 15 x 5 = 1.125 configuracdes possiveis, que
constituem o grid completo utilizado como referéncia na analise comparativa.

Os demais hiperparametros permaneceram fixos durante todos os experimentos.
O fator de dropout aplicado ao gerador foi definido como 0.5, valor também utilizado
para o discriminador. O tamanho do lote de treinamento foi mantido em 128 amostras,
a validac¢do cruzada empregou cinco parti¢des, o algoritmo de otimizagao utilizado foi o
Adam e a func¢ao de ativacdo adotada nas camadas ocultas foi a LeakyReLLU.

Foram realizadas até 150 execugdes por método e por dataset, cada uma gerando
10 mil amostras (5 mil benignas € 5 mil maliciosas). As avaliacdes utilizaram Recall
como métrica principal, priorizando a detec¢ao de amostras maliciosas, e F'1-score como
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métrica secunddria para avaliar o equilibrio entre precisao e sensibilidade. Essas métricas
refletem a natureza orientada a risco do dominio, no qual falsos negativos sdo particular-
mente criticos por representarem ameacas nao detectadas.

5.1. Resultados Comparativos

Os resultados desta se¢do comparam o desempenho do Tune3 e do Random Search nos
conjuntos DREBIN-215 e DefenseDroid API_Degree. O objetivo € avaliar se o Tune3
reduz o custo computacional e acelera a convergéncia sem perda de desempenho.
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Figura 1. Comparacao entre Tune3 e Random Search em termos de custo acu-
mulado, tendéncia das métricas e estabilidade temporal do Recall.
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A Figura 1 redne os resultados comparativos. As subfiguras (a) e (b) apresentam
o tempo acumulado, enquanto (c) e (d) mostram a tendéncia do Recall e do F1-score por
média movel (janela = 10). Por fim, (e) e (f) ilustram o Recall médio por janelas de 200
s, destacando a estabilidade temporal de cada método.

No DREBIN-215, o Tune3 alcancou Recall maximo de aproximadamente 0,96,
desempenho semelhante ao do Random Search (0,95), porém com custo total cerca de
34% menor, como visto na subfigura (a). O Tune3 atingiu niveis elevados de desempenho
em torno da 40* execucdo, enquanto o Random Search, por ndo direcionar a busca, ob-
teve bons resultados apenas de forma pontual e manteve comportamento mais irregular.
A tendéncia observada na subfigura (c) mostra que o Tune3 estabiliza apds aproximada-
mente 30 execugdes, ao passo que o Random Search oscila entre 0,55 e 0,86 ao longo de
toda a busca. A andlise temporal na subfigura (e) confirma maior consisténcia do Tune3,
que manteve Recall médio superior na maior parte das janelas de 200 s.

No DefenseDroid API _Degree, os ganhos foram mais evidentes: o Tune3 atingiu
Recall final de aproximadamente 0,92, contra 0,87 do Random Search. O tempo acu-
mulado foi reduzido em cerca de 44% de acordo com a subfigura (b). A média mével
apresentada na subfigura (d) indica convergéncia entre a 25* e a 35* execugdes, enquanto
0 Random Search permaneceu irregular durante toda a busca. As janelas temporais da
subfigura (f) mostram que o Tune3 manteve Recall médio entre 0,70 e 0,80, ao passo que
0 Random Search permaneceu concentrado entre 0,50 e 0,60.

De forma geral, os resultados indicam que o Tune3 preserva o desempenho global
(Recall e Fl-score) ao mesmo tempo em que reduz significativamente o custo computa-
cional. No DREBIN-215, o ganho se manifesta principalmente em menor tempo € maior
estabilidade; no DefenseDroid _API_Degree, observa-se melhora simultanea de qualidade
e eficiéncia. Em ambos os casos, o Tune3 atinge rapidamente regides promissoras do
espaco de busca e mantém resultados estdveis entre execucdes, contrastando com o com-
portamento mais erratico do Random Search.

6. Conclusao

Este trabalho apresentou o Tune3, um método multiestdgio adaptativo para otimizac¢ao
de hiperparametros aplicado a deteccdo de malware Android. Nos experimentos com
os conjuntos DREBIN-215 e DefenseDroid_ API _Degree, o método obteve desempenho
equivalente ou superior a0 Random Search, com reducdes de 34% a 44% no tempo acu-
mulado e menor variabilidade entre execu¢des. Embora o Random Search possa produzir
bons resultados pontuais em espagos de busca pequenos, sua eficdcia diminui a medida
que o espaco cresce, enquanto o Tune3 se beneficia de uma busca estruturada que concen-
tra esfor¢os em regides mais promissoras. Os resultados indicam que o Tune3 é adequado
a cendrios de detec¢do de ameagas, nos quais tempo, estabilidade e sensibilidade a falsos
negativos sdo fatores criticos. Como trabalhos futuros, propde-se a inclusdo de métricas
de custo energético e a avaliacdo do método em contextos de aprendizado federado, am-
pliando sua aplicabilidade a ambientes distribuidos e restritos em recursos.
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